2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/drivers/hwmon/ltc4245.c
Ira Snyder 6e34b187bc hwmon: Add LTC4245 driver
Add Linux support for the Linear Technology LTC4245 Multiple Supply Hot
Swap controller I2C monitoring interface.

Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2009-01-07 16:37:32 +01:00

568 lines
15 KiB
C

/*
* Driver for Linear Technology LTC4245 I2C Multiple Supply Hot Swap Controller
*
* Copyright (C) 2008 Ira W. Snyder <iws@ovro.caltech.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This driver is based on the ds1621 and ina209 drivers.
*
* Datasheet:
* http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1140,P19392,D13517
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
/* Valid addresses are 0x20 - 0x3f
*
* For now, we do not probe, since some of these addresses
* are known to be unfriendly to probing */
static const unsigned short normal_i2c[] = { I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(ltc4245);
/* Here are names of the chip's registers (a.k.a. commands) */
enum ltc4245_cmd {
LTC4245_STATUS = 0x00, /* readonly */
LTC4245_ALERT = 0x01,
LTC4245_CONTROL = 0x02,
LTC4245_ON = 0x03,
LTC4245_FAULT1 = 0x04,
LTC4245_FAULT2 = 0x05,
LTC4245_GPIO = 0x06,
LTC4245_ADCADR = 0x07,
LTC4245_12VIN = 0x10,
LTC4245_12VSENSE = 0x11,
LTC4245_12VOUT = 0x12,
LTC4245_5VIN = 0x13,
LTC4245_5VSENSE = 0x14,
LTC4245_5VOUT = 0x15,
LTC4245_3VIN = 0x16,
LTC4245_3VSENSE = 0x17,
LTC4245_3VOUT = 0x18,
LTC4245_VEEIN = 0x19,
LTC4245_VEESENSE = 0x1a,
LTC4245_VEEOUT = 0x1b,
LTC4245_GPIOADC1 = 0x1c,
LTC4245_GPIOADC2 = 0x1d,
LTC4245_GPIOADC3 = 0x1e,
};
struct ltc4245_data {
struct device *hwmon_dev;
struct mutex update_lock;
bool valid;
unsigned long last_updated; /* in jiffies */
/* Control registers */
u8 cregs[0x08];
/* Voltage registers */
u8 vregs[0x0f];
};
static struct ltc4245_data *ltc4245_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct ltc4245_data *data = i2c_get_clientdata(client);
s32 val;
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
dev_dbg(&client->dev, "Starting ltc4245 update\n");
/* Read control registers -- 0x00 to 0x07 */
for (i = 0; i < ARRAY_SIZE(data->cregs); i++) {
val = i2c_smbus_read_byte_data(client, i);
if (unlikely(val < 0))
data->cregs[i] = 0;
else
data->cregs[i] = val;
}
/* Read voltage registers -- 0x10 to 0x1f */
for (i = 0; i < ARRAY_SIZE(data->vregs); i++) {
val = i2c_smbus_read_byte_data(client, i+0x10);
if (unlikely(val < 0))
data->vregs[i] = 0;
else
data->vregs[i] = val;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/* Return the voltage from the given register in millivolts */
static int ltc4245_get_voltage(struct device *dev, u8 reg)
{
struct ltc4245_data *data = ltc4245_update_device(dev);
const u8 regval = data->vregs[reg - 0x10];
u32 voltage = 0;
switch (reg) {
case LTC4245_12VIN:
case LTC4245_12VOUT:
voltage = regval * 55;
break;
case LTC4245_5VIN:
case LTC4245_5VOUT:
voltage = regval * 22;
break;
case LTC4245_3VIN:
case LTC4245_3VOUT:
voltage = regval * 15;
break;
case LTC4245_VEEIN:
case LTC4245_VEEOUT:
voltage = regval * -55;
break;
case LTC4245_GPIOADC1:
case LTC4245_GPIOADC2:
case LTC4245_GPIOADC3:
voltage = regval * 10;
break;
default:
/* If we get here, the developer messed up */
WARN_ON_ONCE(1);
break;
}
return voltage;
}
/* Return the current in the given sense register in milliAmperes */
static unsigned int ltc4245_get_current(struct device *dev, u8 reg)
{
struct ltc4245_data *data = ltc4245_update_device(dev);
const u8 regval = data->vregs[reg - 0x10];
unsigned int voltage;
unsigned int curr;
/* The strange looking conversions that follow are fixed-point
* math, since we cannot do floating point in the kernel.
