2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 09:34:22 +08:00
linux-next/drivers/nvme/host/pci.c
Linus Torvalds c8d0267efd PCI changes for the v4.8 merge window:
Enumeration
     Move ecam.h to linux/include/pci-ecam.h (Jayachandran C)
     Add parent device field to ECAM struct pci_config_window (Jayachandran C)
     Add generic MCFG table handling (Tomasz Nowicki)
     Refactor pci_bus_assign_domain_nr() for CONFIG_PCI_DOMAINS_GENERIC (Tomasz Nowicki)
     Factor DT-specific pci_bus_find_domain_nr() code out (Tomasz Nowicki)
 
   Resource management
     Add devm_request_pci_bus_resources() (Bjorn Helgaas)
     Unify pci_resource_to_user() declarations (Bjorn Helgaas)
     Implement pci_resource_to_user() with pcibios_resource_to_bus() (microblaze, powerpc, sparc) (Bjorn Helgaas)
     Request host bridge window resources (designware, iproc, rcar, xgene, xilinx, xilinx-nwl) (Bjorn Helgaas)
     Make PCI I/O space optional on ARM32 (Bjorn Helgaas)
     Ignore write combining when mapping I/O port space (Bjorn Helgaas)
     Claim bus resources on MIPS PCI_PROBE_ONLY set-ups (Bjorn Helgaas)
     Remove unicore32 pci=firmware command line parameter handling (Bjorn Helgaas)
     Support I/O resources when parsing host bridge resources (Jayachandran C)
     Add helpers to request/release memory and I/O regions (Johannes Thumshirn)
     Use pci_(request|release)_mem_regions (NVMe, lpfc, GenWQE, ethernet/intel, alx) (Johannes Thumshirn)
     Extend pci=resource_alignment to specify device/vendor IDs (Koehrer Mathias (ETAS/ESW5))
     Add generic pci_bus_claim_resources() (Lorenzo Pieralisi)
     Claim bus resources on ARM32 PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)
     Remove ARM32 and ARM64 arch-specific pcibios_enable_device() (Lorenzo Pieralisi)
     Add pci_unmap_iospace() to unmap I/O resources (Sinan Kaya)
     Remove powerpc __pci_mmap_set_pgprot() (Yinghai Lu)
 
   PCI device hotplug
     Allow additional bus numbers for hotplug bridges (Keith Busch)
     Ignore interrupts during D3cold (Lukas Wunner)
 
   Power management
     Enforce type casting for pci_power_t (Andy Shevchenko)
     Don't clear d3cold_allowed for PCIe ports (Mika Westerberg)
     Put PCIe ports into D3 during suspend (Mika Westerberg)
     Power on bridges before scanning new devices (Mika Westerberg)
     Runtime resume bridge before rescan (Mika Westerberg)
     Add runtime PM support for PCIe ports (Mika Westerberg)
     Remove redundant check of pcie_set_clkpm (Shawn Lin)
 
   Virtualization
     Add function 1 DMA alias quirk for Marvell 88SE9182 (Aaron Sierra)
     Add DMA alias quirk for Adaptec 3805 (Alex Williamson)
     Mark Atheros AR9485 and QCA9882 to avoid bus reset (Chris Blake)
     Add ACS quirk for Solarflare SFC9220 (Edward Cree)
 
   MSI
     Fix PCI_MSI dependencies (Arnd Bergmann)
     Add pci_msix_desc_addr() helper (Christoph Hellwig)
     Switch msix_program_entries() to use pci_msix_desc_addr() (Christoph Hellwig)
     Make the "entries" argument to pci_enable_msix() optional (Christoph Hellwig)
     Provide sensible IRQ vector alloc/free routines (Christoph Hellwig)
     Spread interrupt vectors in pci_alloc_irq_vectors() (Christoph Hellwig)
 
   Error Handling
     Bind DPC to Root Ports as well as Downstream Ports (Keith Busch)
     Remove DPC tristate module option (Keith Busch)
     Convert Downstream Port Containment driver to use devm_* functions (Mika Westerberg)
 
   Generic host bridge driver
     Select IRQ_DOMAIN (Arnd Bergmann)
     Claim bus resources on PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)
 
   ACPI host bridge driver
     Add ARM64 acpi_pci_bus_find_domain_nr() (Tomasz Nowicki)
     Add ARM64 ACPI support for legacy IRQs parsing and consolidation with DT code (Tomasz Nowicki)
     Implement ARM64 AML accessors for PCI_Config region (Tomasz Nowicki)
     Support ARM64 ACPI-based PCI host controller (Tomasz Nowicki)
 
   Altera host bridge driver
     Check link status before retrain link (Ley Foon Tan)
     Poll for link up status after retraining the link (Ley Foon Tan)
 
   Axis ARTPEC-6 host bridge driver
     Add PCI_MSI_IRQ_DOMAIN dependency (Arnd Bergmann)
     Add DT binding for Axis ARTPEC-6 PCIe controller (Niklas Cassel)
     Add Axis ARTPEC-6 PCIe controller driver (Niklas Cassel)
 
   Intel VMD host bridge driver
     Use lock save/restore in interrupt enable path (Jon Derrick)
     Select device dma ops to override (Keith Busch)
     Initialize list item in IRQ disable (Keith Busch)
     Use x86_vector_domain as parent domain (Keith Busch)
     Separate MSI and MSI-X vector sharing (Keith Busch)
 
   Marvell Aardvark host bridge driver
     Add DT binding for the Aardvark PCIe controller (Thomas Petazzoni)
     Add Aardvark PCI host controller driver (Thomas Petazzoni)
     Add Aardvark PCIe support for Armada 3700 (Thomas Petazzoni)
 
   Microsoft Hyper-V host bridge driver
     Fix interrupt cleanup path (Cathy Avery)
     Don't leak buffer in hv_pci_onchannelcallback() (Vitaly Kuznetsov)
     Handle all pending messages in hv_pci_onchannelcallback() (Vitaly Kuznetsov)
 
   NVIDIA Tegra host bridge driver
     Program PADS_REFCLK_CFG* always, not just on legacy SoCs (Stephen Warren)
     Program PADS_REFCLK_CFG* registers with per-SoC values (Stephen Warren)
     Use lower-case hex consistently for register definitions (Thierry Reding)
     Use generic pci_remap_iospace() rather than ARM32-specific one (Thierry Reding)
     Stop setting pcibios_min_mem (Thierry Reding)
 
   Renesas R-Car host bridge driver
     Drop gen2 dummy I/O port region (Bjorn Helgaas)
 
   TI DRA7xx host bridge driver
     Fix return value in case of error (Christophe JAILLET)
 
   Xilinx AXI host bridge driver
     Fix return value in case of error (Christophe JAILLET)
 
