mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
488e13a489
If the kernel is compiled with the CONFIG_LOCKDEP option, the conditional
might_sleep_if() deep in kmem_cache_alloc() will generate the following
trace, and potentially cause a deadlock when another LBR event is added:
[] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:196
[] Call Trace:
[] kmem_cache_alloc+0x36/0x250
[] intel_pmu_lbr_add+0x152/0x170
[] x86_pmu_add+0x83/0xd0
Make it symmetric with the release_lbr_buffers() call and mirror the
existing DS buffers.
Fixes: c085fb8774
("perf/x86/intel/lbr: Support XSAVES for arch LBR read")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simplified]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210430052247.3079672-2-like.xu@linux.intel.com
2965 lines
72 KiB
C
2965 lines
72 KiB
C
/*
|
|
* Performance events x86 architecture code
|
|
*
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2009 Jaswinder Singh Rajput
|
|
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
|
|
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
|
|
* Copyright (C) 2009 Google, Inc., Stephane Eranian
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/device.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/static_call.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/ldt.h>
|
|
#include <asm/unwind.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
struct x86_pmu x86_pmu __read_mostly;
|
|
static struct pmu pmu;
|
|
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
|
|
.enabled = 1,
|
|
.pmu = &pmu,
|
|
};
|
|
|
|
DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
|
|
DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
|
|
DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
|
|
|
|
/*
|
|
* This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
|
|
* from just a typename, as opposed to an actual function.
|
|
*/
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
|
|
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
|
|
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
|
|
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
|
|
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
|
|
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
|
|
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
|
|
|
|
/*
|
|
* This one is magic, it will get called even when PMU init fails (because
|
|
* there is no PMU), in which case it should simply return NULL.
|
|
*/
|
|
DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
|
|
|
|
u64 __read_mostly hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
u64 __read_mostly hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
|
|
/*
|
|
* Propagate event elapsed time into the generic event.
|
|
* Can only be executed on the CPU where the event is active.
|
|
* Returns the delta events processed.
|
|
*/
|
|
u64 x86_perf_event_update(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int shift = 64 - x86_pmu.cntval_bits;
|
|
u64 prev_raw_count, new_raw_count;
|
|
u64 delta;
|
|
|
|
if (unlikely(!hwc->event_base))
|
|
return 0;
|
|
|
|
if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
|
|
return x86_pmu.update_topdown_event(event);
|
|
|
|
/*
|
|
* Careful: an NMI might modify the previous event value.
|
|
*
|
|
* Our tactic to handle this is to first atomically read and
|
|
* exchange a new raw count - then add that new-prev delta
|
|
* count to the generic event atomically:
|
|
*/
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
rdpmcl(hwc->event_base_rdpmc, new_raw_count);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
/*
|
|
* Now we have the new raw value and have updated the prev
|
|
* timestamp already. We can now calculate the elapsed delta
|
|
* (event-)time and add that to the generic event.
|
|
*
|
|
* Careful, not all hw sign-extends above the physical width
|
|
* of the count.
|
|
*/
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
/*
|
|
* Find and validate any extra registers to set up.
|
|
*/
|
|
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
|
|
{
|
|
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
|
|
struct hw_perf_event_extra *reg;
|
|
struct extra_reg *er;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
|
|
if (!extra_regs)
|
|
return 0;
|
|
|
|
for (er = extra_regs; er->msr; er++) {
|
|
if (er->event != (config & er->config_mask))
|
|
continue;
|
|
if (event->attr.config1 & ~er->valid_mask)
|
|
return -EINVAL;
|
|
/* Check if the extra msrs can be safely accessed*/
|
|
if (!er->extra_msr_access)
|
|
return -ENXIO;
|
|
|
|
reg->idx = er->idx;
|
|
reg->config = event->attr.config1;
|
|
reg->reg = er->msr;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static atomic_t active_events;
|
|
static atomic_t pmc_refcount;
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
|
|
static inline int get_possible_num_counters(void)
|
|
{
|
|
int i, num_counters = x86_pmu.num_counters;
|
|
|
|
if (!is_hybrid())
|
|
return num_counters;
|
|
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
|
|
num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
|
|
|
|
return num_counters;
|
|
}
|
|
|
|
static bool reserve_pmc_hardware(void)
|
|
{
|
|
int i, num_counters = get_possible_num_counters();
|
|
|
|
for (i = 0; i < num_counters; i++) {
|
|
if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
|
|
goto perfctr_fail;
|
|
}
|
|
|
|
for (i = 0; i < num_counters; i++) {
|
|
if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
|
|
goto eventsel_fail;
|
|
}
|
|
|
|
return true;
|
|
|
|
eventsel_fail:
|
|
for (i--; i >= 0; i--)
|
|
release_evntsel_nmi(x86_pmu_config_addr(i));
|
|
|
|
i = num_counters;
|
|
|
|
perfctr_fail:
|
|
for (i--; i >= 0; i--)
|
|
release_perfctr_nmi(x86_pmu_event_addr(i));
|
|
|
|
return false;
|
|
}
|
|
|
|
static void release_pmc_hardware(void)
|
|
{
|
|
int i, num_counters = get_possible_num_counters();
|
|
|
|
for (i = 0; i < num_counters; i++) {
|
|
release_perfctr_nmi(x86_pmu_event_addr(i));
|
|
release_evntsel_nmi(x86_pmu_config_addr(i));
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static bool reserve_pmc_hardware(void) { return true; }
|
|
static void release_pmc_hardware(void) {}
|
|
|
|
#endif
|
|
|
|
bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
|
|
{
|
|
u64 val, val_fail = -1, val_new= ~0;
|
|
int i, reg, reg_fail = -1, ret = 0;
|
|
int bios_fail = 0;
|
|
int reg_safe = -1;
|
|
|
|
/*
|
|
* Check to see if the BIOS enabled any of the counters, if so
|
|
* complain and bail.
|
|
*/
|
|
for (i = 0; i < num_counters; i++) {
|
|
reg = x86_pmu_config_addr(i);
|
|
ret = rdmsrl_safe(reg, &val);
|
|
if (ret)
|
|
goto msr_fail;
|
|
if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
|
|
bios_fail = 1;
|
|
val_fail = val;
|
|
reg_fail = reg;
|
|
} else {
|
|
reg_safe = i;
|
|
}
|
|
}
|
|
|
|
if (num_counters_fixed) {
|
|
reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
|
|
ret = rdmsrl_safe(reg, &val);
|
|
if (ret)
|
|
goto msr_fail;
|
|
for (i = 0; i < num_counters_fixed; i++) {
|
|
if (fixed_counter_disabled(i, pmu))
|
|
continue;
|
|
if (val & (0x03ULL << i*4)) {
|
|
bios_fail = 1;
|
|
val_fail = val;
|
|
reg_fail = reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If all the counters are enabled, the below test will always
|
|
* fail. The tools will also become useless in this scenario.
|
|
* Just fail and disable the hardware counters.
|
|
*/
|
|
|
|
if (reg_safe == -1) {
|
|
reg = reg_safe;
|
|
goto msr_fail;
|
|
}
|
|
|
|
/*
|
|
* Read the current value, change it and read it back to see if it
|
|
* matches, this is needed to detect certain hardware emulators
|
|
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
|
|
*/
|
|
reg = x86_pmu_event_addr(reg_safe);
|
|
if (rdmsrl_safe(reg, &val))
|
|
goto msr_fail;
|
|
val ^= 0xffffUL;
|
|
ret = wrmsrl_safe(reg, val);
|
|
ret |= rdmsrl_safe(reg, &val_new);
|
|
if (ret || val != val_new)
|
|
goto msr_fail;
|
|
|
|
/*
|
|
* We still allow the PMU driver to operate:
|
|
*/
|
|
if (bios_fail) {
|
|
pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
|
|
pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
|
|
reg_fail, val_fail);
|
|
}
|
|
|
|
return true;
|
|
|
|
msr_fail:
|
|
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
|
|
pr_cont("PMU not available due to virtualization, using software events only.\n");
|
|
} else {
|
|
pr_cont("Broken PMU hardware detected, using software events only.\n");
|
|
pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
|
|
reg, val_new);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
x86_release_hardware();
|
|
atomic_dec(&active_events);
|
|
}
|
|
|
|
void hw_perf_lbr_event_destroy(struct perf_event *event)
|
|
{
|
|
hw_perf_event_destroy(event);
|
|
|
|
/* undo the lbr/bts event accounting */
|
|
x86_del_exclusive(x86_lbr_exclusive_lbr);
|
|
}
|
|
|
|
static inline int x86_pmu_initialized(void)
|
|
{
|
|
return x86_pmu.handle_irq != NULL;
|
|
}
|
|
|
|
static inline int
|
|
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
u64 config, val;
|
|
|
|
config = attr->config;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return -EINVAL;
|
|
cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return -EINVAL;
|
|
cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
|
|
|
|
val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
|
|
if (val == 0)
|
|
return -ENOENT;
|
|
|
|
if (val == -1)
|
|
return -EINVAL;
|
|
|
|
hwc->config |= val;
|
|
attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
|
|
return x86_pmu_extra_regs(val, event);
|
|
}
|
|
|
|
int x86_reserve_hardware(void)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!atomic_inc_not_zero(&pmc_refcount)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_read(&pmc_refcount) == 0) {
|
|
if (!reserve_pmc_hardware()) {
|
|
err = -EBUSY;
|
|
} else {
|
|
reserve_ds_buffers();
|
|
reserve_lbr_buffers();
|
|
}
|
|
}
|
|
if (!err)
|
|
atomic_inc(&pmc_refcount);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void x86_release_hardware(void)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
|
|
release_pmc_hardware();
|
|
release_ds_buffers();
|
|
release_lbr_buffers();
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if we can create event of a certain type (that no conflicting events
|
|
* are present).
