2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/lib/decompress_unlzma.c
Yinghai Lu d97b07c54f initramfs: support initramfs that is bigger than 2GiB
Now with 64bit bzImage and kexec tools, we support ramdisk that size is
bigger than 2g, as we could put it above 4G.

Found compressed initramfs image could not be decompressed properly.  It
turns out that image length is int during decompress detection, and it
will become < 0 when length is more than 2G.  Furthermore, during
decompressing len as int is used for inbuf count, that has problem too.

Change len to long, that should be ok as on 32 bit platform long is
32bits.

Tested with following compressed initramfs image as root with kexec.
	gzip, bzip2, xz, lzma, lzop, lz4.
run time for populate_rootfs():
   size        name       Nehalem-EX  Westmere-EX  Ivybridge-EX
 9034400256 root_img     :   26s           24s          30s
 3561095057 root_img.lz4 :   28s           27s          27s
 3459554629 root_img.lzo :   29s           29s          28s
 3219399480 root_img.gz  :   64s           62s          49s
 2251594592 root_img.xz  :  262s          260s         183s
 2226366598 root_img.lzma:  386s          376s         277s
 2901482513 root_img.bz2 :  635s          599s

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rashika Kheria <rashika.kheria@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: P J P <ppandit@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Daniel M. Weeks" <dan@danweeks.net>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:26 -07:00

681 lines
16 KiB
C

/* Lzma decompressor for Linux kernel. Shamelessly snarfed
*from busybox 1.1.1
*
*Linux kernel adaptation
*Copyright (C) 2006 Alain < alain@knaff.lu >
*
*Based on small lzma deflate implementation/Small range coder
*implementation for lzma.
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
*Copyright (C) 1999-2005 Igor Pavlov
*
*Copyrights of the parts, see headers below.
*
*
*This program is free software; you can redistribute it and/or
*modify it under the terms of the GNU Lesser General Public
*License as published by the Free Software Foundation; either
*version 2.1 of the License, or (at your option) any later version.
*
*This program is distributed in the hope that it will be useful,
*but WITHOUT ANY WARRANTY; without even the implied warranty of
*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
*Lesser General Public License for more details.
*
*You should have received a copy of the GNU Lesser General Public
*License along with this library; if not, write to the Free Software
*Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef STATIC
#define PREBOOT
#else
#include <linux/decompress/unlzma.h>
#endif /* STATIC */
#include <linux/decompress/mm.h>
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
static long long INIT read_int(unsigned char *ptr, int size)
{
int i;
long long ret = 0;
for (i = 0; i < size; i++)
ret = (ret << 8) | ptr[size-i-1];
return ret;
}
#define ENDIAN_CONVERT(x) \
x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
/* Small range coder implementation for lzma.
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
*Copyright (c) 1999-2005 Igor Pavlov
*/
#include <linux/compiler.h>
#define LZMA_IOBUF_SIZE 0x10000
struct rc {
long (*fill)(void*, unsigned long);
uint8_t *ptr;
uint8_t *buffer;
uint8_t *buffer_end;
long buffer_size;
uint32_t code;
uint32_t range;
uint32_t bound;
void (*error)(char *);
};
#define RC_TOP_BITS 24
#define RC_MOVE_BITS 5
#define RC_MODEL_TOTAL_BITS 11
static long INIT nofill(void *buffer, unsigned long len)
{
return -1;
}
/* Called twice: once at startup and once in rc_normalize() */
static void INIT rc_read(struct rc *rc)
{
rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
if (rc->buffer_size <= 0)
rc->error("unexpected EOF");
rc->ptr = rc->buffer;
rc->buffer_end = rc->buffer + rc->buffer_size;
}
/* Called once */
static inline void INIT rc_init(struct rc *rc,
long (*fill)(void*, unsigned long),
char *buffer, long buffer_size)
{
if (fill)
rc->fill = fill;
else
rc->fill = nofill;
rc->buffer = (uint8_t *)buffer;
rc->buffer_size = buffer_size;
rc->buffer_end = rc->buffer + rc->buffer_size;
rc->ptr = rc->buffer;
rc->code = 0;
rc->range = 0xFFFFFFFF;
}
static inline void INIT rc_init_code(struct rc *rc)
{
int i;
for (i = 0; i < 5; i++) {
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->code = (rc->code << 8) | *rc->ptr++;
}
}
/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
static void INIT rc_do_normalize(struct rc *rc)
{
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->range <<= 8;
rc->code = (rc->code << 8) | *rc->ptr++;
}
static inline void INIT rc_normalize(struct rc *rc)
{
if (rc->range < (1 << RC_TOP_BITS))
rc_do_normalize(rc);
}
/* Called 9 times */
/* Why rc_is_bit_0_helper exists?