   Miscellaneous
     Make bus_attr_resource_alignment static (Ben Dooks)
     Include <asm/dma.h> for isa_dma_bridge_buggy (Ben Dooks)
     MAINTAINERS: Add file patterns for PCI device tree bindings (Geert Uytterhoeven)
     Make host bridge drivers explicitly non-modular (Paul Gortmaker)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXoNRtAAoJEFmIoMA60/r8LMkP/3kiNh21QFS6RZGOaDft5/Py
 n14Zo0w51avspxoI3iyDlBd5q/SssMqi+2c6Ko/fh2D2xMxJgmQOjdMDrIGARxGA
 qEHk/5IoXquY2/GcptmCk3ap66cJ6kTovS4OPrb73m3fPuknFwFwdzExq22XHbnI
 crPya6xwQxPLc54VpY/TsgW8E+EKZd/3FW9wuzzNHXrXmTILyhBQzQAA0K470GMx
 wEXU6kc3M/XhRuF1zjV9/O+H/xguwfnbTpZLvd2NAF6uXKZoRytEHHtNnVqu1hoe
 UPpDS2xq32pMNbGxGqBetCdIbkY/hWOufmckHI7Yu2OfXBYyHBYMG2je1+nMPkOV
 WiFhhrchGt5KnEMUwXPS4ROqnSZVpZBl1Fd4s10GhUYkoE2HNKJXta398H9FR1jj
 4NEVSi4mSX/+CkaoIN3lXYiaf9P0wv4Wppve4Scr30+VnLjJhm7Vw5La7v12oo6x
 otrJ/g98AkmnbuUdLeWBUS/+TOcdPjZYbw52rqBsbOOjFm51Zcj6D7kf5WcTypQy
 HzbvygSVabcioWehUG1uudC8pdJmQlUGx1aES/iu+mZEae4cuUFALu6hDBD9IYnZ
 5JdwjVzI0UItEwT3rQt3t4xiAqHADQ0NAVNJVCeREdoy/YQpSoTWGXIpyqCZ1yCm
 aBykjRsxbKQXlhVeIxuc
 =NVxu
 -----END PGP SIGNATURE-----

Merge tag 'pci-v4.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci

Pull PCI updates from Bjorn Helgaas:
 "Highlights:

   - ARM64 support for ACPI host bridges

   - new drivers for Axis ARTPEC-6 and Marvell Aardvark

   - new pci_alloc_irq_vectors() interface for MSI-X, MSI, legacy INTx

   - pci_resource_to_user() cleanup (more to come)

  Detailed summary:

  Enumeration:
   - Move ecam.h to linux/include/pci-ecam.h (Jayachandran C)
   - Add parent device field to ECAM struct pci_config_window (Jayachandran C)
   - Add generic MCFG table handling (Tomasz Nowicki)
   - Refactor pci_bus_assign_domain_nr() for CONFIG_PCI_DOMAINS_GENERIC (Tomasz Nowicki)
   - Factor DT-specific pci_bus_find_domain_nr() code out (Tomasz Nowicki)

  Resource management:
   - Add devm_request_pci_bus_resources() (Bjorn Helgaas)
   - Unify pci_resource_to_user() declarations (Bjorn Helgaas)
   - Implement pci_resource_to_user() with pcibios_resource_to_bus() (microblaze, powerpc, sparc) (Bjorn Helgaas)
   - Request host bridge window resources (designware, iproc, rcar, xgene, xilinx, xilinx-nwl) (Bjorn Helgaas)
   - Make PCI I/O space optional on ARM32 (Bjorn Helgaas)
   - Ignore write combining when mapping I/O port space (Bjorn Helgaas)
   - Claim bus resources on MIPS PCI_PROBE_ONLY set-ups (Bjorn Helgaas)
   - Remove unicore32 pci=firmware command line parameter handling (Bjorn Helgaas)
   - Support I/O resources when parsing host bridge resources (Jayachandran C)
   - Add helpers to request/release memory and I/O regions (Johannes Thumshirn)
   - Use pci_(request|release)_mem_regions (NVMe, lpfc, GenWQE, ethernet/intel, alx) (Johannes Thumshirn)
   - Extend pci=resource_alignment to specify device/vendor IDs (Koehrer Mathias (ETAS/ESW5))
   - Add generic pci_bus_claim_resources() (Lorenzo Pieralisi)
   - Claim bus resources on ARM32 PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)
   - Remove ARM32 and ARM64 arch-specific pcibios_enable_device() (Lorenzo Pieralisi)
   - Add pci_unmap_iospace() to unmap I/O resources (Sinan Kaya)
   - Remove powerpc __pci_mmap_set_pgprot() (Yinghai Lu)

  PCI device hotplug:
   - Allow additional bus numbers for hotplug bridges (Keith Busch)
   - Ignore interrupts during D3cold (Lukas Wunner)

  Power management:
   - Enforce type casting for pci_power_t (Andy Shevchenko)
   - Don't clear d3cold_allowed for PCIe ports (Mika Westerberg)
   - Put PCIe ports into D3 during suspend (Mika Westerberg)
   - Power on bridges before scanning new devices (Mika Westerberg)
   - Runtime resume bridge before rescan (Mika Westerberg)
   - Add runtime PM support for PCIe ports (Mika Westerberg)
   - Remove redundant check of pcie_set_clkpm (Shawn Lin)

  Virtualization:
   - Add function 1 DMA alias quirk for Marvell 88SE9182 (Aaron Sierra)
   - Add DMA alias quirk for Adaptec 3805 (Alex Williamson)
   - Mark Atheros AR9485 and QCA9882 to avoid bus reset (Chris Blake)
   - Add ACS quirk for Solarflare SFC9220 (Edward Cree)

  MSI:
   - Fix PCI_MSI dependencies (Arnd Bergmann)
   - Add pci_msix_desc_addr() helper (Christoph Hellwig)
   - Switch msix_program_entries() to use pci_msix_desc_addr() (Christoph Hellwig)
   - Make the "entries" argument to pci_enable_msix() optional (Christoph Hellwig)
   - Provide sensible IRQ vector alloc/free routines (Christoph Hellwig)
   - Spread interrupt vectors in pci_alloc_irq_vectors() (Christoph Hellwig)

  Error Handling:
   - Bind DPC to Root Ports as well as Downstream Ports (Keith Busch)
   - Remove DPC tristate module option (Keith Busch)
   - Convert Downstream Port Containment driver to use devm_* functions (Mika Westerberg)

  Generic host bridge driver:
   - Select IRQ_DOMAIN (Arnd Bergmann)
   - Claim bus resources on PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)

  ACPI host bridge driver:
   - Add ARM64 acpi_pci_bus_find_domain_nr() (Tomasz Nowicki)
   - Add ARM64 ACPI support for legacy IRQs parsing and consolidation with DT code (Tomasz Nowicki)
   - Implement ARM64 AML accessors for PCI_Config region (Tomasz Nowicki)
   - Support ARM64 ACPI-based PCI host controller (Tomasz Nowicki)