|
|
*/
|
|
int x86_add_exclusive(unsigned int what)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
|
|
* LBR and BTS are still mutually exclusive.
|
|
*/
|
|
if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
|
|
goto out;
|
|
|
|
if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
|
|
if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
|
|
goto fail_unlock;
|
|
}
|
|
atomic_inc(&x86_pmu.lbr_exclusive[what]);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
|
|
out:
|
|
atomic_inc(&active_events);
|
|
return 0;
|
|
|
|
fail_unlock:
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
return -EBUSY;
|
|
}
|
|
|
|
void x86_del_exclusive(unsigned int what)
|
|
{
|
|
atomic_dec(&active_events);
|
|
|
|
/*
|
|
* See the comment in x86_add_exclusive().
|
|
*/
|
|
if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
|
|
return;
|
|
|
|
atomic_dec(&x86_pmu.lbr_exclusive[what]);
|
|
}
|
|
|
|
int x86_setup_perfctr(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 config;
|
|
|
|
if (!is_sampling_event(event)) {
|
|
hwc->sample_period = x86_pmu.max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
if (attr->type == event->pmu->type)
|
|
return x86_pmu_extra_regs(event->attr.config, event);
|
|
|
|
if (attr->type == PERF_TYPE_HW_CACHE)
|
|
return set_ext_hw_attr(hwc, event);
|
|
|
|
if (attr->config >= x86_pmu.max_events)
|
|
return -EINVAL;
|
|
|
|
attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
|
|
|
|
/*
|
|
* The generic map:
|
|
*/
|
|
config = x86_pmu.event_map(attr->config);
|
|
|
|
if (config == 0)
|
|
return -ENOENT;
|
|
|
|
if (config == -1LL)
|
|
return -EINVAL;
|
|
|
|
hwc->config |= config;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* check that branch_sample_type is compatible with
|
|
* settings needed for precise_ip > 1 which implies
|
|
* using the LBR to capture ALL taken branches at the
|
|
* priv levels of the measurement
|
|
*/
|
|
static inline int precise_br_compat(struct perf_event *event)
|
|
{
|
|
u64 m = event->attr.branch_sample_type;
|
|
u64 b = 0;
|
|
|
|
/* must capture all branches */
|
|
if (!(m & PERF_SAMPLE_BRANCH_ANY))
|
|
return 0;
|
|
|
|
m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
|
|
|
|
if (!event->attr.exclude_user)
|
|
b |= PERF_SAMPLE_BRANCH_USER;
|
|
|
|
if (!event->attr.exclude_kernel)
|
|
b |= PERF_SAMPLE_BRANCH_KERNEL;
|
|
|
|
/*
|
|
* ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
|
|
*/
|
|
|
|
return m == b;
|
|
}
|
|
|
|
int x86_pmu_max_precise(void)
|
|
{
|
|
int precise = 0;
|
|
|
|
/* Support for constant skid */
|
|
if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
|
|
precise++;
|
|
|
|
/* Support for IP fixup */
|
|
if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
|
|
precise++;
|
|
|
|
if (x86_pmu.pebs_prec_dist)
|
|
precise++;
|
|
}
|
|
return precise;
|
|
}
|
|
|
|
int x86_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
if (event->attr.precise_ip) {
|
|
int precise = x86_pmu_max_precise();
|
|
|
|
if (event->attr.precise_ip > precise)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* There's no sense in having PEBS for non sampling events: */
|
|
if (!is_sampling_event(event))
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* check that PEBS LBR correction does not conflict with
|
|
* whatever the user is asking with attr->branch_sample_type
|
|
*/
|
|
if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
|
|
u64 *br_type = &event->attr.branch_sample_type;
|
|
|
|
if (has_branch_stack(event)) {
|
|
if (!precise_br_compat(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* branch_sample_type is compatible */
|
|
|
|
} else {
|
|
/*
|
|
* user did not specify branch_sample_type
|
|
*
|
|
* For PEBS fixups, we capture all
|
|
* the branches at the priv level of the
|
|
* event.
|
|
*/
|
|
*br_type = PERF_SAMPLE_BRANCH_ANY;
|
|
|
|
if (!event->attr.exclude_user)
|
|
*br_type |= PERF_SAMPLE_BRANCH_USER;
|
|
|
|
if (!event->attr.exclude_kernel)
|
|
*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
|
|
}
|
|
}
|
|
|
|
if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
|
|
event->attach_state |= PERF_ATTACH_TASK_DATA;
|
|
|
|
/*
|
|
* Generate PMC IRQs:
|
|
* (keep 'enabled' bit clear for now)
|
|
*/
|
|
event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
|
|
|
|
/*
|
|
* Count user and OS events unless requested not to
|
|
*/
|
|
if (!event->attr.exclude_user)
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
|
|
if (!event->attr.exclude_kernel)
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
|
|
|
|
if (event->attr.type == event->pmu->type)
|
|
event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
|
|
|
|
if (event->attr.sample_period && x86_pmu.limit_period) {
|
|
if (x86_pmu.limit_period(event, event->attr.sample_period) >
|
|
event->attr.sample_period)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* sample_regs_user never support XMM registers */
|
|
if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
|
|
return -EINVAL;
|
|
/*
|
|
* Besides the general purpose registers, XMM registers may
|
|
* be collected in PEBS on some platforms, e.g. Icelake
|
|
*/
|
|
if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
|
|
if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
|
|
return -EINVAL;
|
|
|
|
if (!event->attr.precise_ip)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return x86_setup_perfctr(event);
|
|
}
|
|
|
|
/*
|
|
* Setup the hardware configuration for a given attr_type
|
|
*/
|
|
static int __x86_pmu_event_init(struct perf_event *event)
|
|
{
|
|
int err;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return -ENODEV;
|
|
|
|
err = x86_reserve_hardware();
|
|
if (err)
|
|
return err;
|
|
|
|
atomic_inc(&active_events);
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
event->hw.idx = -1;
|
|
event->hw.last_cpu = -1;
|
|
event->hw.last_tag = ~0ULL;
|
|
|
|
/* mark unused */
|
|
event->hw.extra_reg.idx = EXTRA_REG_NONE;
|
|
event->hw.branch_reg.idx = EXTRA_REG_NONE;
|
|
|
|
return x86_pmu.hw_config(event);
|
|
}
|
|
|
|
void x86_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
u64 val;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
rdmsrl(x86_pmu_config_addr(idx), val);
|
|
if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
|
|
continue;
|
|
val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
wrmsrl(x86_pmu_config_addr(idx), val);
|
|
if (is_counter_pair(hwc))
|
|
wrmsrl(x86_pmu_config_addr(idx + 1), 0);
|
|
}
|
|
}
|
|
|
|
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
|
|
{
|
|
return static_call(x86_pmu_guest_get_msrs)(nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
|
|
|
|
/*
|
|
* There may be PMI landing after enabled=0. The PMI hitting could be before or
|
|
* after disable_all.
|
|
*
|
|
* If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
|
|
* It will not be re-enabled in the NMI handler again, because enabled=0. After
|
|
* handling the NMI, disable_all will be called, which will not change the
|
|
* state either. If PMI hits after disable_all, the PMU is already disabled
|
|
* before entering NMI handler. The NMI handler will not change the state
|
|
* either.
|
|
*
|
|
* So either situation is harmless.
|
|
*/
|
|
static void x86_pmu_disable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!x86_pmu_initialized())
|
|
return;
|
|
|
|
if (!cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->n_added = 0;
|
|
cpuc->enabled = 0;
|
|
barrier();
|
|
|
|
static_call(x86_pmu_disable_all)();
|
|
}
|
|
|
|
void x86_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
static inline int is_x86_event(struct perf_event *event)
|
|
{
|
|
int i;
|
|
|
|
if (!is_hybrid())
|
|
return event->pmu == &pmu;
|
|
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
|
|
if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct pmu *x86_get_pmu(unsigned int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
/*
|
|
* All CPUs of the hybrid type have been offline.
|
|
* The x86_get_pmu() should not be invoked.
|
|
*/
|
|
if (WARN_ON_ONCE(!cpuc->pmu))
|
|
return &pmu;
|
|
|
|
return cpuc->pmu;
|
|
}
|
|
/*
|
|
* Event scheduler state:
|
|
*
|
|
* Assign events iterating over all events and counters, beginning
|
|
* with events with least weights first. Keep the current iterator
|
|
* state in struct sched_state.
|
|
*/
|
|
struct sched_state {
|
|
int weight;
|
|
int event; /* event index */
|
|
int counter; /* counter index */
|
|
int unassigned; /* number of events to be assigned left */
|
|
int nr_gp; /* number of GP counters used */
|
|
u64 used;
|
|
};
|
|
|
|
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
|
|
#define SCHED_STATES_MAX 2
|
|
|
|
struct perf_sched {
|
|
int max_weight;
|
|
int max_events;
|
|
int max_gp;
|
|
int saved_states;
|
|
struct event_constraint **constraints;
|
|
struct sched_state state;
|
|
struct sched_state saved[SCHED_STATES_MAX];
|
|
};
|
|
|
|
/*
|
|
* Initialize iterator that runs through all events and counters.
|
|
*/
|
|
static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
|
|
int num, int wmin, int wmax, int gpmax)
|
|
{
|
|
int idx;
|
|
|
|
memset(sched, 0, sizeof(*sched));
|
|
sched->max_events = num;
|
|
sched->max_weight = wmax;
|
|
sched->max_gp = gpmax;
|
|
sched->constraints = constraints;
|
|
|
|
for (idx = 0; idx < num; idx++) {
|
|
if (constraints[idx]->weight == wmin)
|
|
break;
|
|
}
|
|
|
|
sched->state.event = idx; /* start with min weight */
|
|
sched->state.weight = wmin;
|
|
sched->state.unassigned = num;
|
|
}
|
|
|
|
static void perf_sched_save_state(struct perf_sched *sched)
|
|
{
|
|
if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
|
|
return;
|
|
|
|
sched->saved[sched->saved_states] = sched->state;
|
|
sched->saved_states++;
|
|
}
|
|
|
|
static bool perf_sched_restore_state(struct perf_sched *sched)
|
|
{
|
|
if (!sched->saved_states)
|
|
return false;
|
|
|
|
sched->saved_states--;
|
|
sched->state = sched->saved[sched->saved_states];
|
|
|
|
/* this assignment didn't work out */
|
|
/* XXX broken vs EVENT_PAIR */
|
|
sched->state.used &= ~BIT_ULL(sched->state.counter);
|
|
|
|
/* try the next one */
|
|
sched->state.counter++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Select a counter for the current event to schedule. Return true on
|
|
* success.