*
* Step 1: convert sense register to microVolts
* Step 2: convert voltage to milliAmperes
*
* If you play around with the V=IR equation, you come up with
* the following: X uV / Y mOhm == Z mA
*
* With the resistors that are fractions of a milliOhm, we multiply
* the voltage and resistance by 10, to shift the decimal point.
* Now we can use the normal division operator again.
*/
switch (reg) {
case LTC4245_12VSENSE:
voltage = regval * 250; /* voltage in uV */
curr = voltage / 50; /* sense resistor 50 mOhm */
break;
case LTC4245_5VSENSE:
voltage = regval * 125; /* voltage in uV */
curr = (voltage * 10) / 35; /* sense resistor 3.5 mOhm */
break;
case LTC4245_3VSENSE:
voltage = regval * 125; /* voltage in uV */
curr = (voltage * 10) / 25; /* sense resistor 2.5 mOhm */
break;
case LTC4245_VEESENSE:
voltage = regval * 250; /* voltage in uV */
curr = voltage / 100; /* sense resistor 100 mOhm */
break;
default:
/* If we get here, the developer messed up */
WARN_ON_ONCE(1);
curr = 0;
break;
}
return curr;
}
static ssize_t ltc4245_show_voltage(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
const int voltage = ltc4245_get_voltage(dev, attr->index);
return snprintf(buf, PAGE_SIZE, "%d\n", voltage);
}
static ssize_t ltc4245_show_current(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
const unsigned int curr = ltc4245_get_current(dev, attr->index);
return snprintf(buf, PAGE_SIZE, "%u\n", curr);
}
static ssize_t ltc4245_show_power(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
const unsigned int curr = ltc4245_get_current(dev, attr->index);
const int output_voltage = ltc4245_get_voltage(dev, attr->index+1);
/* current in mA * voltage in mV == power in uW */
const unsigned int power = abs(output_voltage * curr);
return snprintf(buf, PAGE_SIZE, "%u\n", power);
}
static ssize_t ltc4245_show_alarm(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
struct ltc4245_data *data = ltc4245_update_device(dev);
const u8 reg = data->cregs[attr->index];
const u32 mask = attr->nr;
return snprintf(buf, PAGE_SIZE, "%u\n", (reg & mask) ? 1 : 0);
}
/* These macros are used below in constructing device attribute objects
* for use with sysfs_create_group() to make a sysfs device file
* for each register.
*/
#define LTC4245_VOLTAGE(name, ltc4245_cmd_idx) \
static SENSOR_DEVICE_ATTR(name, S_IRUGO, \
ltc4245_show_voltage, NULL, ltc4245_cmd_idx)
#define LTC4245_CURRENT(name, ltc4245_cmd_idx) \
static SENSOR_DEVICE_ATTR(name, S_IRUGO, \
ltc4245_show_current, NULL, ltc4245_cmd_idx)
#define LTC4245_POWER(name, ltc4245_cmd_idx) \
static SENSOR_DEVICE_ATTR(name, S_IRUGO, \
ltc4245_show_power, NULL, ltc4245_cmd_idx)
#define LTC4245_ALARM(name, mask, reg) \
static SENSOR_DEVICE_ATTR_2(name, S_IRUGO, \
ltc4245_show_alarm, NULL, (mask), reg)
/* Construct a sensor_device_attribute structure for each register */
/* Input voltages */
LTC4245_VOLTAGE(in1_input, LTC4245_12VIN);
LTC4245_VOLTAGE(in2_input, LTC4245_5VIN);
LTC4245_VOLTAGE(in3_input, LTC4245_3VIN);
LTC4245_VOLTAGE(in4_input, LTC4245_VEEIN);
/* Input undervoltage alarms */
LTC4245_ALARM(in1_min_alarm, (1 << 0), LTC4245_FAULT1);
LTC4245_ALARM(in2_min_alarm, (1 << 1), LTC4245_FAULT1);
LTC4245_ALARM(in3_min_alarm, (1 << 2), LTC4245_FAULT1);
LTC4245_ALARM(in4_min_alarm, (1 << 3), LTC4245_FAULT1);
/* Currents (via sense resistor) */
LTC4245_CURRENT(curr1_input, LTC4245_12VSENSE);
LTC4245_CURRENT(curr2_input, LTC4245_5VSENSE);