  Altera host bridge driver:
   - Check link status before retrain link (Ley Foon Tan)
   - Poll for link up status after retraining the link (Ley Foon Tan)

  Axis ARTPEC-6 host bridge driver:
   - Add PCI_MSI_IRQ_DOMAIN dependency (Arnd Bergmann)
   - Add DT binding for Axis ARTPEC-6 PCIe controller (Niklas Cassel)
   - Add Axis ARTPEC-6 PCIe controller driver (Niklas Cassel)

  Intel VMD host bridge driver:
   - Use lock save/restore in interrupt enable path (Jon Derrick)
   - Select device dma ops to override (Keith Busch)
   - Initialize list item in IRQ disable (Keith Busch)
   - Use x86_vector_domain as parent domain (Keith Busch)
   - Separate MSI and MSI-X vector sharing (Keith Busch)

  Marvell Aardvark host bridge driver:
   - Add DT binding for the Aardvark PCIe controller (Thomas Petazzoni)
   - Add Aardvark PCI host controller driver (Thomas Petazzoni)
   - Add Aardvark PCIe support for Armada 3700 (Thomas Petazzoni)

  Microsoft Hyper-V host bridge driver:
   - Fix interrupt cleanup path (Cathy Avery)
   - Don't leak buffer in hv_pci_onchannelcallback() (Vitaly Kuznetsov)
   - Handle all pending messages in hv_pci_onchannelcallback() (Vitaly Kuznetsov)

  NVIDIA Tegra host bridge driver:
   - Program PADS_REFCLK_CFG* always, not just on legacy SoCs (Stephen Warren)
   - Program PADS_REFCLK_CFG* registers with per-SoC values (Stephen Warren)
   - Use lower-case hex consistently for register definitions (Thierry Reding)
   - Use generic pci_remap_iospace() rather than ARM32-specific one (Thierry Reding)
   - Stop setting pcibios_min_mem (Thierry Reding)

  Renesas R-Car host bridge driver:
   - Drop gen2 dummy I/O port region (Bjorn Helgaas)

  TI DRA7xx host bridge driver:
   - Fix return value in case of error (Christophe JAILLET)

  Xilinx AXI host bridge driver:
   - Fix return value in case of error (Christophe JAILLET)

  Miscellaneous:
   - Make bus_attr_resource_alignment static (Ben Dooks)
   - Include <asm/dma.h> for isa_dma_bridge_buggy (Ben Dooks)
   - MAINTAINERS: Add file patterns for PCI device tree bindings (Geert Uytterhoeven)
   - Make host bridge drivers explicitly non-modular (Paul Gortmaker)"

* tag 'pci-v4.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (125 commits)
  PCI: xgene: Make explicitly non-modular
  PCI: thunder-pem: Make explicitly non-modular
  PCI: thunder-ecam: Make explicitly non-modular
  PCI: tegra: Make explicitly non-modular
  PCI: rcar-gen2: Make explicitly non-modular
  PCI: rcar: Make explicitly non-modular
  PCI: mvebu: Make explicitly non-modular
  PCI: layerscape: Make explicitly non-modular
  PCI: keystone: Make explicitly non-modular
  PCI: hisi: Make explicitly non-modular
  PCI: generic: Make explicitly non-modular
  PCI: designware-plat: Make it explicitly non-modular
  PCI: artpec6: Make explicitly non-modular
  PCI: armada8k: Make explicitly non-modular
  PCI: artpec: Add PCI_MSI_IRQ_DOMAIN dependency
  PCI: Add ACS quirk for Solarflare SFC9220
  arm64: dts: marvell: Add Aardvark PCIe support for Armada 3700
  PCI: aardvark: Add Aardvark PCI host controller driver
  dt-bindings: add DT binding for the Aardvark PCIe controller
  PCI: tegra: Program PADS_REFCLK_CFG* registers with per-SoC values
  ...
2016-08-02 17:12:29 -04:00