|
|
*/
|
|
static bool __perf_sched_find_counter(struct perf_sched *sched)
|
|
{
|
|
struct event_constraint *c;
|
|
int idx;
|
|
|
|
if (!sched->state.unassigned)
|
|
return false;
|
|
|
|
if (sched->state.event >= sched->max_events)
|
|
return false;
|
|
|
|
c = sched->constraints[sched->state.event];
|
|
/* Prefer fixed purpose counters */
|
|
if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
|
|
idx = INTEL_PMC_IDX_FIXED;
|
|
for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
|
|
u64 mask = BIT_ULL(idx);
|
|
|
|
if (sched->state.used & mask)
|
|
continue;
|
|
|
|
sched->state.used |= mask;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Grab the first unused counter starting with idx */
|
|
idx = sched->state.counter;
|
|
for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
|
|
u64 mask = BIT_ULL(idx);
|
|
|
|
if (c->flags & PERF_X86_EVENT_PAIR)
|
|
mask |= mask << 1;
|
|
|
|
if (sched->state.used & mask)
|
|
continue;
|
|
|
|
if (sched->state.nr_gp++ >= sched->max_gp)
|
|
return false;
|
|
|
|
sched->state.used |= mask;
|
|
goto done;
|
|
}
|
|
|
|
return false;
|
|
|
|
done:
|
|
sched->state.counter = idx;
|
|
|
|
if (c->overlap)
|
|
perf_sched_save_state(sched);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool perf_sched_find_counter(struct perf_sched *sched)
|
|
{
|
|
while (!__perf_sched_find_counter(sched)) {
|
|
if (!perf_sched_restore_state(sched))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Go through all unassigned events and find the next one to schedule.
|
|
* Take events with the least weight first. Return true on success.
|
|
*/
|
|
static bool perf_sched_next_event(struct perf_sched *sched)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (!sched->state.unassigned || !--sched->state.unassigned)
|
|
return false;
|
|
|
|
do {
|
|
/* next event */
|
|
sched->state.event++;
|
|
if (sched->state.event >= sched->max_events) {
|
|
/* next weight */
|
|
sched->state.event = 0;
|
|
sched->state.weight++;
|
|
if (sched->state.weight > sched->max_weight)
|
|
return false;
|
|
}
|
|
c = sched->constraints[sched->state.event];
|
|
} while (c->weight != sched->state.weight);
|
|
|
|
sched->state.counter = 0; /* start with first counter */
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Assign a counter for each event.
|
|
*/
|
|
int perf_assign_events(struct event_constraint **constraints, int n,
|
|
int wmin, int wmax, int gpmax, int *assign)
|
|
{
|
|
struct perf_sched sched;
|
|
|
|
perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
|
|
|
|
do {
|
|
if (!perf_sched_find_counter(&sched))
|
|
break; /* failed */
|
|
if (assign)
|
|
assign[sched.state.event] = sched.state.counter;
|
|
} while (perf_sched_next_event(&sched));
|
|
|
|
return sched.state.unassigned;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_assign_events);
|
|
|
|
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
|
|
{
|
|
int num_counters = hybrid(cpuc->pmu, num_counters);
|
|
struct event_constraint *c;
|
|
struct perf_event *e;
|
|
int n0, i, wmin, wmax, unsched = 0;
|
|
struct hw_perf_event *hwc;
|
|
u64 used_mask = 0;
|
|
|
|
/*
|
|
* Compute the number of events already present; see x86_pmu_add(),
|
|
* validate_group() and x86_pmu_commit_txn(). For the former two
|
|
* cpuc->n_events hasn't been updated yet, while for the latter
|
|
* cpuc->n_txn contains the number of events added in the current
|
|
* transaction.
|
|
*/
|
|
n0 = cpuc->n_events;
|
|
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
|
|
n0 -= cpuc->n_txn;
|
|
|
|
static_call_cond(x86_pmu_start_scheduling)(cpuc);
|
|
|
|
for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
|
|
c = cpuc->event_constraint[i];
|
|
|
|
/*
|
|
* Previously scheduled events should have a cached constraint,
|
|
* while new events should not have one.
|
|
*/
|
|
WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
|
|
|
|
/*
|
|
* Request constraints for new events; or for those events that
|
|
* have a dynamic constraint -- for those the constraint can
|
|
* change due to external factors (sibling state, allow_tfa).
|
|
*/
|
|
if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
|
|
c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
|
|
cpuc->event_constraint[i] = c;
|
|
}
|
|
|
|
wmin = min(wmin, c->weight);
|
|
wmax = max(wmax, c->weight);
|
|
}
|
|
|
|
/*
|
|
* fastpath, try to reuse previous register
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
u64 mask;
|
|
|
|
hwc = &cpuc->event_list[i]->hw;
|
|
c = cpuc->event_constraint[i];
|
|
|
|
/* never assigned */
|
|
if (hwc->idx == -1)
|
|
break;
|
|
|
|
/* constraint still honored */
|
|
if (!test_bit(hwc->idx, c->idxmsk))
|
|
break;
|
|
|
|
mask = BIT_ULL(hwc->idx);
|
|
if (is_counter_pair(hwc))
|
|
mask |= mask << 1;
|
|
|
|
/* not already used */
|
|
if (used_mask & mask)
|
|
break;
|
|
|
|
used_mask |= mask;
|
|
|
|
if (assign)
|
|
assign[i] = hwc->idx;
|
|
}
|
|
|
|
/* slow path */
|
|
if (i != n) {
|
|
int gpmax = num_counters;
|
|
|
|
/*
|
|
* Do not allow scheduling of more than half the available
|
|
* generic counters.
|
|
*
|
|
* This helps avoid counter starvation of sibling thread by
|
|
* ensuring at most half the counters cannot be in exclusive
|
|
* mode. There is no designated counters for the limits. Any
|
|
* N/2 counters can be used. This helps with events with
|
|
* specific counter constraints.
|
|
*/
|
|
if (is_ht_workaround_enabled() && !cpuc->is_fake &&
|
|
READ_ONCE(cpuc->excl_cntrs->exclusive_present))
|
|
gpmax /= 2;
|
|
|
|
/*
|
|
* Reduce the amount of available counters to allow fitting
|
|
* the extra Merge events needed by large increment events.
|
|
*/
|
|
if (x86_pmu.flags & PMU_FL_PAIR) {
|
|
gpmax = num_counters - cpuc->n_pair;
|
|
WARN_ON(gpmax <= 0);
|
|
}
|
|
|
|
unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
|
|
wmax, gpmax, assign);
|
|
}
|
|
|
|
/*
|
|
* In case of success (unsched = 0), mark events as committed,
|
|
* so we do not put_constraint() in case new events are added
|
|
* and fail to be scheduled
|
|
*
|
|
* We invoke the lower level commit callback to lock the resource
|
|
*
|
|
* We do not need to do all of this in case we are called to
|
|
* validate an event group (assign == NULL)
|
|
*/
|
|
if (!unsched && assign) {
|
|
for (i = 0; i < n; i++) {
|
|
e = cpuc->event_list[i];
|
|
static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
|
|
}
|
|
} else {
|
|
for (i = n0; i < n; i++) {
|
|
e = cpuc->event_list[i];
|
|
|
|
/*
|
|
* release events that failed scheduling
|
|
*/
|
|
static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
|
|
|
|
cpuc->event_constraint[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static_call_cond(x86_pmu_stop_scheduling)(cpuc);
|
|
|
|
return unsched ? -EINVAL : 0;
|
|
}
|
|
|
|
static int add_nr_metric_event(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
if (is_metric_event(event)) {
|
|
if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
|
|
return -EINVAL;
|
|
cpuc->n_metric++;
|
|
cpuc->n_txn_metric++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void del_nr_metric_event(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
if (is_metric_event(event))
|
|
cpuc->n_metric--;
|
|
}
|
|
|
|
static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
|
|
int max_count, int n)
|
|
{
|
|
union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
|
|
|
|
if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
|
|
return -EINVAL;
|
|
|
|
if (n >= max_count + cpuc->n_metric)
|
|
return -EINVAL;
|
|
|
|
cpuc->event_list[n] = event;
|
|
if (is_counter_pair(&event->hw)) {
|
|
cpuc->n_pair++;
|
|
cpuc->n_txn_pair++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dogrp: true if must collect siblings events (group)
|
|
* returns total number of events and error code
|
|
*/
|
|
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
|
|
{
|
|
int num_counters = hybrid(cpuc->pmu, num_counters);
|
|
int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
|
|
struct perf_event *event;
|
|
int n, max_count;
|
|
|
|
max_count = num_counters + num_counters_fixed;
|
|
|
|
/* current number of events already accepted */
|
|
n = cpuc->n_events;
|
|
if (!cpuc->n_events)
|
|
cpuc->pebs_output = 0;
|
|
|
|
if (!cpuc->is_fake && leader->attr.precise_ip) {
|
|
/*
|
|
* For PEBS->PT, if !aux_event, the group leader (PT) went
|
|
* away, the group was broken down and this singleton event
|
|
* can't schedule any more.