*Because we want to always expose (rc->code < rc->bound) to optimizer
*/
static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
{
rc_normalize(rc);
rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
return rc->bound;
}
static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
{
uint32_t t = rc_is_bit_0_helper(rc, p);
return rc->code < t;
}
/* Called ~10 times, but very small, thus inlined */
static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
{
rc->range = rc->bound;
*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
}
static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p)
{
rc->range -= rc->bound;
rc->code -= rc->bound;
*p -= *p >> RC_MOVE_BITS;
}
/* Called 4 times in unlzma loop */
static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
{
if (rc_is_bit_0(rc, p)) {
rc_update_bit_0(rc, p);
*symbol *= 2;
return 0;
} else {
rc_update_bit_1(rc, p);
*symbol = *symbol * 2 + 1;
return 1;
}
}
/* Called once */
static inline int INIT rc_direct_bit(struct rc *rc)
{
rc_normalize(rc);
rc->range >>= 1;
if (rc->code >= rc->range) {
rc->code -= rc->range;
return 1;
}
return 0;
}
/* Called twice */
static inline void INIT
rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
{
int i = num_levels;
*symbol = 1;
while (i--)
rc_get_bit(rc, p + *symbol, symbol);
*symbol -= 1 << num_levels;
}
/*
* Small lzma deflate implementation.
* Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
* Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
* Copyright (C) 1999-2005 Igor Pavlov
*/
struct lzma_header {
uint8_t pos;
uint32_t dict_size;
uint64_t dst_size;
} __attribute__ ((packed)) ;
#define LZMA_BASE_SIZE 1846
#define LZMA_LIT_SIZE 768
#define LZMA_NUM_POS_BITS_MAX 4
#define LZMA_LEN_NUM_LOW_BITS 3
#define LZMA_LEN_NUM_MID_BITS 3
#define LZMA_LEN_NUM_HIGH_BITS 8
#define LZMA_LEN_CHOICE 0
#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
#define LZMA_LEN_MID (LZMA_LEN_LOW \
+ (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
#define LZMA_LEN_HIGH (LZMA_LEN_MID \
+(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
#define LZMA_NUM_STATES 12
#define LZMA_NUM_LIT_STATES 7
#define LZMA_START_POS_MODEL_INDEX 4
#define LZMA_END_POS_MODEL_INDEX 14
#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
#define LZMA_NUM_POS_SLOT_BITS 6
#define LZMA_NUM_LEN_TO_POS_STATES 4
#define LZMA_NUM_ALIGN_BITS 4
#define LZMA_MATCH_MIN_LEN 2
#define LZMA_IS_MATCH 0
#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
+ (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_SPEC_POS (LZMA_POS_SLOT \
+(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
#define LZMA_ALIGN (LZMA_SPEC_POS \
+ LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
struct writer {
uint8_t *buffer;
uint8_t previous_byte;
size_t buffer_pos;
int bufsize;
size_t global_pos;
long (*flush)(void*, unsigned long);
struct lzma_header *header;
};
struct cstate {
int state;
uint32_t rep0, rep1, rep2, rep3;
};
static inline size_t INIT get_pos(struct writer *wr)
{
return
wr->global_pos + wr->buffer_pos;
}
static inline uint8_t INIT peek_old_byte(struct writer *wr,
uint32_t offs)
{
if (!wr->flush) {
int32_t pos;
while (offs > wr->header->dict_size)
offs -= wr->header->dict_size;
pos = wr->buffer_pos - offs;
return wr->buffer[pos];
} else {
uint32_t pos = wr->buffer_pos - offs;
while (pos >= wr->header->dict_size)
pos += wr->header->dict_size;
return wr->buffer[pos];
}
}
static inline int INIT write_byte(struct writer *wr, uint8_t byte)
{
wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
wr->buffer_pos = 0;