2164 lines
54 KiB
C

/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/t10-pi.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/unaligned.h>
#include "nvme.h"
#define NVME_Q_DEPTH 1024
#define NVME_AQ_DEPTH 256
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
/*
* We handle AEN commands ourselves and don't even let the
* block layer know about them.
*/
#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);
static bool use_cmb_sqes = true;
module_param(use_cmb_sqes, bool, 0644);
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
static struct workqueue_struct *nvme_workq;
struct nvme_dev;
struct nvme_queue;
static int nvme_reset(struct nvme_dev *dev);
static void nvme_process_cq(struct nvme_queue *nvmeq);
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
/*
* Represents an NVM Express device. Each nvme_dev is a PCI function.
*/
struct nvme_dev {
struct nvme_queue **queues;
struct blk_mq_tag_set tagset;
struct blk_mq_tag_set admin_tagset;
u32 __iomem *dbs;
struct device *dev;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
unsigned queue_count;
unsigned online_queues;
unsigned max_qid;
int q_depth;
u32 db_stride;
struct msix_entry *entry;
void __iomem *bar;
struct work_struct reset_work;
struct work_struct remove_work;
struct timer_list watchdog_timer;
struct mutex shutdown_lock;
bool subsystem;
void __iomem *cmb;
dma_addr_t cmb_dma_addr;
u64 cmb_size;
u32 cmbsz;
struct nvme_ctrl ctrl;
struct completion ioq_wait;
};
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_dev, ctrl);
}
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct device *q_dmadev;
struct nvme_dev *dev;
char irqname[24]; /* nvme4294967295-65535\0 */
spinlock_t q_lock;
struct nvme_command *sq_cmds;
struct nvme_command __iomem *sq_cmds_io;
volatile struct nvme_completion *cqes;
struct blk_mq_tags **tags;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
u32 __iomem *q_db;
u16 q_depth;
s16 cq_vector;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
};
/*
* The nvme_iod describes the data in an I/O, including the list of PRP
* entries. You can't see it in this data structure because C doesn't let
* me express that. Use nvme_init_iod to ensure there's enough space
* allocated to store the PRP list.
*/
struct nvme_iod {
struct nvme_queue *nvmeq;
int aborted;
int npages; /* In the PRP list. 0 means small pool in use */
int nents; /* Used in scatterlist */
int length; /* Of data, in bytes */
dma_addr_t first_dma;
struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
struct scatterlist *sg;
struct scatterlist inline_sg[0];
};
/*
* Check we didin't inadvertently grow the command struct
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
}
/*
* Max size of iod being embedded in the request payload
*/
#define NVME_INT_PAGES 2
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
/*
* Will slightly overestimate the number of pages needed. This is OK
* as it only leads to a small amount of wasted memory for the lifetime of
* the I/O.
*/
static int nvme_npages(unsigned size, struct nvme_dev *dev)
{
unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
dev->ctrl.page_size);
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
}
static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
unsigned int size, unsigned int nseg)
{
return sizeof(__le64 *) * nvme_npages(size, dev) +
sizeof(struct scatterlist) * nseg;
}
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
{
return sizeof(struct nvme_iod) +
nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
}
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[0];
WARN_ON(hctx_idx != 0);
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
WARN_ON(nvmeq->tags);
hctx->driver_data = nvmeq;
nvmeq->tags = &dev->admin_tagset.tags[0];
return 0;
}
static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct nvme_queue *nvmeq = hctx->driver_data;
nvmeq->tags = NULL;
}
static int nvme_admin_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[0];
BUG_ON(!nvmeq);
iod->nvmeq = nvmeq;
return 0;
}
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
if (!nvmeq->tags)
nvmeq->tags = &dev->tagset.tags[hctx_idx];
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
hctx->driver_data = nvmeq;
return 0;
}
static int nvme_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
BUG_ON(!nvmeq);
iod->nvmeq = nvmeq;
return 0;
}
/**
* __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
* Safe to use from interrupt context
*/
static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
struct nvme_command *cmd)
{
u16 tail = nvmeq->sq_tail;
if (nvmeq->sq_cmds_io)
memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
else
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
}
static __le64 **iod_list(struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
return (__le64 **)(iod->sg + req->nr_phys_segments);
}
static int nvme_init_iod(struct request *rq, unsigned size,
struct nvme_dev *dev)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
int nseg = rq->nr_phys_segments;
if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
if (!iod->sg)
return BLK_MQ_RQ_QUEUE_BUSY;
} else {
iod->sg = iod->inline_sg;
}
iod->aborted = 0;
iod->npages = -1;
iod->nents = 0;
iod->length = size;
if (!(rq->cmd_flags & REQ_DONTPREP)) {
rq->retries = 0;
rq->cmd_flags |= REQ_DONTPREP;
}
return 0;
}
static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
const int last_prp = dev->ctrl.page_size / 8 - 1;
int i;
__le64 **list = iod_list(req);
dma_addr_t prp_dma = iod->first_dma;
nvme_cleanup_cmd(req);
if (iod->npages == 0)
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
for (i = 0; i < iod->npages; i++) {
__le64 *prp_list = list[i];
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
prp_dma = next_prp_dma;
}
if (iod->sg != iod->inline_sg)
kfree(iod->sg);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == v)
pi->ref_tag = cpu_to_be32(p);
}
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == p)
pi->ref_tag = cpu_to_be32(v);
}
/**
* nvme_dif_remap - remaps ref tags to bip seed and physical lba
*
* The virtual start sector is the one that was originally submitted by the
* block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
* start sector may be different. Remap protection information to match the
* physical LBA on writes, and back to the original seed on reads.
*
* Type 0 and 3 do not have a ref tag, so no remapping required.
*/
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
struct nvme_ns *ns = req->rq_disk->private_data;
struct bio_integrity_payload *bip;
struct t10_pi_tuple *pi;
void *p, *pmap;
u32 i, nlb, ts, phys, virt;
if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
return;
bip = bio_integrity(req->bio);
if (!bip)
return;
pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
p = pmap;
virt = bip_get_seed(bip);
phys = nvme_block_nr(ns, blk_rq_pos(req));
nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ts = ns->disk->queue->integrity.tuple_size;
for (i = 0; i < nlb; i++, virt++, phys++) {
pi = (struct t10_pi_tuple *)p;
dif_swap(phys, virt, pi);
p += ts;
}
kunmap_atomic(pmap);
}
#else /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
}
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
}
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
}
#endif
static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
int total_len)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct dma_pool *pool;
int length = total_len;
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
u32 page_size = dev->ctrl.page_size;
int offset = dma_addr & (page_size - 1);
__le64 *prp_list;
__le64 **list = iod_list(req);
dma_addr_t prp_dma;
int nprps, i;
length -= (page_size - offset);
if (length <= 0)
return true;
dma_len -= (page_size - offset);
if (dma_len) {
dma_addr += (page_size - offset);
} else {
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
if (length <= page_size) {
iod->first_dma = dma_addr;
return true;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps <= (256 / 8)) {
pool = dev->prp_small_pool;
iod->npages = 0;
} else {
pool = dev->prp_page_pool;