|
|
*/
|
|
if (is_pebs_pt(leader) && !leader->aux_event)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* pebs_output: 0: no PEBS so far, 1: PT, 2: DS
|
|
*/
|
|
if (cpuc->pebs_output &&
|
|
cpuc->pebs_output != is_pebs_pt(leader) + 1)
|
|
return -EINVAL;
|
|
|
|
cpuc->pebs_output = is_pebs_pt(leader) + 1;
|
|
}
|
|
|
|
if (is_x86_event(leader)) {
|
|
if (collect_event(cpuc, leader, max_count, n))
|
|
return -EINVAL;
|
|
n++;
|
|
}
|
|
|
|
if (!dogrp)
|
|
return n;
|
|
|
|
for_each_sibling_event(event, leader) {
|
|
if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
|
|
continue;
|
|
|
|
if (collect_event(cpuc, event, max_count, n))
|
|
return -EINVAL;
|
|
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static inline void x86_assign_hw_event(struct perf_event *event,
|
|
struct cpu_hw_events *cpuc, int i)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
|
|
idx = hwc->idx = cpuc->assign[i];
|
|
hwc->last_cpu = smp_processor_id();
|
|
hwc->last_tag = ++cpuc->tags[i];
|
|
|
|
switch (hwc->idx) {
|
|
case INTEL_PMC_IDX_FIXED_BTS:
|
|
case INTEL_PMC_IDX_FIXED_VLBR:
|
|
hwc->config_base = 0;
|
|
hwc->event_base = 0;
|
|
break;
|
|
|
|
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
|
|
/* All the metric events are mapped onto the fixed counter 3. */
|
|
idx = INTEL_PMC_IDX_FIXED_SLOTS;
|
|
fallthrough;
|
|
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
|
|
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
|
|
hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
|
|
(idx - INTEL_PMC_IDX_FIXED);
|
|
hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
|
|
INTEL_PMC_FIXED_RDPMC_BASE;
|
|
break;
|
|
|
|
default:
|
|
hwc->config_base = x86_pmu_config_addr(hwc->idx);
|
|
hwc->event_base = x86_pmu_event_addr(hwc->idx);
|
|
hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* x86_perf_rdpmc_index - Return PMC counter used for event
|
|
* @event: the perf_event to which the PMC counter was assigned
|
|
*
|
|
* The counter assigned to this performance event may change if interrupts
|
|
* are enabled. This counter should thus never be used while interrupts are
|
|
* enabled. Before this function is used to obtain the assigned counter the
|
|
* event should be checked for validity using, for example,
|
|
* perf_event_read_local(), within the same interrupt disabled section in
|
|
* which this counter is planned to be used.
|
|
*
|
|
* Return: The index of the performance monitoring counter assigned to
|
|
* @perf_event.
|
|
*/
|
|
int x86_perf_rdpmc_index(struct perf_event *event)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
return event->hw.event_base_rdpmc;
|
|
}
|
|
|
|
static inline int match_prev_assignment(struct hw_perf_event *hwc,
|
|
struct cpu_hw_events *cpuc,
|
|
int i)
|
|
{
|
|
return hwc->idx == cpuc->assign[i] &&
|
|
hwc->last_cpu == smp_processor_id() &&
|
|
hwc->last_tag == cpuc->tags[i];
|
|
}
|
|
|
|
static void x86_pmu_start(struct perf_event *event, int flags);
|
|
|
|
static void x86_pmu_enable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_event *event;
|
|
struct hw_perf_event *hwc;
|
|
int i, added = cpuc->n_added;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return;
|
|
|
|
if (cpuc->enabled)
|
|
return;
|
|
|
|
if (cpuc->n_added) {
|
|
int n_running = cpuc->n_events - cpuc->n_added;
|
|
/*
|
|
* apply assignment obtained either from
|
|
* hw_perf_group_sched_in() or x86_pmu_enable()
|
|
*
|
|
* step1: save events moving to new counters
|
|
*/
|
|
for (i = 0; i < n_running; i++) {
|
|
event = cpuc->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
/*
|
|
* we can avoid reprogramming counter if:
|
|
* - assigned same counter as last time
|
|
* - running on same CPU as last time
|
|
* - no other event has used the counter since
|
|
*/
|
|
if (hwc->idx == -1 ||
|
|
match_prev_assignment(hwc, cpuc, i))
|
|
continue;
|
|
|
|
/*
|
|
* Ensure we don't accidentally enable a stopped
|
|
* counter simply because we rescheduled.
|
|
*/
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
x86_pmu_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
/*
|
|
* step2: reprogram moved events into new counters
|
|
*/
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
event = cpuc->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
if (!match_prev_assignment(hwc, cpuc, i))
|
|
x86_assign_hw_event(event, cpuc, i);
|
|
else if (i < n_running)
|
|
continue;
|
|
|
|
if (hwc->state & PERF_HES_ARCH)
|
|
continue;
|
|
|
|
x86_pmu_start(event, PERF_EF_RELOAD);
|
|
}
|
|
cpuc->n_added = 0;
|
|
perf_events_lapic_init();
|
|
}
|
|
|
|
cpuc->enabled = 1;
|
|
barrier();
|
|
|
|
static_call(x86_pmu_enable_all)(added);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
|
|
|
|
/*
|
|
* Set the next IRQ period, based on the hwc->period_left value.
|
|
* To be called with the event disabled in hw:
|
|
*/
|
|
int x86_perf_event_set_period(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0, idx = hwc->idx;
|
|
|
|
if (unlikely(!hwc->event_base))
|
|
return 0;
|
|
|
|
if (unlikely(is_topdown_count(event)) &&
|
|
x86_pmu.set_topdown_event_period)
|
|
return x86_pmu.set_topdown_event_period(event);
|
|
|
|
/*
|
|
* If we are way outside a reasonable range then just skip forward:
|
|
*/
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
/*
|
|
* Quirk: certain CPUs dont like it if just 1 hw_event is left:
|
|
*/
|
|
if (unlikely(left < 2))
|
|
left = 2;
|
|
|
|
if (left > x86_pmu.max_period)
|
|
left = x86_pmu.max_period;
|
|
|
|
if (x86_pmu.limit_period)
|
|
left = x86_pmu.limit_period(event, left);
|
|
|
|
per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
|
|
|
|
/*
|
|
* The hw event starts counting from this event offset,
|
|
* mark it to be able to extra future deltas:
|
|
*/
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
|
|
|
|
/*
|
|
* Sign extend the Merge event counter's upper 16 bits since
|
|
* we currently declare a 48-bit counter width
|
|
*/
|
|
if (is_counter_pair(hwc))
|
|
wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
|
|
|
|
/*
|
|
* Due to erratum on certan cpu we need
|
|
* a second write to be sure the register
|
|
* is updated properly
|
|
*/
|
|
if (x86_pmu.perfctr_second_write) {
|
|
wrmsrl(hwc->event_base,
|
|
(u64)(-left) & x86_pmu.cntval_mask);
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void x86_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (__this_cpu_read(cpu_hw_events.enabled))
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Add a single event to the PMU.
|
|
*
|
|
* The event is added to the group of enabled events
|
|
* but only if it can be scheduled with existing events.
|
|
*/
|
|
static int x86_pmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc;
|
|
int assign[X86_PMC_IDX_MAX];
|
|
int n, n0, ret;
|
|
|
|
hwc = &event->hw;
|
|
|
|
n0 = cpuc->n_events;
|
|
ret = n = collect_events(cpuc, event, false);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (!(flags & PERF_EF_START))
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
/*
|
|
* If group events scheduling transaction was started,
|
|
* skip the schedulability test here, it will be performed
|
|
* at commit time (->commit_txn) as a whole.
|
|
*
|
|
* If commit fails, we'll call ->del() on all events
|
|
* for which ->add() was called.
|
|
*/
|
|
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
|
|
goto done_collect;
|
|
|
|
ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* copy new assignment, now we know it is possible
|
|
* will be used by hw_perf_enable()
|
|
*/
|
|
memcpy(cpuc->assign, assign, n*sizeof(int));
|
|
|
|
done_collect:
|
|
/*
|
|
* Commit the collect_events() state. See x86_pmu_del() and
|
|
* x86_pmu_*_txn().
|
|
*/
|
|
cpuc->n_events = n;
|
|
cpuc->n_added += n - n0;
|
|
cpuc->n_txn += n - n0;
|
|
|
|
/*
|
|
* This is before x86_pmu_enable() will call x86_pmu_start(),
|
|
* so we enable LBRs before an event needs them etc..
|
|
*/
|
|
static_call_cond(x86_pmu_add)(event);
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void x86_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx = event->hw.idx;
|
|
|
|
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(idx == -1))
|
|
return;
|
|
|
|
if (flags & PERF_EF_RELOAD) {
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
x86_perf_event_set_period(event);
|
|
}
|
|
|
|
event->hw.state = 0;
|
|
|
|
cpuc->events[idx] = event;
|
|
__set_bit(idx, cpuc->active_mask);
|
|
static_call(x86_pmu_enable)(event);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
void perf_event_print_debug(void)
|
|
{
|
|
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
|
|
u64 pebs, debugctl;
|
|
int cpu = smp_processor_id();
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int num_counters = hybrid(cpuc->pmu, num_counters);
|
|
int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
|
|
struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
|
|
unsigned long flags;
|
|
int idx;
|
|
|
|
if (!num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (x86_pmu.version >= 2) {
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
|
|
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
|
|
|
|
pr_info("\n");
|
|
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
|
|
pr_info("CPU#%d: status: %016llx\n", cpu, status);
|
|
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
|
|
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
|
|
if (pebs_constraints) {
|
|
rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
|
|
pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
|
|
}
|
|
if (x86_pmu.lbr_nr) {
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
|
|
}
|
|
}
|
|
pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
|
|
|
|
for (idx = 0; idx < num_counters; idx++) {
|
|
rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
|
|
rdmsrl(x86_pmu_event_addr(idx), pmc_count);
|
|
|
|
prev_left = per_cpu(pmc_prev_left[idx], cpu);
|
|
|
|
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
|
|
cpu, idx, pmc_ctrl);
|
|
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
|
|
cpu, idx, pmc_count);
|
|
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
|
|
cpu, idx, prev_left);
|
|
}
|
|
for (idx = 0; idx < num_counters_fixed; idx++) {
|
|
if (fixed_counter_disabled(idx, cpuc->pmu))
|
|
continue;
|
|
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
|
|
|
|
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
|
|
cpu, idx, pmc_count);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void x86_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (test_bit(hwc->idx, cpuc->active_mask)) {
|
|
static_call(x86_pmu_disable)(event);
|
|
__clear_bit(hwc->idx, cpuc->active_mask);
|
|
cpuc->events[hwc->idx] = NULL;
|
|
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
|
|
/*
|
|
* Drain the remaining delta count out of a event
|
|
* that we are disabling:
|
|
*/
|
|
x86_perf_event_update(event);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void x86_pmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
|
|
int i;
|
|
|
|
/*
|
|
* If we're called during a txn, we only need to undo x86_pmu.add.