LTC4245_CURRENT(curr3_input, LTC4245_3VSENSE);
LTC4245_CURRENT(curr4_input, LTC4245_VEESENSE);
/* Overcurrent alarms */
LTC4245_ALARM(curr1_max_alarm, (1 << 4), LTC4245_FAULT1);
LTC4245_ALARM(curr2_max_alarm, (1 << 5), LTC4245_FAULT1);
LTC4245_ALARM(curr3_max_alarm, (1 << 6), LTC4245_FAULT1);
LTC4245_ALARM(curr4_max_alarm, (1 << 7), LTC4245_FAULT1);
/* Output voltages */
LTC4245_VOLTAGE(in5_input, LTC4245_12VOUT);
LTC4245_VOLTAGE(in6_input, LTC4245_5VOUT);
LTC4245_VOLTAGE(in7_input, LTC4245_3VOUT);
LTC4245_VOLTAGE(in8_input, LTC4245_VEEOUT);
/* Power Bad alarms */
LTC4245_ALARM(in5_min_alarm, (1 << 0), LTC4245_FAULT2);
LTC4245_ALARM(in6_min_alarm, (1 << 1), LTC4245_FAULT2);
LTC4245_ALARM(in7_min_alarm, (1 << 2), LTC4245_FAULT2);
LTC4245_ALARM(in8_min_alarm, (1 << 3), LTC4245_FAULT2);
/* GPIO voltages */
LTC4245_VOLTAGE(in9_input, LTC4245_GPIOADC1);
LTC4245_VOLTAGE(in10_input, LTC4245_GPIOADC2);
LTC4245_VOLTAGE(in11_input, LTC4245_GPIOADC3);
/* Power Consumption (virtual) */
LTC4245_POWER(power1_input, LTC4245_12VSENSE);
LTC4245_POWER(power2_input, LTC4245_5VSENSE);
LTC4245_POWER(power3_input, LTC4245_3VSENSE);
LTC4245_POWER(power4_input, LTC4245_VEESENSE);
/* Finally, construct an array of pointers to members of the above objects,
* as required for sysfs_create_group()
*/
static struct attribute *ltc4245_attributes[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in1_min_alarm.dev_attr.attr,
&sensor_dev_attr_in2_min_alarm.dev_attr.attr,
&sensor_dev_attr_in3_min_alarm.dev_attr.attr,
&sensor_dev_attr_in4_min_alarm.dev_attr.attr,
&sensor_dev_attr_curr1_input.dev_attr.attr,
&sensor_dev_attr_curr2_input.dev_attr.attr,
&sensor_dev_attr_curr3_input.dev_attr.attr,
&sensor_dev_attr_curr4_input.dev_attr.attr,
&sensor_dev_attr_curr1_max_alarm.dev_attr.attr,
&sensor_dev_attr_curr2_max_alarm.dev_attr.attr,
&sensor_dev_attr_curr3_max_alarm.dev_attr.attr,
&sensor_dev_attr_curr4_max_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in5_min_alarm.dev_attr.attr,
&sensor_dev_attr_in6_min_alarm.dev_attr.attr,
&sensor_dev_attr_in7_min_alarm.dev_attr.attr,
&sensor_dev_attr_in8_min_alarm.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_power1_input.dev_attr.attr,
&sensor_dev_attr_power2_input.dev_attr.attr,
&sensor_dev_attr_power3_input.dev_attr.attr,
&sensor_dev_attr_power4_input.dev_attr.attr,
NULL,
};
static const struct attribute_group ltc4245_group = {
.attrs = ltc4245_attributes,
};
static int ltc4245_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ltc4245_data *data;
int ret;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
ret = -ENOMEM;
goto out_kzalloc;
}
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Initialize the LTC4245 chip */
/* TODO */
/* Register sysfs hooks */
ret = sysfs_create_group(&client->dev.kobj, &ltc4245_group);
if (ret)
goto out_sysfs_create_group;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
ret = PTR_ERR(data->hwmon_dev);
goto out_hwmon_device_register;
}
return 0;
out_hwmon_device_register:
sysfs_remove_group(&client->dev.kobj, &ltc4245_group);
out_sysfs_create_group:
kfree(data);
out_kzalloc:
return ret;
}
static int ltc4245_remove(struct i2c_client *client)
{
struct ltc4245_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &ltc4245_group);
kfree(data);
return 0;
}
/* Check that some bits in a control register appear at all possible
* locations without changing value
*
* @client: the i2c client to use