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return false;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
i = 0;
for (;;) {
if (i == page_size >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list)
return false;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
i = 1;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= page_size;
dma_addr += page_size;
length -= page_size;
if (length <= 0)
break;
if (dma_len > 0)
continue;
BUG_ON(dma_len < 0);
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
return true;
}
static int nvme_map_data(struct nvme_dev *dev, struct request *req,
unsigned size, struct nvme_command *cmnd)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct request_queue *q = req->q;
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
int ret = BLK_MQ_RQ_QUEUE_ERROR;
sg_init_table(iod->sg, req->nr_phys_segments);
iod->nents = blk_rq_map_sg(q, req, iod->sg);
if (!iod->nents)
goto out;
ret = BLK_MQ_RQ_QUEUE_BUSY;
if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
goto out;
if (!nvme_setup_prps(dev, req, size))
goto out_unmap;
ret = BLK_MQ_RQ_QUEUE_ERROR;
if (blk_integrity_rq(req)) {
if (blk_rq_count_integrity_sg(q, req->bio) != 1)
goto out_unmap;
sg_init_table(&iod->meta_sg, 1);
if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
goto out_unmap;
if (rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_prep);
if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
goto out_unmap;
}
cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
if (blk_integrity_rq(req))
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
return BLK_MQ_RQ_QUEUE_OK;
out_unmap:
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
out:
return ret;
}
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
if (iod->nents) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
}
}
nvme_free_iod(dev, req);
}
/*
* NOTE: ns is NULL when called on the admin queue.
*/
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_queue *nvmeq = hctx->driver_data;
struct nvme_dev *dev = nvmeq->dev;
struct request *req = bd->rq;
struct nvme_command cmnd;
unsigned map_len;
int ret = BLK_MQ_RQ_QUEUE_OK;
/*
* If formated with metadata, require the block layer provide a buffer
* unless this namespace is formated such that the metadata can be
* stripped/generated by the controller with PRACT=1.
*/
if (ns && ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8) &&
req->cmd_type != REQ_TYPE_DRV_PRIV) {
blk_mq_end_request(req, -EFAULT);
return BLK_MQ_RQ_QUEUE_OK;
}
}
map_len = nvme_map_len(req);
ret = nvme_init_iod(req, map_len, dev);
if (ret)
return ret;
ret = nvme_setup_cmd(ns, req, &cmnd);
if (ret)
goto out;
if (req->nr_phys_segments)
ret = nvme_map_data(dev, req, map_len, &cmnd);
if (ret)
goto out;
cmnd.common.command_id = req->tag;
blk_mq_start_request(req);
spin_lock_irq(&nvmeq->q_lock);
if (unlikely(nvmeq->cq_vector < 0)) {
if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
ret = BLK_MQ_RQ_QUEUE_BUSY;
else
ret = BLK_MQ_RQ_QUEUE_ERROR;
spin_unlock_irq(&nvmeq->q_lock);
goto out;
}
__nvme_submit_cmd(nvmeq, &cmnd);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
return BLK_MQ_RQ_QUEUE_OK;
out:
nvme_free_iod(dev, req);
return ret;
}
static void nvme_complete_rq(struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_dev *dev = iod->nvmeq->dev;
int error = 0;
nvme_unmap_data(dev, req);
if (unlikely(req->errors)) {
if (nvme_req_needs_retry(req, req->errors)) {
req->retries++;
nvme_requeue_req(req);
return;
}
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
error = req->errors;
else
error = nvme_error_status(req->errors);
}
if (unlikely(iod->aborted)) {
dev_warn(dev->ctrl.device,
"completing aborted command with status: %04x\n",
req->errors);
}
blk_mq_end_request(req, error);
}
/* We read the CQE phase first to check if the rest of the entry is valid */
static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
u16 phase)
{
return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
}
static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
{
u16 head, phase;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
while (nvme_cqe_valid(nvmeq, head, phase)) {
struct nvme_completion cqe = nvmeq->cqes[head];
struct request *req;
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
if (tag && *tag == cqe.command_id)
*tag = -1;
if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
dev_warn(nvmeq->dev->ctrl.device,
"invalid id %d completed on queue %d\n",
cqe.command_id, le16_to_cpu(cqe.sq_id));
continue;
}
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvmeq->qid == 0 &&
cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
continue;
}
req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
memcpy(req->special, &cqe, sizeof(cqe));
blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
}
/* If the controller ignores the cq head doorbell and continuously
* writes to the queue, it is theoretically possible to wrap around
* the queue twice and mistakenly return IRQ_NONE. Linux only
* requires that 0.1% of your interrupts are handled, so this isn't
* a big problem.
*/
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
return;
if (likely(nvmeq->cq_vector >= 0))
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
nvmeq->cqe_seen = 1;
}
static void nvme_process_cq(struct nvme_queue *nvmeq)
{
__nvme_process_cq(nvmeq, NULL);
}
static irqreturn_t nvme_irq(int irq, void *data)
{
irqreturn_t result;
struct nvme_queue *nvmeq = data;
spin_lock(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
nvmeq->cqe_seen = 0;
spin_unlock(&nvmeq->q_lock);
return result;
}
static irqreturn_t nvme_irq_check(int irq, void *data)
{
struct nvme_queue *nvmeq = data;
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
struct nvme_queue *nvmeq = hctx->driver_data;
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
spin_lock_irq(&nvmeq->q_lock);
__nvme_process_cq(nvmeq, &tag);
spin_unlock_irq(&nvmeq->q_lock);
if (tag == -1)
return 1;
}
return 0;
}
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
struct nvme_queue *nvmeq = dev->queues[0];
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_async_event;
c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
spin_lock_irq(&nvmeq->q_lock);
__nvme_submit_cmd(nvmeq, &c);
spin_unlock_irq(&nvmeq->q_lock);
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
static void abort_endio(struct request *req, int error)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
u16 status = req->errors;
dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
blk_mq_free_request(req);
}
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
struct nvme_dev *dev = nvmeq->dev;
struct request *abort_req;
struct nvme_command cmd;
/*
* Shutdown immediately if controller times out while starting. The
* reset work will see the pci device disabled when it gets the forced
* cancellation error. All outstanding requests are completed on
* shutdown, so we return BLK_EH_HANDLED.
*/
if (dev->ctrl.state == NVME_CTRL_RESETTING) {
dev_warn(dev->ctrl.device,
"I/O %d QID %d timeout, disable controller\n",
req->tag, nvmeq->qid);
nvme_dev_disable(dev, false);
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
/*
* Shutdown the controller immediately and schedule a reset if the
* command was already aborted once before and still hasn't been
* returned to the driver, or if this is the admin queue.
*/
if (!nvmeq->qid || iod->aborted) {
dev_warn(dev->ctrl.device,
"I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
nvme_dev_disable(dev, false);
queue_work(nvme_workq, &dev->reset_work);
/*
* Mark the request as handled, since the inline shutdown
* forces all outstanding requests to complete.
*/
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
iod->aborted = 1;
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
memset(&cmd, 0, sizeof(cmd));
cmd.abort.opcode = nvme_admin_abort_cmd;
cmd.abort.cid = req->tag;
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
dev_warn(nvmeq->dev->ctrl.device,
"I/O %d QID %d timeout, aborting\n",
req->tag, nvmeq->qid);
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