|
|
* The events never got scheduled and ->cancel_txn will truncate
|
|
* the event_list.
|
|
*
|
|
* XXX assumes any ->del() called during a TXN will only be on
|
|
* an event added during that same TXN.
|
|
*/
|
|
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
|
|
goto do_del;
|
|
|
|
/*
|
|
* Not a TXN, therefore cleanup properly.
|
|
*/
|
|
x86_pmu_stop(event, PERF_EF_UPDATE);
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (event == cpuc->event_list[i])
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
|
|
return;
|
|
|
|
/* If we have a newly added event; make sure to decrease n_added. */
|
|
if (i >= cpuc->n_events - cpuc->n_added)
|
|
--cpuc->n_added;
|
|
|
|
static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
|
|
|
|
/* Delete the array entry. */
|
|
while (++i < cpuc->n_events) {
|
|
cpuc->event_list[i-1] = cpuc->event_list[i];
|
|
cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
|
|
}
|
|
cpuc->event_constraint[i-1] = NULL;
|
|
--cpuc->n_events;
|
|
if (intel_cap.perf_metrics)
|
|
del_nr_metric_event(cpuc, event);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
do_del:
|
|
|
|
/*
|
|
* This is after x86_pmu_stop(); so we disable LBRs after any
|
|
* event can need them etc..
|
|
*/
|
|
static_call_cond(x86_pmu_del)(event);
|
|
}
|
|
|
|
int x86_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
struct perf_event *event;
|
|
int idx, handled = 0;
|
|
u64 val;
|
|
|
|
cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* Some chipsets need to unmask the LVTPC in a particular spot
|
|
* inside the nmi handler. As a result, the unmasking was pushed
|
|
* into all the nmi handlers.
|
|
*
|
|
* This generic handler doesn't seem to have any issues where the
|
|
* unmasking occurs so it was left at the top.
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
event = cpuc->events[idx];
|
|
|
|
val = x86_perf_event_update(event);
|
|
if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
|
|
continue;
|
|
|
|
/*
|
|
* event overflow
|
|
*/
|
|
handled++;
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
if (!x86_perf_event_set_period(event))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
if (handled)
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
return handled;
|
|
}
|
|
|
|
void perf_events_lapic_init(void)
|
|
{
|
|
if (!x86_pmu.apic || !x86_pmu_initialized())
|
|
return;
|
|
|
|
/*
|
|
* Always use NMI for PMU
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
}
|
|
|
|
static int
|
|
perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
|
|
{
|
|
u64 start_clock;
|
|
u64 finish_clock;
|
|
int ret;
|
|
|
|
/*
|
|
* All PMUs/events that share this PMI handler should make sure to
|
|
* increment active_events for their events.
|
|
*/
|
|
if (!atomic_read(&active_events))
|
|
return NMI_DONE;
|
|
|
|
start_clock = sched_clock();
|
|
ret = static_call(x86_pmu_handle_irq)(regs);
|
|
finish_clock = sched_clock();
|
|
|
|
perf_sample_event_took(finish_clock - start_clock);
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(perf_event_nmi_handler);
|
|
|
|
struct event_constraint emptyconstraint;
|
|
struct event_constraint unconstrained;
|
|
|
|
static int x86_pmu_prepare_cpu(unsigned int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int i;
|
|
|
|
for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
|
|
cpuc->kfree_on_online[i] = NULL;
|
|
if (x86_pmu.cpu_prepare)
|
|
return x86_pmu.cpu_prepare(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_dead_cpu(unsigned int cpu)
|
|
{
|
|
if (x86_pmu.cpu_dead)
|
|
x86_pmu.cpu_dead(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_online_cpu(unsigned int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int i;
|
|
|
|
for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
|
|
kfree(cpuc->kfree_on_online[i]);
|
|
cpuc->kfree_on_online[i] = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_starting_cpu(unsigned int cpu)
|
|
{
|
|
if (x86_pmu.cpu_starting)
|
|
x86_pmu.cpu_starting(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_dying_cpu(unsigned int cpu)
|
|
{
|
|
if (x86_pmu.cpu_dying)
|
|
x86_pmu.cpu_dying(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static void __init pmu_check_apic(void)
|
|
{
|
|
if (boot_cpu_has(X86_FEATURE_APIC))
|
|
return;
|
|
|
|
x86_pmu.apic = 0;
|
|
pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
|
|
pr_info("no hardware sampling interrupt available.\n");
|
|
|
|
/*
|
|
* If we have a PMU initialized but no APIC
|
|
* interrupts, we cannot sample hardware
|
|
* events (user-space has to fall back and
|
|
* sample via a hrtimer based software event):
|
|
*/
|
|
pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
|
|
|
|
}
|
|
|
|
static struct attribute_group x86_pmu_format_group __ro_after_init = {
|
|
.name = "format",
|
|
.attrs = NULL,
|
|
};
|
|
|
|
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
|
|
{
|
|
struct perf_pmu_events_attr *pmu_attr =
|
|
container_of(attr, struct perf_pmu_events_attr, attr);
|
|
u64 config = 0;
|
|
|
|
if (pmu_attr->id < x86_pmu.max_events)
|
|
config = x86_pmu.event_map(pmu_attr->id);
|
|
|
|
/* string trumps id */
|
|
if (pmu_attr->event_str)
|
|
return sprintf(page, "%s", pmu_attr->event_str);
|
|
|
|
return x86_pmu.events_sysfs_show(page, config);
|
|
}
|
|
EXPORT_SYMBOL_GPL(events_sysfs_show);
|
|
|
|
ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
|
|
char *page)
|
|
{
|
|
struct perf_pmu_events_ht_attr *pmu_attr =
|
|
container_of(attr, struct perf_pmu_events_ht_attr, attr);
|
|
|
|
/*
|
|
* Report conditional events depending on Hyper-Threading.
|
|
*
|
|
* This is overly conservative as usually the HT special
|
|
* handling is not needed if the other CPU thread is idle.
|
|
*
|
|
* Note this does not (and cannot) handle the case when thread
|
|
* siblings are invisible, for example with virtualization
|
|
* if they are owned by some other guest. The user tool
|
|
* has to re-read when a thread sibling gets onlined later.
|
|
*/
|
|
return sprintf(page, "%s",
|
|
topology_max_smt_threads() > 1 ?
|
|
pmu_attr->event_str_ht :
|
|
pmu_attr->event_str_noht);
|
|
}
|
|
|
|
ssize_t events_hybrid_sysfs_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *page)
|
|
{
|
|
struct perf_pmu_events_hybrid_attr *pmu_attr =
|
|
container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
|
|
struct x86_hybrid_pmu *pmu;
|
|
const char *str, *next_str;
|
|
int i;
|
|
|
|
if (hweight64(pmu_attr->pmu_type) == 1)
|
|
return sprintf(page, "%s", pmu_attr->event_str);
|
|
|
|
/*
|
|
* Hybrid PMUs may support the same event name, but with different
|
|
* event encoding, e.g., the mem-loads event on an Atom PMU has
|
|
* different event encoding from a Core PMU.
|
|
*
|
|
* The event_str includes all event encodings. Each event encoding
|
|
* is divided by ";". The order of the event encodings must follow
|
|
* the order of the hybrid PMU index.
|
|
*/
|
|
pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
|
|
|
|
str = pmu_attr->event_str;
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
|
|
if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
|
|
continue;
|
|
if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
|
|
next_str = strchr(str, ';');
|
|
if (next_str)
|
|
return snprintf(page, next_str - str + 1, "%s", str);
|
|
else
|
|
return sprintf(page, "%s", str);
|
|
}
|
|
str = strchr(str, ';');
|
|
str++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
|
|
|
|
EVENT_ATTR(cpu-cycles, CPU_CYCLES );
|
|
EVENT_ATTR(instructions, INSTRUCTIONS );
|
|
EVENT_ATTR(cache-references, CACHE_REFERENCES );
|
|
EVENT_ATTR(cache-misses, CACHE_MISSES );
|
|
EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
|
|
EVENT_ATTR(branch-misses, BRANCH_MISSES );
|
|
EVENT_ATTR(bus-cycles, BUS_CYCLES );
|
|
EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
|
|
EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
|
|
EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
|
|
|
|
static struct attribute *empty_attrs;
|
|
|
|
static struct attribute *events_attr[] = {
|
|
EVENT_PTR(CPU_CYCLES),
|
|
EVENT_PTR(INSTRUCTIONS),
|
|
EVENT_PTR(CACHE_REFERENCES),
|
|
EVENT_PTR(CACHE_MISSES),
|
|
EVENT_PTR(BRANCH_INSTRUCTIONS),
|
|
EVENT_PTR(BRANCH_MISSES),
|
|
EVENT_PTR(BUS_CYCLES),
|
|
EVENT_PTR(STALLED_CYCLES_FRONTEND),
|
|
EVENT_PTR(STALLED_CYCLES_BACKEND),
|
|
EVENT_PTR(REF_CPU_CYCLES),
|
|
NULL,
|
|
};
|
|
|
|
/*
|
|
* Remove all undefined events (x86_pmu.event_map(id) == 0)
|
|
* out of events_attr attributes.