wr->global_pos += wr->header->dict_size;
if (wr->flush((char *)wr->buffer, wr->header->dict_size)
!= wr->header->dict_size)
return -1;
}
return 0;
}
static inline int INIT copy_byte(struct writer *wr, uint32_t offs)
{
return write_byte(wr, peek_old_byte(wr, offs));
}
static inline int INIT copy_bytes(struct writer *wr,
uint32_t rep0, int len)
{
do {
if (copy_byte(wr, rep0))
return -1;
len--;
} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
return len;
}
static inline int INIT process_bit0(struct writer *wr, struct rc *rc,
struct cstate *cst, uint16_t *p,
int pos_state, uint16_t *prob,
int lc, uint32_t literal_pos_mask) {
int mi = 1;
rc_update_bit_0(rc, prob);
prob = (p + LZMA_LITERAL +
(LZMA_LIT_SIZE
* (((get_pos(wr) & literal_pos_mask) << lc)
+ (wr->previous_byte >> (8 - lc))))
);
if (cst->state >= LZMA_NUM_LIT_STATES) {
int match_byte = peek_old_byte(wr, cst->rep0);
do {
int bit;
uint16_t *prob_lit;
match_byte <<= 1;
bit = match_byte & 0x100;
prob_lit = prob + 0x100 + bit + mi;
if (rc_get_bit(rc, prob_lit, &mi)) {
if (!bit)
break;
} else {
if (bit)
break;
}
} while (mi < 0x100);
}
while (mi < 0x100) {
uint16_t *prob_lit = prob + mi;
rc_get_bit(rc, prob_lit, &mi);
}
if (cst->state < 4)
cst->state = 0;
else if (cst->state < 10)
cst->state -= 3;
else
cst->state -= 6;
return write_byte(wr, mi);
}
static inline int INIT process_bit1(struct writer *wr, struct rc *rc,
struct cstate *cst, uint16_t *p,
int pos_state, uint16_t *prob) {
int offset;
uint16_t *prob_len;
int num_bits;
int len;
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
cst->rep3 = cst->rep2;
cst->rep2 = cst->rep1;
cst->rep1 = cst->rep0;
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
prob = p + LZMA_LEN_CODER;
} else {
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G0 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
prob = (p + LZMA_IS_REP_0_LONG
+ (cst->state <<
LZMA_NUM_POS_BITS_MAX) +
pos_state);
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
cst->state = cst->state < LZMA_NUM_LIT_STATES ?
9 : 11;
return copy_byte(wr, cst->rep0);
} else {
rc_update_bit_1(rc, prob);
}
} else {
uint32_t distance;
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G1 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = cst->rep1;
} else {
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G2 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = cst->rep2;
} else {
rc_update_bit_1(rc, prob);
distance = cst->rep3;
cst->rep3 = cst->rep2;
}
cst->rep2 = cst->rep1;
}
cst->rep1 = cst->rep0;
cst->rep0 = distance;
}
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
prob = p + LZMA_REP_LEN_CODER;
}
prob_len = prob + LZMA_LEN_CHOICE;
if (rc_is_bit_0(rc, prob_len)) {
rc_update_bit_0(rc, prob_len);
prob_len = (prob + LZMA_LEN_LOW
+ (pos_state <<
LZMA_LEN_NUM_LOW_BITS));
offset = 0;
num_bits = LZMA_LEN_NUM_LOW_BITS;
} else {
rc_update_bit_1(rc, prob_len);
prob_len = prob + LZMA_LEN_CHOICE_2;
if (rc_is_bit_0(rc, prob_len)) {
rc_update_bit_0(rc, prob_len);
prob_len = (prob + LZMA_LEN_MID
+ (pos_state <<
LZMA_LEN_NUM_MID_BITS));
offset = 1 << LZMA_LEN_NUM_LOW_BITS;
num_bits = LZMA_LEN_NUM_MID_BITS;
} else {
rc_update_bit_1(rc, prob_len);
prob_len = prob + LZMA_LEN_HIGH;
offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
+ (1 << LZMA_LEN_NUM_MID_BITS));
num_bits = LZMA_LEN_NUM_HIGH_BITS;
}
}
rc_bit_tree_decode(rc, prob_len, num_bits, &len);
len += offset;
if (cst->state < 4) {
int pos_slot;
cst->state += LZMA_NUM_LIT_STATES;
prob =
p + LZMA_POS_SLOT +
((len <
LZMA_NUM_LEN_TO_POS_STATES ? len :