if (IS_ERR(abort_req)) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
abort_req->timeout = ADMIN_TIMEOUT;
abort_req->end_io_data = NULL;
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
return BLK_EH_RESET_TIMER;
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
if (nvmeq->sq_cmds)
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
dev->queue_count--;
dev->queues[i] = NULL;
nvme_free_queue(nvmeq);
}
}
/**
* nvme_suspend_queue - put queue into suspended state
* @nvmeq - queue to suspend
*/
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
{
int vector;
spin_lock_irq(&nvmeq->q_lock);
if (nvmeq->cq_vector == -1) {
spin_unlock_irq(&nvmeq->q_lock);
return 1;
}
vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
nvmeq->dev->online_queues--;
nvmeq->cq_vector = -1;
spin_unlock_irq(&nvmeq->q_lock);
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
irq_set_affinity_hint(vector, NULL);
free_irq(vector, nvmeq);
return 0;
}
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
{
struct nvme_queue *nvmeq = dev->queues[0];
if (!nvmeq)
return;
if (nvme_suspend_queue(nvmeq))
return;
if (shutdown)
nvme_shutdown_ctrl(&dev->ctrl);
else
nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
dev->bar + NVME_REG_CAP));
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
int entry_size)
{
int q_depth = dev->q_depth;
unsigned q_size_aligned = roundup(q_depth * entry_size,
dev->ctrl.page_size);
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
q_depth = div_u64(mem_per_q, entry_size);
/*
* Ensure the reduced q_depth is above some threshold where it
* would be better to map queues in system memory with the
* original depth
*/
if (q_depth < 64)
return -ENOMEM;
}
return q_depth;
}
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
int qid, int depth)
{
if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
dev->ctrl.page_size);
nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
nvmeq->sq_cmds_io = dev->cmb + offset;
} else {
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
return -ENOMEM;
}
return 0;
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth)
{
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
goto free_cqdma;
nvmeq->q_dmadev = dev->dev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->ctrl.instance, qid);
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
nvmeq->cq_vector = -1;
dev->queues[qid] = nvmeq;
dev->queue_count++;
return nvmeq;
free_cqdma:
dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
return NULL;
}
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
const char *name)
{
if (use_threaded_interrupts)
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
nvme_irq_check, nvme_irq, IRQF_SHARED,
name, nvmeq);
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
IRQF_SHARED, name, nvmeq);
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
spin_lock_irq(&nvmeq->q_lock);
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = adapter_alloc_cq(dev, qid, nvmeq);
if (result < 0)
return result;
result = adapter_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
adapter_delete_sq(dev, qid);
release_cq:
adapter_delete_cq(dev, qid);
return result;
}
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_admin_exit_hctx,
.init_request = nvme_admin_init_request,
.timeout = nvme_timeout,
};
static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.init_request = nvme_init_request,
.timeout = nvme_timeout,
.poll = nvme_poll,
};
static void nvme_dev_remove_admin(struct nvme_dev *dev)
{
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
/*
* If the controller was reset during removal, it's possible
* user requests may be waiting on a stopped queue. Start the
* queue to flush these to completion.
*/
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
blk_cleanup_queue(dev->ctrl.admin_q);
blk_mq_free_tag_set(&dev->admin_tagset);
}
}
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
{
if (!dev->ctrl.admin_q) {
dev->admin_tagset.ops = &nvme_mq_admin_ops;
dev->admin_tagset.nr_hw_queues = 1;
/*
* Subtract one to leave an empty queue entry for 'Full Queue'
* condition. See NVM-Express 1.2 specification, section 4.1.2.
*/
dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
dev->admin_tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
return -ENOMEM;
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->ctrl.admin_q)) {
blk_mq_free_tag_set(&dev->admin_tagset);
return -ENOMEM;
}
if (!blk_get_queue(dev->ctrl.admin_q)) {
nvme_dev_remove_admin(dev);
dev->ctrl.admin_q = NULL;
return -ENODEV;
}
} else
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
return 0;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
struct nvme_queue *nvmeq;
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
NVME_CAP_NSSRC(cap) : 0;
if (dev->subsystem &&
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
result = nvme_disable_ctrl(&dev->ctrl, cap);
if (result < 0)
return result;
nvmeq = dev->queues[0];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
writel(aqa, dev->bar + NVME_REG_AQA);
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
result = nvme_enable_ctrl(&dev->ctrl, cap);
if (result)
goto free_nvmeq;
nvmeq->cq_vector = 0;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result) {
nvmeq->cq_vector = -1;
goto free_nvmeq;
}
return result;
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
{
/* If true, indicates loss of adapter communication, possibly by a
* NVMe Subsystem reset.
*/
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
/* If there is a reset ongoing, we shouldn't reset again. */
if (work_busy(&dev->reset_work))
return false;
/* We shouldn't reset unless the controller is on fatal error state
* _or_ if we lost the communication with it.
*/
if (!(csts & NVME_CSTS_CFS) && !nssro)
return false;
/* If PCI error recovery process is happening, we cannot reset or
* the recovery mechanism will surely fail.
*/
if (pci_channel_offline(to_pci_dev(dev->dev)))
return false;
return true;
}
static void nvme_watchdog_timer(unsigned long data)
{
struct nvme_dev *dev = (struct nvme_dev *)data;
u32 csts = readl(dev->bar + NVME_REG_CSTS);
/* Skip controllers under certain specific conditions. */
if (nvme_should_reset(dev, csts)) {
if (queue_work(nvme_workq, &dev->reset_work))
dev_warn(dev->dev,
"Failed status: 0x%x, reset controller.\n",
csts);
return;
}
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
}
static int nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned i, max;
int ret = 0;
for (i = dev->queue_count; i <= dev->max_qid; i++) {
if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
ret = -ENOMEM;
break;
}
}
max = min(dev->max_qid, dev->queue_count - 1);
for (i = dev->online_queues; i <= max; i++) {
ret = nvme_create_queue(dev->queues[i], i);
if (ret) {
nvme_free_queues(dev, i);
break;
}
}
/*
* Ignore failing Create SQ/CQ commands, we can continue with less
* than the desired aount of queues, and even a controller without
* I/O queues an still be used to issue admin commands. This might
* be useful to upgrade a buggy firmware for example.
*/
return ret >= 0 ? 0 : ret;
}
static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
{
u64 szu, size, offset;
u32 cmbloc;
resource_size_t bar_size;
struct pci_dev *pdev = to_pci_dev(dev->dev);
void __iomem *cmb;
dma_addr_t dma_addr;
if (!use_cmb_sqes)
return NULL;
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
if (!(NVME_CMB_SZ(dev->cmbsz)))
return NULL;
cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
size = szu * NVME_CMB_SZ(dev->cmbsz);
offset = szu * NVME_CMB_OFST(cmbloc);
bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
if (offset > bar_size)
return NULL;
/*
* Controllers may support a CMB size larger than their BAR,
* for example, due to being behind a bridge. Reduce the CMB to
* the reported size of the BAR
*/
if (size > bar_size - offset)
size = bar_size - offset;
dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
cmb = ioremap_wc(dma_addr, size);
if (!cmb)
return NULL;
dev->cmb_dma_addr = dma_addr;
dev->cmb_size = size;
return cmb;
}