|
|
*/
|
|
static umode_t
|
|
is_visible(struct kobject *kobj, struct attribute *attr, int idx)
|
|
{
|
|
struct perf_pmu_events_attr *pmu_attr;
|
|
|
|
if (idx >= x86_pmu.max_events)
|
|
return 0;
|
|
|
|
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
|
|
/* str trumps id */
|
|
return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
|
|
}
|
|
|
|
static struct attribute_group x86_pmu_events_group __ro_after_init = {
|
|
.name = "events",
|
|
.attrs = events_attr,
|
|
.is_visible = is_visible,
|
|
};
|
|
|
|
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
|
|
{
|
|
u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
|
|
u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
|
|
bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
|
|
bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
|
|
bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
|
|
bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* We have whole page size to spend and just little data
|
|
* to write, so we can safely use sprintf.
|
|
*/
|
|
ret = sprintf(page, "event=0x%02llx", event);
|
|
|
|
if (umask)
|
|
ret += sprintf(page + ret, ",umask=0x%02llx", umask);
|
|
|
|
if (edge)
|
|
ret += sprintf(page + ret, ",edge");
|
|
|
|
if (pc)
|
|
ret += sprintf(page + ret, ",pc");
|
|
|
|
if (any)
|
|
ret += sprintf(page + ret, ",any");
|
|
|
|
if (inv)
|
|
ret += sprintf(page + ret, ",inv");
|
|
|
|
if (cmask)
|
|
ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
|
|
|
|
ret += sprintf(page + ret, "\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct attribute_group x86_pmu_attr_group;
|
|
static struct attribute_group x86_pmu_caps_group;
|
|
|
|
static void x86_pmu_static_call_update(void)
|
|
{
|
|
static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
|
|
static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
|
|
static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
|
|
static_call_update(x86_pmu_enable, x86_pmu.enable);
|
|
static_call_update(x86_pmu_disable, x86_pmu.disable);
|
|
|
|
static_call_update(x86_pmu_add, x86_pmu.add);
|
|
static_call_update(x86_pmu_del, x86_pmu.del);
|
|
static_call_update(x86_pmu_read, x86_pmu.read);
|
|
|
|
static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
|
|
static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
|
|
static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
|
|
|
|
static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
|
|
static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
|
|
static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
|
|
|
|
static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
|
|
static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
|
|
|
|
static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
|
|
static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
|
|
|
|
static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
|
|
}
|
|
|
|
static void _x86_pmu_read(struct perf_event *event)
|
|
{
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
|
|
u64 intel_ctrl)
|
|
{
|
|
pr_info("... version: %d\n", x86_pmu.version);
|
|
pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
|
|
pr_info("... generic registers: %d\n", num_counters);
|
|
pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
|
|
pr_info("... max period: %016Lx\n", x86_pmu.max_period);
|
|
pr_info("... fixed-purpose events: %lu\n",
|
|
hweight64((((1ULL << num_counters_fixed) - 1)
|
|
<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
|
|
pr_info("... event mask: %016Lx\n", intel_ctrl);
|
|
}
|
|
|
|
/*
|
|
* The generic code is not hybrid friendly. The hybrid_pmu->pmu
|
|
* of the first registered PMU is unconditionally assigned to
|
|
* each possible cpuctx->ctx.pmu.
|
|
* Update the correct hybrid PMU to the cpuctx->ctx.pmu.
|
|
*/
|
|
void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
|
|
if (!pmu->pmu_cpu_context)
|
|
return;
|
|
|
|
cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
|
|
cpuctx->ctx.pmu = pmu;
|
|
}
|
|
|
|
static int __init init_hw_perf_events(void)
|
|
{
|
|
struct x86_pmu_quirk *quirk;
|
|
int err;
|
|
|
|
pr_info("Performance Events: ");
|
|
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
err = intel_pmu_init();
|
|
break;
|
|
case X86_VENDOR_AMD:
|
|
err = amd_pmu_init();
|
|
break;
|
|
case X86_VENDOR_HYGON:
|
|
err = amd_pmu_init();
|
|
x86_pmu.name = "HYGON";
|
|
break;
|
|
case X86_VENDOR_ZHAOXIN:
|
|
case X86_VENDOR_CENTAUR:
|
|
err = zhaoxin_pmu_init();
|
|
break;
|
|
default:
|
|
err = -ENOTSUPP;
|
|
}
|
|
if (err != 0) {
|
|
pr_cont("no PMU driver, software events only.\n");
|
|
return 0;
|
|
}
|
|
|
|
pmu_check_apic();
|
|
|
|
/* sanity check that the hardware exists or is emulated */
|
|
if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
|
|
return 0;
|
|
|
|
pr_cont("%s PMU driver.\n", x86_pmu.name);
|
|
|
|
x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
|
|
|
|
for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
|
|
quirk->func();
|
|
|
|
if (!x86_pmu.intel_ctrl)
|
|
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
|
|
|
|
perf_events_lapic_init();
|
|
register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
|
|
|
|
unconstrained = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
|
|
0, x86_pmu.num_counters, 0, 0);
|
|
|
|
x86_pmu_format_group.attrs = x86_pmu.format_attrs;
|
|
|
|
if (!x86_pmu.events_sysfs_show)
|
|
x86_pmu_events_group.attrs = &empty_attrs;
|
|
|
|
pmu.attr_update = x86_pmu.attr_update;
|
|
|
|
if (!is_hybrid()) {
|
|
x86_pmu_show_pmu_cap(x86_pmu.num_counters,
|
|
x86_pmu.num_counters_fixed,
|
|
x86_pmu.intel_ctrl);
|
|
}
|
|
|
|
if (!x86_pmu.read)
|
|
x86_pmu.read = _x86_pmu_read;
|
|
|
|
if (!x86_pmu.guest_get_msrs)
|
|
x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
|
|
|
|
x86_pmu_static_call_update();
|
|
|
|
/*
|
|
* Install callbacks. Core will call them for each online
|
|
* cpu.
|
|
*/
|
|
err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
|
|
x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
|
|
if (err)
|
|
return err;
|
|
|
|
err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
|
|
"perf/x86:starting", x86_pmu_starting_cpu,
|
|
x86_pmu_dying_cpu);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
|
|
x86_pmu_online_cpu, NULL);
|
|
if (err)
|
|
goto out1;
|
|
|
|
if (!is_hybrid()) {
|
|
err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
if (err)
|
|
goto out2;
|
|
} else {
|
|
u8 cpu_type = get_this_hybrid_cpu_type();
|
|
struct x86_hybrid_pmu *hybrid_pmu;
|
|
int i, j;
|
|
|
|
if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
|
|
cpu_type = x86_pmu.get_hybrid_cpu_type();
|
|
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
|
|
hybrid_pmu = &x86_pmu.hybrid_pmu[i];
|
|
|
|
hybrid_pmu->pmu = pmu;
|
|
hybrid_pmu->pmu.type = -1;
|
|
hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
|
|
hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
|
|
hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
|
|
|
|
err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
|
|
(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
|
|
if (err)
|
|
break;
|
|
|
|
if (cpu_type == hybrid_pmu->cpu_type)
|
|
x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
|
|
}
|
|
|
|
if (i < x86_pmu.num_hybrid_pmus) {
|
|
for (j = 0; j < i; j++)
|
|
perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
|
|
pr_warn("Failed to register hybrid PMUs\n");
|
|
kfree(x86_pmu.hybrid_pmu);
|
|
x86_pmu.hybrid_pmu = NULL;
|
|
x86_pmu.num_hybrid_pmus = 0;
|
|
goto out2;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out2:
|
|
cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
|
|
out1:
|
|
cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
|
|
out:
|
|
cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
|
|
return err;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|
|
|
|
static void x86_pmu_read(struct perf_event *event)
|
|
{
|
|
static_call(x86_pmu_read)(event);
|
|
}
|
|
|
|
/*
|
|
* Start group events scheduling transaction
|
|
* Set the flag to make pmu::enable() not perform the
|
|
* schedulability test, it will be performed at commit time
|
|
*
|
|
* We only support PERF_PMU_TXN_ADD transactions. Save the
|
|
* transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
|
|
* transactions.
|
|
*/
|
|
static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
|
|
|
|
cpuc->txn_flags = txn_flags;
|
|
if (txn_flags & ~PERF_PMU_TXN_ADD)
|
|
return;
|
|
|
|
perf_pmu_disable(pmu);
|
|
__this_cpu_write(cpu_hw_events.n_txn, 0);
|
|
__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
|
|
__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
|
|
}
|
|
|
|
/*
|
|
* Stop group events scheduling transaction
|
|
* Clear the flag and pmu::enable() will perform the
|
|
* schedulability test.
|
|
*/
|
|
static void x86_pmu_cancel_txn(struct pmu *pmu)
|
|
{
|
|
unsigned int txn_flags;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
|
|
|
|
txn_flags = cpuc->txn_flags;
|
|
cpuc->txn_flags = 0;
|
|
if (txn_flags & ~PERF_PMU_TXN_ADD)
|
|
return;
|
|
|
|
/*
|
|
* Truncate collected array by the number of events added in this
|
|
* transaction. See x86_pmu_add() and x86_pmu_*_txn().
|
|
*/
|
|
__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
|
|
__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
|
|
__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
|
|
__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
|
|
perf_pmu_enable(pmu);
|
|
}
|
|
|
|
/*
|
|
* Commit group events scheduling transaction
|
|
* Perform the group schedulability test as a whole
|
|
* Return 0 if success
|
|
*
|
|
* Does not cancel the transaction on failure; expects the caller to do this.