LZMA_NUM_LEN_TO_POS_STATES - 1)
<< LZMA_NUM_POS_SLOT_BITS);
rc_bit_tree_decode(rc, prob,
LZMA_NUM_POS_SLOT_BITS,
&pos_slot);
if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
int i, mi;
num_bits = (pos_slot >> 1) - 1;
cst->rep0 = 2 | (pos_slot & 1);
if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
cst->rep0 <<= num_bits;
prob = p + LZMA_SPEC_POS +
cst->rep0 - pos_slot - 1;
} else {
num_bits -= LZMA_NUM_ALIGN_BITS;
while (num_bits--)
cst->rep0 = (cst->rep0 << 1) |
rc_direct_bit(rc);
prob = p + LZMA_ALIGN;
cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
num_bits = LZMA_NUM_ALIGN_BITS;
}
i = 1;
mi = 1;
while (num_bits--) {
if (rc_get_bit(rc, prob + mi, &mi))
cst->rep0 |= i;
i <<= 1;
}
} else
cst->rep0 = pos_slot;
if (++(cst->rep0) == 0)
return 0;
if (cst->rep0 > wr->header->dict_size
|| cst->rep0 > get_pos(wr))
return -1;
}
len += LZMA_MATCH_MIN_LEN;
return copy_bytes(wr, cst->rep0, len);
}
STATIC inline int INIT unlzma(unsigned char *buf, long in_len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *output,
long *posp,
void(*error)(char *x)
)
{
struct lzma_header header;
int lc, pb, lp;
uint32_t pos_state_mask;
uint32_t literal_pos_mask;
uint16_t *p;
int num_probs;
struct rc rc;
int i, mi;
struct writer wr;
struct cstate cst;
unsigned char *inbuf;
int ret = -1;
rc.error = error;
if (buf)
inbuf = buf;
else
inbuf = malloc(LZMA_IOBUF_SIZE);
if (!inbuf) {
error("Could not allocate input buffer");
goto exit_0;
}
cst.state = 0;
cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
wr.header = &header;
wr.flush = flush;
wr.global_pos = 0;
wr.previous_byte = 0;
wr.buffer_pos = 0;
rc_init(&rc, fill, inbuf, in_len);
for (i = 0; i < sizeof(header); i++) {
if (rc.ptr >= rc.buffer_end)
rc_read(&rc);
((unsigned char *)&header)[i] = *rc.ptr++;
}
if (header.pos >= (9 * 5 * 5)) {
error("bad header");
goto exit_1;
}
mi = 0;
lc = header.pos;
while (lc >= 9) {
mi++;
lc -= 9;
}
pb = 0;
lp = mi;
while (lp >= 5) {
pb++;
lp -= 5;
}
pos_state_mask = (1 << pb) - 1;
literal_pos_mask = (1 << lp) - 1;
ENDIAN_CONVERT(header.dict_size);
ENDIAN_CONVERT(header.dst_size);
if (header.dict_size == 0)
header.dict_size = 1;
if (output)
wr.buffer = output;
else {
wr.bufsize = MIN(header.dst_size, header.dict_size);
wr.buffer = large_malloc(wr.bufsize);
}
if (wr.buffer == NULL)
goto exit_1;
num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
if (p == 0)
goto exit_2;
num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
for (i = 0; i < num_probs; i++)
p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
rc_init_code(&rc);
while (get_pos(&wr) < header.dst_size) {
int pos_state = get_pos(&wr) & pos_state_mask;
uint16_t *prob = p + LZMA_IS_MATCH +
(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
if (rc_is_bit_0(&rc, prob)) {
if (process_bit0(&wr, &rc, &cst, p, pos_state, prob,
lc, literal_pos_mask)) {
error("LZMA data is corrupt");
goto exit_3;
}
} else {
if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) {
error("LZMA data is corrupt");
goto exit_3;
}
if (cst.rep0 == 0)
break;
}
if (rc.buffer_size <= 0)
goto exit_3;
}
if (posp)
*posp = rc.ptr-rc.buffer;
if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos)
ret = 0;
exit_3:
large_free(p);
exit_2:
if (!output)
large_free(wr.buffer);
exit_1:
if (!buf)
free(inbuf);
exit_0:
return ret;
}
#ifdef PREBOOT
STATIC int INIT decompress(unsigned char *buf, long in_len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *output,
long *posp,
void(*error)(char *x)
)
{
return unlzma(buf, in_len - 4, fill, flush, output, posp, error);
}
#endif