static inline void nvme_release_cmb(struct nvme_dev *dev)
{
if (dev->cmb) {
iounmap(dev->cmb);
dev->cmb = NULL;
}
}
static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
{
return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
struct nvme_queue *adminq = dev->queues[0];
struct pci_dev *pdev = to_pci_dev(dev->dev);
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_online_cpus();
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
if (result < 0)
return result;
if (nr_io_queues == 0)
return 0;
if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
result = nvme_cmb_qdepth(dev, nr_io_queues,
sizeof(struct nvme_command));
if (result > 0)
dev->q_depth = result;
else
nvme_release_cmb(dev);
}
size = db_bar_size(dev, nr_io_queues);
if (size > 8192) {
iounmap(dev->bar);
do {
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
if (dev->bar)
break;
if (!--nr_io_queues)
return -ENOMEM;
size = db_bar_size(dev, nr_io_queues);
} while (1);
dev->dbs = dev->bar + 4096;
adminq->q_db = dev->dbs;
}
/* Deregister the admin queue's interrupt */
free_irq(dev->entry[0].vector, adminq);
/*
* If we enable msix early due to not intx, disable it again before
* setting up the full range we need.
*/
if (pdev->msi_enabled)
pci_disable_msi(pdev);
else if (pdev->msix_enabled)
pci_disable_msix(pdev);
for (i = 0; i < nr_io_queues; i++)
dev->entry[i].entry = i;
vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
if (vecs < 0) {
vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
if (vecs < 0) {
vecs = 1;
} else {
for (i = 0; i < vecs; i++)
dev->entry[i].vector = i + pdev->irq;
}
}
/*
* Should investigate if there's a performance win from allocating
* more queues than interrupt vectors; it might allow the submission
* path to scale better, even if the receive path is limited by the
* number of interrupts.
*/
nr_io_queues = vecs;
dev->max_qid = nr_io_queues;
result = queue_request_irq(dev, adminq, adminq->irqname);
if (result) {
adminq->cq_vector = -1;
goto free_queues;
}
return nvme_create_io_queues(dev);
free_queues:
nvme_free_queues(dev, 1);
return result;
}
static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
struct nvme_queue *nvmeq;
int i;
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
if (!nvmeq->tags || !(*nvmeq->tags))
continue;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
blk_mq_tags_cpumask(*nvmeq->tags));
}
}
static void nvme_del_queue_end(struct request *req, int error)
{
struct nvme_queue *nvmeq = req->end_io_data;
blk_mq_free_request(req);
complete(&nvmeq->dev->ioq_wait);
}
static void nvme_del_cq_end(struct request *req, int error)
{
struct nvme_queue *nvmeq = req->end_io_data;
if (!error) {
unsigned long flags;
/*
* We might be called with the AQ q_lock held
* and the I/O queue q_lock should always
* nest inside the AQ one.
*/
spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
SINGLE_DEPTH_NESTING);
nvme_process_cq(nvmeq);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
}
nvme_del_queue_end(req, error);
}
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
{
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
struct request *req;
struct nvme_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.delete_queue.opcode = opcode;
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = ADMIN_TIMEOUT;
req->end_io_data = nvmeq;
blk_execute_rq_nowait(q, NULL, req, false,
opcode == nvme_admin_delete_cq ?
nvme_del_cq_end : nvme_del_queue_end);
return 0;
}
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
int pass, queues = dev->online_queues - 1;
unsigned long timeout;
u8 opcode = nvme_admin_delete_sq;
for (pass = 0; pass < 2; pass++) {
int sent = 0, i = queues;
reinit_completion(&dev->ioq_wait);
retry:
timeout = ADMIN_TIMEOUT;
for (; i > 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
if (!pass)
nvme_suspend_queue(nvmeq);
if (nvme_delete_queue(nvmeq, opcode))
break;
++sent;
}
while (sent--) {
timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
if (timeout == 0)
return;
if (i)
goto retry;
}
opcode = nvme_admin_delete_cq;
}
}
/*
* Return: error value if an error occurred setting up the queues or calling
* Identify Device. 0 if these succeeded, even if adding some of the
* namespaces failed. At the moment, these failures are silent. TBD which
* failures should be reported.
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
if (!dev->ctrl.tagset) {
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
dev->tagset.numa_node = dev_to_node(dev->dev);
dev->tagset.queue_depth =
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
dev->tagset.cmd_size = nvme_cmd_size(dev);
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
dev->tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
dev->ctrl.tagset = &dev->tagset;
} else {
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
/* Free previously allocated queues that are no longer usable */
nvme_free_queues(dev, dev->online_queues);
}
return 0;
}
static int nvme_pci_enable(struct nvme_dev *dev)
{
u64 cap;
int result = -ENOMEM;
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_enable_device_mem(pdev))
return result;
pci_set_master(pdev);
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
goto disable;
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
result = -ENODEV;
goto disable;
}
/*
* Some devices and/or platforms don't advertise or work with INTx
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
* adjust this later.
*/
if (pci_enable_msix(pdev, dev->entry, 1)) {
pci_enable_msi(pdev);
dev->entry[0].vector = pdev->irq;
}
if (!dev->entry[0].vector) {
result = -ENODEV;
goto disable;
}
cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
dev->dbs = dev->bar + 4096;
/*
* Temporary fix for the Apple controller found in the MacBook8,1 and
* some MacBook7,1 to avoid controller resets and data loss.
*/
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
dev->q_depth = 2;
dev_warn(dev->dev, "detected Apple NVMe controller, set "
"queue depth=%u to work around controller resets\n",
dev->q_depth);
}
if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
dev->cmb = nvme_map_cmb(dev);
pci_enable_pcie_error_reporting(pdev);
pci_save_state(pdev);
return 0;
disable:
pci_disable_device(pdev);
return result;
}
static void nvme_dev_unmap(struct nvme_dev *dev)
{
if (dev->bar)
iounmap(dev->bar);
pci_release_mem_regions(to_pci_dev(dev->dev));
}
static void nvme_pci_disable(struct nvme_dev *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pdev->msi_enabled)
pci_disable_msi(pdev);
else if (pdev->msix_enabled)
pci_disable_msix(pdev);
if (pci_is_enabled(pdev)) {
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
}
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
{
int i;
u32 csts = -1;
del_timer_sync(&dev->watchdog_timer);
mutex_lock(&dev->shutdown_lock);
if (pci_is_enabled(to_pci_dev(dev->dev))) {
nvme_stop_queues(&dev->ctrl);
csts = readl(dev->bar + NVME_REG_CSTS);
}
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
for (i = dev->queue_count - 1; i >= 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
nvme_suspend_queue(nvmeq);
}
} else {
nvme_disable_io_queues(dev);
nvme_disable_admin_queue(dev, shutdown);
}
nvme_pci_disable(dev);
blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
mutex_unlock(&dev->shutdown_lock);
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
{
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!dev->prp_page_pool)
return -ENOMEM;
/* Optimisation for I/Os between 4k and 128k */
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
256, 256, 0);
if (!dev->prp_small_pool) {
dma_pool_destroy(dev->prp_page_pool);
return -ENOMEM;
}
return 0;
}
static void nvme_release_prp_pools(struct nvme_dev *dev)
{
dma_pool_destroy(dev->prp_page_pool);
dma_pool_destroy(dev->prp_small_pool);
}
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
put_device(dev->dev);
if (dev->tagset.tags)
blk_mq_free_tag_set(&dev->tagset);
if (dev->ctrl.admin_q)
blk_put_queue(dev->ctrl.admin_q);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
{
dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
kref_get(&dev->ctrl.kref);