|
|
*/
|
|
static int x86_pmu_commit_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int assign[X86_PMC_IDX_MAX];
|
|
int n, ret;
|
|
|
|
WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
|
|
|
|
if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
|
|
cpuc->txn_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
n = cpuc->n_events;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return -EAGAIN;
|
|
|
|
ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* copy new assignment, now we know it is possible
|
|
* will be used by hw_perf_enable()
|
|
*/
|
|
memcpy(cpuc->assign, assign, n*sizeof(int));
|
|
|
|
cpuc->txn_flags = 0;
|
|
perf_pmu_enable(pmu);
|
|
return 0;
|
|
}
|
|
/*
|
|
* a fake_cpuc is used to validate event groups. Due to
|
|
* the extra reg logic, we need to also allocate a fake
|
|
* per_core and per_cpu structure. Otherwise, group events
|
|
* using extra reg may conflict without the kernel being
|
|
* able to catch this when the last event gets added to
|
|
* the group.
|
|
*/
|
|
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
|
|
{
|
|
intel_cpuc_finish(cpuc);
|
|
kfree(cpuc);
|
|
}
|
|
|
|
static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc;
|
|
int cpu;
|
|
|
|
cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
|
|
if (!cpuc)
|
|
return ERR_PTR(-ENOMEM);
|
|
cpuc->is_fake = 1;
|
|
|
|
if (is_hybrid()) {
|
|
struct x86_hybrid_pmu *h_pmu;
|
|
|
|
h_pmu = hybrid_pmu(event_pmu);
|
|
if (cpumask_empty(&h_pmu->supported_cpus))
|
|
goto error;
|
|
cpu = cpumask_first(&h_pmu->supported_cpus);
|
|
} else
|
|
cpu = raw_smp_processor_id();
|
|
cpuc->pmu = event_pmu;
|
|
|
|
if (intel_cpuc_prepare(cpuc, cpu))
|
|
goto error;
|
|
|
|
return cpuc;
|
|
error:
|
|
free_fake_cpuc(cpuc);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* validate that we can schedule this event
|
|
*/
|
|
static int validate_event(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *fake_cpuc;
|
|
struct event_constraint *c;
|
|
int ret = 0;
|
|
|
|
fake_cpuc = allocate_fake_cpuc(event->pmu);
|
|
if (IS_ERR(fake_cpuc))
|
|
return PTR_ERR(fake_cpuc);
|
|
|
|
c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
|
|
|
|
if (!c || !c->weight)
|
|
ret = -EINVAL;
|
|
|
|
if (x86_pmu.put_event_constraints)
|
|
x86_pmu.put_event_constraints(fake_cpuc, event);
|
|
|
|
free_fake_cpuc(fake_cpuc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* validate a single event group
|
|
*
|
|
* validation include:
|
|
* - check events are compatible which each other
|
|
* - events do not compete for the same counter
|
|
* - number of events <= number of counters
|
|
*
|
|
* validation ensures the group can be loaded onto the
|
|
* PMU if it was the only group available.
|
|
*/
|
|
static int validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *leader = event->group_leader;
|
|
struct cpu_hw_events *fake_cpuc;
|
|
int ret = -EINVAL, n;
|
|
|
|
/*
|
|
* Reject events from different hybrid PMUs.
|
|
*/
|
|
if (is_hybrid()) {
|
|
struct perf_event *sibling;
|
|
struct pmu *pmu = NULL;
|
|
|
|
if (is_x86_event(leader))
|
|
pmu = leader->pmu;
|
|
|
|
for_each_sibling_event(sibling, leader) {
|
|
if (!is_x86_event(sibling))
|
|
continue;
|
|
if (!pmu)
|
|
pmu = sibling->pmu;
|
|
else if (pmu != sibling->pmu)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
fake_cpuc = allocate_fake_cpuc(event->pmu);
|
|
if (IS_ERR(fake_cpuc))
|
|
return PTR_ERR(fake_cpuc);
|
|
/*
|
|
* the event is not yet connected with its
|
|
* siblings therefore we must first collect
|
|
* existing siblings, then add the new event
|
|
* before we can simulate the scheduling
|
|
*/
|
|
n = collect_events(fake_cpuc, leader, true);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_cpuc->n_events = n;
|
|
n = collect_events(fake_cpuc, event, false);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_cpuc->n_events = 0;
|
|
ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
|
|
|
|
out:
|
|
free_fake_cpuc(fake_cpuc);
|
|
return ret;
|
|
}
|
|
|
|
static int x86_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = NULL;
|
|
int err;
|
|
|
|
if ((event->attr.type != event->pmu->type) &&
|
|
(event->attr.type != PERF_TYPE_HARDWARE) &&
|
|
(event->attr.type != PERF_TYPE_HW_CACHE))
|
|
return -ENOENT;
|
|
|
|
if (is_hybrid() && (event->cpu != -1)) {
|
|
pmu = hybrid_pmu(event->pmu);
|
|
if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
|
|
return -ENOENT;
|
|
}
|
|
|
|
err = __x86_pmu_event_init(event);
|
|
if (!err) {
|
|
if (event->group_leader != event)
|
|
err = validate_group(event);
|
|
else
|
|
err = validate_event(event);
|
|
}
|
|
if (err) {
|
|
if (event->destroy)
|
|
event->destroy(event);
|
|
}
|
|
|
|
if (READ_ONCE(x86_pmu.attr_rdpmc) &&
|
|
!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
|
|
event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
|
|
{
|
|
if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
|
|
return;
|
|
|
|
/*
|
|
* This function relies on not being called concurrently in two
|
|
* tasks in the same mm. Otherwise one task could observe
|
|
* perf_rdpmc_allowed > 1 and return all the way back to
|
|
* userspace with CR4.PCE clear while another task is still
|
|
* doing on_each_cpu_mask() to propagate CR4.PCE.
|
|
*
|
|
* For now, this can't happen because all callers hold mmap_lock
|
|
* for write. If this changes, we'll need a different solution.
|
|
*/
|
|
mmap_assert_write_locked(mm);
|
|
|
|
if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
|
|
on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
|
|
}
|
|
|
|
static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
|
|
{
|
|
|
|
if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
|
|
return;
|
|
|
|
if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
|
|
on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
|
|
}
|
|
|
|
static int x86_pmu_event_idx(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
|
|
return 0;
|
|
|
|
if (is_metric_idx(hwc->idx))
|
|
return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
|
|
else
|
|
return hwc->event_base_rdpmc + 1;
|
|
}
|
|
|
|
static ssize_t get_attr_rdpmc(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
|
|
}
|
|
|
|
static ssize_t set_attr_rdpmc(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (val > 2)
|
|
return -EINVAL;
|
|
|
|
if (x86_pmu.attr_rdpmc_broken)
|
|
return -ENOTSUPP;
|
|
|
|
if (val != x86_pmu.attr_rdpmc) {
|
|
/*
|
|
* Changing into or out of never available or always available,
|
|
* aka perf-event-bypassing mode. This path is extremely slow,
|
|
* but only root can trigger it, so it's okay.
|
|
*/
|
|
if (val == 0)
|
|
static_branch_inc(&rdpmc_never_available_key);
|
|
else if (x86_pmu.attr_rdpmc == 0)
|
|
static_branch_dec(&rdpmc_never_available_key);
|
|
|
|
if (val == 2)
|
|
static_branch_inc(&rdpmc_always_available_key);
|
|
else if (x86_pmu.attr_rdpmc == 2)
|
|
static_branch_dec(&rdpmc_always_available_key);
|
|
|
|
on_each_cpu(cr4_update_pce, NULL, 1);
|
|
x86_pmu.attr_rdpmc = val;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
|
|
|
|
static struct attribute *x86_pmu_attrs[] = {
|
|
&dev_attr_rdpmc.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group x86_pmu_attr_group __ro_after_init = {
|
|
.attrs = x86_pmu_attrs,
|
|
};
|
|
|
|
static ssize_t max_precise_show(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(max_precise);
|
|
|
|
static struct attribute *x86_pmu_caps_attrs[] = {
|
|
&dev_attr_max_precise.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group x86_pmu_caps_group __ro_after_init = {
|
|
.name = "caps",
|
|
.attrs = x86_pmu_caps_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *x86_pmu_attr_groups[] = {
|
|
&x86_pmu_attr_group,
|
|
&x86_pmu_format_group,
|
|
&x86_pmu_events_group,
|
|
&x86_pmu_caps_group,
|
|
NULL,
|
|
};
|
|
|
|
static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
|
|
}
|
|
|
|
static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
|
|
struct perf_event_context *next)
|
|
{
|
|
static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
|
|
}
|
|
|
|
void perf_check_microcode(void)
|
|
{
|
|
if (x86_pmu.check_microcode)
|
|
x86_pmu.check_microcode();
|
|
}
|
|
|
|
static int x86_pmu_check_period(struct perf_event *event, u64 value)
|
|
{
|
|
if (x86_pmu.check_period && x86_pmu.check_period(event, value))
|
|
return -EINVAL;
|
|
|
|
if (value && x86_pmu.limit_period) {
|
|
if (x86_pmu.limit_period(event, value) > value)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_aux_output_match(struct perf_event *event)
|
|
{
|
|
if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
|
|
return 0;
|
|
|
|
if (x86_pmu.aux_output_match)
|
|
return x86_pmu.aux_output_match(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int x86_pmu_filter_match(struct perf_event *event)
|
|
{
|
|
if (x86_pmu.filter_match)
|
|
return x86_pmu.filter_match(event);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = x86_pmu_enable,
|
|
.pmu_disable = x86_pmu_disable,
|
|
|
|
.attr_groups = x86_pmu_attr_groups,
|
|
|
|
.event_init = x86_pmu_event_init,
|
|
|
|
.event_mapped = x86_pmu_event_mapped,
|
|
.event_unmapped = x86_pmu_event_unmapped,
|
|
|
|
.add = x86_pmu_add,
|
|
.del = x86_pmu_del,
|
|
.start = x86_pmu_start,
|
|
.stop = x86_pmu_stop,
|
|
.read = x86_pmu_read,
|
|
|
|
.start_txn = x86_pmu_start_txn,
|
|
.cancel_txn = x86_pmu_cancel_txn,
|
|
.commit_txn = x86_pmu_commit_txn,
|
|
|
|
.event_idx = x86_pmu_event_idx,
|
|
.sched_task = x86_pmu_sched_task,
|
|
.swap_task_ctx = x86_pmu_swap_task_ctx,
|
|
.check_period = x86_pmu_check_period,
|
|
|
|
.aux_output_match = x86_pmu_aux_output_match,
|
|
|
|
.filter_match = x86_pmu_filter_match,
|
|
};
|
|
|
|
void arch_perf_update_userpage(struct perf_event *event,
|
|
struct perf_event_mmap_page *userpg, u64 now)
|
|
{
|
|
struct cyc2ns_data data;
|
|
u64 offset;
|
|
|
|
userpg->cap_user_time = 0;
|
|
userpg->cap_user_time_zero = 0;
|
|
userpg->cap_user_rdpmc =
|
|
!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
|
|
userpg->pmc_width = x86_pmu.cntval_bits;
|
|
|
|
if (!using_native_sched_clock() || !sched_clock_stable())
|
|
return;
|
|
|
|
cyc2ns_read_begin(&data);
|
|
|
|
offset = data.cyc2ns_offset + __sched_clock_offset;
|
|
|
|
/*
|
|
* Internal timekeeping for enabled/running/stopped times
|
|
* is always in the local_clock domain.
