2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/clocksource/timer-stm32.c
Thomas Gleixner af873fcece treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 194
Based on 1 normalized pattern(s):

  license terms gnu general public license gpl version 2

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 161 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528170027.447718015@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:29:22 -07:00

337 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Maxime Coquelin 2015
* Author: Maxime Coquelin <mcoquelin.stm32@gmail.com>
*
* Inspired by time-efm32.c from Uwe Kleine-Koenig
*/
#include <linux/kernel.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>
#include "timer-of.h"
#define TIM_CR1 0x00
#define TIM_DIER 0x0c
#define TIM_SR 0x10
#define TIM_EGR 0x14
#define TIM_CNT 0x24
#define TIM_PSC 0x28
#define TIM_ARR 0x2c
#define TIM_CCR1 0x34
#define TIM_CR1_CEN BIT(0)
#define TIM_CR1_UDIS BIT(1)
#define TIM_CR1_OPM BIT(3)
#define TIM_CR1_ARPE BIT(7)
#define TIM_DIER_UIE BIT(0)
#define TIM_DIER_CC1IE BIT(1)
#define TIM_SR_UIF BIT(0)
#define TIM_EGR_UG BIT(0)
#define TIM_PSC_MAX USHRT_MAX
#define TIM_PSC_CLKRATE 10000
struct stm32_timer_private {
int bits;
};
/**
* stm32_timer_of_bits_set - set accessor helper
* @to: a timer_of structure pointer
* @bits: the number of bits (16 or 32)
*
* Accessor helper to set the number of bits in the timer-of private
* structure.
*
*/
static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
{
struct stm32_timer_private *pd = to->private_data;
pd->bits = bits;
}
/**
* stm32_timer_of_bits_get - get accessor helper
* @to: a timer_of structure pointer
*
* Accessor helper to get the number of bits in the timer-of private
* structure.
*
* Returns an integer corresponding to the number of bits.
*/
static int stm32_timer_of_bits_get(struct timer_of *to)
{
struct stm32_timer_private *pd = to->private_data;
return pd->bits;
}
static void __iomem *stm32_timer_cnt __read_mostly;
static u64 notrace stm32_read_sched_clock(void)
{
return readl_relaxed(stm32_timer_cnt);
}
static struct delay_timer stm32_timer_delay;
static unsigned long stm32_read_delay(void)
{
return readl_relaxed(stm32_timer_cnt);
}
static void stm32_clock_event_disable(struct timer_of *to)
{
writel_relaxed(0, timer_of_base(to) + TIM_DIER);
}
/**
* stm32_timer_start - Start the counter without event
* @to: a timer_of structure pointer
*
* Start the timer in order to have the counter reset and start
* incrementing but disable interrupt event when there is a counter
* overflow. By default, the counter direction is used as upcounter.
*/
static void stm32_timer_start(struct timer_of *to)
{
writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
}
static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
stm32_clock_event_disable(to);
return 0;
}
static int stm32_clock_event_set_next_event(unsigned long evt,
struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
unsigned long now, next;
next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
now = readl_relaxed(timer_of_base(to) + TIM_CNT);
if ((next - now) > evt)
return -ETIME;
writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
return 0;
}
static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
stm32_timer_start(to);
return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
}
static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
stm32_timer_start(to);
return 0;
}
static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
{
struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
struct timer_of *to = to_timer_of(clkevt);
writel_relaxed(0, timer_of_base(to) + TIM_SR);
if (clockevent_state_periodic(clkevt))
stm32_clock_event_set_periodic(clkevt);
else
stm32_clock_event_shutdown(clkevt);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
/**
* stm32_timer_width - Sort out the timer width (32/16)
* @to: a pointer to a timer-of structure
*
* Write the 32-bit max value and read/return the result. If the timer
* is 32 bits wide, the result will be UINT_MAX, otherwise it will
* be truncated by the 16-bit register to USHRT_MAX.
*
*/
static void __init stm32_timer_set_width(struct timer_of *to)
{
u32 width;
writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
width = readl_relaxed(timer_of_base(to) + TIM_ARR);
stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
}
/**
* stm32_timer_set_prescaler - Compute and set the prescaler register
* @to: a pointer to a timer-of structure
*
* Depending on the timer width, compute the prescaler to always
* target a 10MHz timer rate for 16 bits. 32-bit timers are
* considered precise and long enough to not use the prescaler.
*/
static void __init stm32_timer_set_prescaler(struct timer_of *to)
{
int prescaler = 1;
if (stm32_timer_of_bits_get(to) != 32) {
prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
TIM_PSC_CLKRATE);
/*
* The prescaler register is an u16, the variable
* can't be greater than TIM_PSC_MAX, let's cap it in
* this case.
*/
prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
}
writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
writel_relaxed(0, timer_of_base(to) + TIM_SR);
/* Adjust rate and period given the prescaler value */
to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
}
static int __init stm32_clocksource_init(struct timer_of *to)
{
u32 bits = stm32_timer_of_bits_get(to);
const char *name = to->np->full_name;
/*
* This driver allows to register several timers and relies on
* the generic time framework to select the right one.
* However, nothing allows to do the same for the
* sched_clock. We are not interested in a sched_clock for the
* 16-bit timers but only for the 32-bit one, so if no 32-bit
* timer is registered yet, we select this 32-bit timer as a
* sched_clock.
*/
if (bits == 32 && !stm32_timer_cnt) {
/*
* Start immediately the counter as we will be using
* it right after.
*/
stm32_timer_start(to);
stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
pr_info("%s: STM32 sched_clock registered\n", name);
stm32_timer_delay.read_current_timer = stm32_read_delay;
stm32_timer_delay.freq = timer_of_rate(to);
register_current_timer_delay(&stm32_timer_delay);
pr_info("%s: STM32 delay timer registered\n", name);
}
return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
timer_of_rate(to), bits == 32 ? 250 : 100,
bits, clocksource_mmio_readl_up);
}
static void __init stm32_clockevent_init(struct timer_of *to)
{
u32 bits = stm32_timer_of_bits_get(to);
to->clkevt.name = to->np->full_name;
to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
to->clkevt.tick_resume = stm32_clock_event_shutdown;
to->clkevt.set_next_event = stm32_clock_event_set_next_event;
to->clkevt.rating = bits == 32 ? 250 : 100;
clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
(1 << bits) - 1);
pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
to->np, bits);
}
static int __init stm32_timer_init(struct device_node *node)
{
struct reset_control *rstc;
struct timer_of *to;
int ret;
to = kzalloc(sizeof(*to), GFP_KERNEL);
if (!to)
return -ENOMEM;
to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
to->of_irq.handler = stm32_clock_event_handler;
ret = timer_of_init(node, to);
if (ret)
goto err;
to->private_data = kzalloc(sizeof(struct stm32_timer_private),
GFP_KERNEL);
if (!to->private_data) {
ret = -ENOMEM;
goto deinit;
}
rstc = of_reset_control_get(node, NULL);
if (!IS_ERR(rstc)) {
reset_control_assert(rstc);
reset_control_deassert(rstc);
}
stm32_timer_set_width(to);
stm32_timer_set_prescaler(to);
ret = stm32_clocksource_init(to);
if (ret)
goto deinit;
stm32_clockevent_init(to);
return 0;
deinit:
timer_of_cleanup(to);
err:
kfree(to);
return ret;
}
TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);