nvme_dev_disable(dev, false);
if (!schedule_work(&dev->remove_work))
nvme_put_ctrl(&dev->ctrl);
}
static void nvme_reset_work(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
int result = -ENODEV;
if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
goto out;
/*
* If we're called to reset a live controller first shut it down before
* moving on.
*/
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
nvme_dev_disable(dev, false);
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
goto out;
result = nvme_pci_enable(dev);
if (result)
goto out;
result = nvme_configure_admin_queue(dev);
if (result)
goto out;
nvme_init_queue(dev->queues[0], 0);
result = nvme_alloc_admin_tags(dev);
if (result)
goto out;
result = nvme_init_identify(&dev->ctrl);
if (result)
goto out;
result = nvme_setup_io_queues(dev);
if (result)
goto out;
/*
* A controller that can not execute IO typically requires user
* intervention to correct. For such degraded controllers, the driver
* should not submit commands the user did not request, so skip
* registering for asynchronous event notification on this condition.
*/
if (dev->online_queues > 1)
nvme_queue_async_events(&dev->ctrl);
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
/*
* Keep the controller around but remove all namespaces if we don't have
* any working I/O queue.
*/
if (dev->online_queues < 2) {
dev_warn(dev->ctrl.device, "IO queues not created\n");
nvme_kill_queues(&dev->ctrl);
nvme_remove_namespaces(&dev->ctrl);
} else {
nvme_start_queues(&dev->ctrl);
nvme_dev_add(dev);
}
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
dev_warn(dev->ctrl.device, "failed to mark controller live\n");
goto out;
}
if (dev->online_queues > 1)
nvme_queue_scan(&dev->ctrl);
return;
out:
nvme_remove_dead_ctrl(dev, result);
}
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
struct pci_dev *pdev = to_pci_dev(dev->dev);
nvme_kill_queues(&dev->ctrl);
if (pci_get_drvdata(pdev))
device_release_driver(&pdev->dev);
nvme_put_ctrl(&dev->ctrl);
}
static int nvme_reset(struct nvme_dev *dev)
{
if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
return -ENODEV;
if (!queue_work(nvme_workq, &dev->reset_work))
return -EBUSY;
flush_work(&dev->reset_work);
return 0;
}
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
*val = readl(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
writel(val, to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
*val = readq(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
{
return nvme_reset(to_nvme_dev(ctrl));
}
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
.name = "pcie",
.module = THIS_MODULE,
.reg_read32 = nvme_pci_reg_read32,
.reg_write32 = nvme_pci_reg_write32,
.reg_read64 = nvme_pci_reg_read64,
.reset_ctrl = nvme_pci_reset_ctrl,
.free_ctrl = nvme_pci_free_ctrl,
.post_scan = nvme_pci_post_scan,
.submit_async_event = nvme_pci_submit_async_event,
};
static int nvme_dev_map(struct nvme_dev *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_request_mem_regions(pdev, "nvme"))
return -ENODEV;
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
if (!dev->bar)
goto release;
return 0;
release:
pci_release_mem_regions(pdev);
return -ENODEV;
}
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int node, result = -ENOMEM;
struct nvme_dev *dev;
node = dev_to_node(&pdev->dev);
if (node == NUMA_NO_NODE)
set_dev_node(&pdev->dev, first_memory_node);
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
if (!dev)
return -ENOMEM;
dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
GFP_KERNEL, node);
if (!dev->entry)
goto free;
dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
GFP_KERNEL, node);
if (!dev->queues)
goto free;
dev->dev = get_device(&pdev->dev);
pci_set_drvdata(pdev, dev);
result = nvme_dev_map(dev);
if (result)
goto free;
INIT_WORK(&dev->reset_work, nvme_reset_work);
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
(unsigned long)dev);
mutex_init(&dev->shutdown_lock);
init_completion(&dev->ioq_wait);
result = nvme_setup_prp_pools(dev);
if (result)
goto put_pci;
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
id->driver_data);
if (result)
goto release_pools;
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
queue_work(nvme_workq, &dev->reset_work);
return 0;
release_pools:
nvme_release_prp_pools(dev);
put_pci:
put_device(dev->dev);
nvme_dev_unmap(dev);
free:
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
return result;
}
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
if (prepare)
nvme_dev_disable(dev, false);
else
queue_work(nvme_workq, &dev->reset_work);
}
static void nvme_shutdown(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_disable(dev, true);
}
/*
* The driver's remove may be called on a device in a partially initialized
* state. This function must not have any dependencies on the device state in
* order to proceed.
*/
static void nvme_remove(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
pci_set_drvdata(pdev, NULL);
if (!pci_device_is_present(pdev))
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
flush_work(&dev->reset_work);
nvme_uninit_ctrl(&dev->ctrl);
nvme_dev_disable(dev, true);
nvme_dev_remove_admin(dev);
nvme_free_queues(dev, 0);
nvme_release_cmb(dev);
nvme_release_prp_pools(dev);
nvme_dev_unmap(dev);
nvme_put_ctrl(&dev->ctrl);
}
static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
{
int ret = 0;
if (numvfs == 0) {
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"Cannot disable SR-IOV VFs while assigned\n");
return -EPERM;
}
pci_disable_sriov(pdev);
return 0;
}
ret = pci_enable_sriov(pdev, numvfs);
return ret ? ret : numvfs;
}
#ifdef CONFIG_PM_SLEEP
static int nvme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
nvme_dev_disable(ndev, true);
return 0;
}
static int nvme_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
queue_work(nvme_workq, &ndev->reset_work);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
/*
* A frozen channel requires a reset. When detected, this method will
* shutdown the controller to quiesce. The controller will be restarted
* after the slot reset through driver's slot_reset callback.
*/
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
dev_warn(dev->ctrl.device,
"frozen state error detected, reset controller\n");
nvme_dev_disable(dev, false);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
dev_warn(dev->ctrl.device,
"failure state error detected, request disconnect\n");
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
dev_info(dev->ctrl.device, "restart after slot reset\n");
pci_restore_state(pdev);
queue_work(nvme_workq, &dev->reset_work);
return PCI_ERS_RESULT_RECOVERED;
}
static void nvme_error_resume(struct pci_dev *pdev)
{
pci_cleanup_aer_uncorrect_error_status(pdev);
}
static const struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
.reset_notify = nvme_reset_notify,
};
/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static const struct pci_device_id nvme_id_table[] = {
{ PCI_VDEVICE(INTEL, 0x0953),
.driver_data = NVME_QUIRK_STRIPE_SIZE |
NVME_QUIRK_DISCARD_ZEROES, },
{ PCI_VDEVICE(INTEL, 0x0a53),
.driver_data = NVME_QUIRK_STRIPE_SIZE |
NVME_QUIRK_DISCARD_ZEROES, },
{ PCI_VDEVICE(INTEL, 0x0a54),
.driver_data = NVME_QUIRK_STRIPE_SIZE |
NVME_QUIRK_DISCARD_ZEROES, },
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
{ PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);
static struct pci_driver nvme_driver = {
.name = "nvme",
.id_table = nvme_id_table,
.probe = nvme_probe,
.remove = nvme_remove,
.shutdown = nvme_shutdown,
.driver = {
.pm = &nvme_dev_pm_ops,
},
.sriov_configure = nvme_pci_sriov_configure,
.err_handler = &nvme_err_handler,
};
static int __init nvme_init(void)
{
int result;
nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
if (!nvme_workq)
return -ENOMEM;
result = pci_register_driver(&nvme_driver);
if (result)
destroy_workqueue(nvme_workq);
return result;
}
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
destroy_workqueue(nvme_workq);
_nvme_check_size();
}
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_init);
module_exit(nvme_exit);