|
|
*/
|
|
userpg->cap_user_time = 1;
|
|
userpg->time_mult = data.cyc2ns_mul;
|
|
userpg->time_shift = data.cyc2ns_shift;
|
|
userpg->time_offset = offset - now;
|
|
|
|
/*
|
|
* cap_user_time_zero doesn't make sense when we're using a different
|
|
* time base for the records.
|
|
*/
|
|
if (!event->attr.use_clockid) {
|
|
userpg->cap_user_time_zero = 1;
|
|
userpg->time_zero = offset;
|
|
}
|
|
|
|
cyc2ns_read_end();
|
|
}
|
|
|
|
/*
|
|
* Determine whether the regs were taken from an irq/exception handler rather
|
|
* than from perf_arch_fetch_caller_regs().
|
|
*/
|
|
static bool perf_hw_regs(struct pt_regs *regs)
|
|
{
|
|
return regs->flags & X86_EFLAGS_FIXED;
|
|
}
|
|
|
|
void
|
|
perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
|
|
{
|
|
struct unwind_state state;
|
|
unsigned long addr;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
/* TODO: We don't support guest os callchain now */
|
|
return;
|
|
}
|
|
|
|
if (perf_callchain_store(entry, regs->ip))
|
|
return;
|
|
|
|
if (perf_hw_regs(regs))
|
|
unwind_start(&state, current, regs, NULL);
|
|
else
|
|
unwind_start(&state, current, NULL, (void *)regs->sp);
|
|
|
|
for (; !unwind_done(&state); unwind_next_frame(&state)) {
|
|
addr = unwind_get_return_address(&state);
|
|
if (!addr || perf_callchain_store(entry, addr))
|
|
return;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
valid_user_frame(const void __user *fp, unsigned long size)
|
|
{
|
|
return (__range_not_ok(fp, size, TASK_SIZE) == 0);
|
|
}
|
|
|
|
static unsigned long get_segment_base(unsigned int segment)
|
|
{
|
|
struct desc_struct *desc;
|
|
unsigned int idx = segment >> 3;
|
|
|
|
if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
|
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
|
struct ldt_struct *ldt;
|
|
|
|
/* IRQs are off, so this synchronizes with smp_store_release */
|
|
ldt = READ_ONCE(current->active_mm->context.ldt);
|
|
if (!ldt || idx >= ldt->nr_entries)
|
|
return 0;
|
|
|
|
desc = &ldt->entries[idx];
|
|
#else
|
|
return 0;
|
|
#endif
|
|
} else {
|
|
if (idx >= GDT_ENTRIES)
|
|
return 0;
|
|
|
|
desc = raw_cpu_ptr(gdt_page.gdt) + idx;
|
|
}
|
|
|
|
return get_desc_base(desc);
|
|
}
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
|
|
#include <linux/compat.h>
|
|
|
|
static inline int
|
|
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
|
|
{
|
|
/* 32-bit process in 64-bit kernel. */
|
|
unsigned long ss_base, cs_base;
|
|
struct stack_frame_ia32 frame;
|
|
const struct stack_frame_ia32 __user *fp;
|
|
|
|
if (user_64bit_mode(regs))
|
|
return 0;
|
|
|
|
cs_base = get_segment_base(regs->cs);
|
|
ss_base = get_segment_base(regs->ss);
|
|
|
|
fp = compat_ptr(ss_base + regs->bp);
|
|
pagefault_disable();
|
|
while (entry->nr < entry->max_stack) {
|
|
if (!valid_user_frame(fp, sizeof(frame)))
|
|
break;
|
|
|
|
if (__get_user(frame.next_frame, &fp->next_frame))
|
|
break;
|
|
if (__get_user(frame.return_address, &fp->return_address))
|
|
break;
|
|
|
|
perf_callchain_store(entry, cs_base + frame.return_address);
|
|
fp = compat_ptr(ss_base + frame.next_frame);
|
|
}
|
|
pagefault_enable();
|
|
return 1;
|
|
}
|
|
#else
|
|
static inline int
|
|
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
|
|
{
|
|
struct stack_frame frame;
|
|
const struct stack_frame __user *fp;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
/* TODO: We don't support guest os callchain now */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We don't know what to do with VM86 stacks.. ignore them for now.
|
|
*/
|
|
if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
|
|
return;
|
|
|
|
fp = (void __user *)regs->bp;
|
|
|
|
perf_callchain_store(entry, regs->ip);
|
|
|
|
if (!nmi_uaccess_okay())
|
|
return;
|
|
|
|
if (perf_callchain_user32(regs, entry))
|
|
return;
|
|
|
|
pagefault_disable();
|
|
while (entry->nr < entry->max_stack) {
|
|
if (!valid_user_frame(fp, sizeof(frame)))
|
|
break;
|
|
|
|
if (__get_user(frame.next_frame, &fp->next_frame))
|
|
break;
|
|
if (__get_user(frame.return_address, &fp->return_address))
|
|
break;
|
|
|
|
perf_callchain_store(entry, frame.return_address);
|
|
fp = (void __user *)frame.next_frame;
|
|
}
|
|
pagefault_enable();
|
|
}
|
|
|
|
/*
|
|
* Deal with code segment offsets for the various execution modes:
|
|
*
|
|
* VM86 - the good olde 16 bit days, where the linear address is
|
|
* 20 bits and we use regs->ip + 0x10 * regs->cs.
|
|
*
|
|
* IA32 - Where we need to look at GDT/LDT segment descriptor tables
|
|
* to figure out what the 32bit base address is.
|
|
*
|
|
* X32 - has TIF_X32 set, but is running in x86_64
|
|
*
|
|
* X86_64 - CS,DS,SS,ES are all zero based.
|
|
*/
|
|
static unsigned long code_segment_base(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* For IA32 we look at the GDT/LDT segment base to convert the
|
|
* effective IP to a linear address.
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* If we are in VM86 mode, add the segment offset to convert to a
|
|
* linear address.
|
|
*/
|
|
if (regs->flags & X86_VM_MASK)
|
|
return 0x10 * regs->cs;
|
|
|
|
if (user_mode(regs) && regs->cs != __USER_CS)
|
|
return get_segment_base(regs->cs);
|
|
#else
|
|
if (user_mode(regs) && !user_64bit_mode(regs) &&
|
|
regs->cs != __USER32_CS)
|
|
return get_segment_base(regs->cs);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
unsigned long perf_instruction_pointer(struct pt_regs *regs)
|
|
{
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
|
|
return perf_guest_cbs->get_guest_ip();
|
|
|
|
return regs->ip + code_segment_base(regs);
|
|
}
|
|
|
|
unsigned long perf_misc_flags(struct pt_regs *regs)
|
|
{
|
|
int misc = 0;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
if (perf_guest_cbs->is_user_mode())
|
|
misc |= PERF_RECORD_MISC_GUEST_USER;
|
|
else
|
|
misc |= PERF_RECORD_MISC_GUEST_KERNEL;
|
|
} else {
|
|
if (user_mode(regs))
|
|
misc |= PERF_RECORD_MISC_USER;
|
|
else
|
|
misc |= PERF_RECORD_MISC_KERNEL;
|
|
}
|
|
|
|
if (regs->flags & PERF_EFLAGS_EXACT)
|
|
misc |= PERF_RECORD_MISC_EXACT_IP;
|
|
|
|
return misc;
|
|
}
|
|
|
|
void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
|
|
{
|
|
cap->version = x86_pmu.version;
|
|
/*
|
|
* KVM doesn't support the hybrid PMU yet.
|
|
* Return the common value in global x86_pmu,
|
|
* which available for all cores.
|
|
*/
|
|
cap->num_counters_gp = x86_pmu.num_counters;
|
|
cap->num_counters_fixed = x86_pmu.num_counters_fixed;
|
|
cap->bit_width_gp = x86_pmu.cntval_bits;
|
|
cap->bit_width_fixed = x86_pmu.cntval_bits;
|
|
cap->events_mask = (unsigned int)x86_pmu.events_maskl;
|
|
cap->events_mask_len = x86_pmu.events_mask_len;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
|