* @reg: the register to read
* @bits: the bits to check (0xff checks all bits,
* 0x03 checks only the last two bits)
*
* return -ERRNO if the register read failed
* return -ENODEV if the register value doesn't stay constant at all
* possible addresses
*
* return 0 for success
*/
static int ltc4245_check_control_reg(struct i2c_client *client, u8 reg, u8 bits)
{
int i;
s32 v, voff1, voff2;
/* Read register and check for error */
v = i2c_smbus_read_byte_data(client, reg);
if (v < 0)
return v;
v &= bits;
for (i = 0x00; i < 0xff; i += 0x20) {
voff1 = i2c_smbus_read_byte_data(client, reg + i);
if (voff1 < 0)
return voff1;
voff2 = i2c_smbus_read_byte_data(client, reg + i + 0x08);
if (voff2 < 0)
return voff2;
voff1 &= bits;
voff2 &= bits;
if (v != voff1 || v != voff2)
return -ENODEV;
}
return 0;
}
static int ltc4245_detect(struct i2c_client *client,
int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (kind < 0) { /* probed detection - check the chip type */
s32 v; /* 8 bits from the chip, or -ERRNO */
/* Chip registers 0x00-0x07 are control registers
* Chip registers 0x10-0x1f are data registers
*
* Address bits b7-b5 are ignored. This makes the chip "repeat"
* in steps of 0x20. Any control registers should appear with
* the same values across all duplicated addresses.
*
* Register 0x02 bit b2 is reserved, expect 0
* Register 0x07 bits b7 to b4 are reserved, expect 0
*
* Registers 0x01, 0x02 are control registers and should not
* change on their own.
*
* Register 0x06 bits b6 and b7 are control bits, and should
* not change on their own.
*
* Register 0x07 bits b3 to b0 are control bits, and should
* not change on their own.
*/
/* read register 0x02 reserved bit, expect 0 */
v = i2c_smbus_read_byte_data(client, LTC4245_CONTROL);
if (v < 0 || (v & 0x04) != 0)
return -ENODEV;
/* read register 0x07 reserved bits, expect 0 */
v = i2c_smbus_read_byte_data(client, LTC4245_ADCADR);
if (v < 0 || (v & 0xf0) != 0)
return -ENODEV;
/* check that the alert register appears at all locations */
if (ltc4245_check_control_reg(client, LTC4245_ALERT, 0xff))
return -ENODEV;
/* check that the control register appears at all locations */
if (ltc4245_check_control_reg(client, LTC4245_CONTROL, 0xff))
return -ENODEV;
/* check that register 0x06 bits b6 and b7 stay constant */
if (ltc4245_check_control_reg(client, LTC4245_GPIO, 0xc0))
return -ENODEV;
/* check that register 0x07 bits b3-b0 stay constant */
if (ltc4245_check_control_reg(client, LTC4245_ADCADR, 0x0f))
return -ENODEV;
}
strlcpy(info->type, "ltc4245", I2C_NAME_SIZE);
dev_info(&adapter->dev, "ltc4245 %s at address 0x%02x\n",
kind < 0 ? "probed" : "forced",
client->addr);
return 0;
}
static const struct i2c_device_id ltc4245_id[] = {
{ "ltc4245", ltc4245 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ltc4245_id);
/* This is the driver that will be inserted */
static struct i2c_driver ltc4245_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "ltc4245",
},
.probe = ltc4245_probe,
.remove = ltc4245_remove,
.id_table = ltc4245_id,
.detect = ltc4245_detect,
.address_data = &addr_data,
};
static int __init ltc4245_init(void)
{
return i2c_add_driver(&ltc4245_driver);
}
static void __exit ltc4245_exit(void)
{
i2c_del_driver(&ltc4245_driver);
}
MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
MODULE_DESCRIPTION("LTC4245 driver");
MODULE_LICENSE("GPL");
module_init(ltc4245_init);
module_exit(ltc4245_exit);