2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/lib/decompress_unlzma.c
Fabio Estevam e4e29dc484 lib/decompress_unlzma: Do a NULL check for pointer
Compare pointer-typed values to NULL rather than 0.

The semantic patch that makes this change is available
in scripts/coccinelle/null/badzero.cocci.

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00

680 lines
16 KiB
C

/* Lzma decompressor for Linux kernel. Shamelessly snarfed
*from busybox 1.1.1
*
*Linux kernel adaptation
*Copyright (C) 2006 Alain < alain@knaff.lu >
*
*Based on small lzma deflate implementation/Small range coder
*implementation for lzma.
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
*Copyright (C) 1999-2005 Igor Pavlov
*
*Copyrights of the parts, see headers below.
*
*
*This program is free software; you can redistribute it and/or
*modify it under the terms of the GNU Lesser General Public
*License as published by the Free Software Foundation; either
*version 2.1 of the License, or (at your option) any later version.
*
*This program is distributed in the hope that it will be useful,
*but WITHOUT ANY WARRANTY; without even the implied warranty of
*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
*Lesser General Public License for more details.
*
*You should have received a copy of the GNU Lesser General Public
*License along with this library; if not, write to the Free Software
*Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef STATIC
#define PREBOOT
#else
#include <linux/decompress/unlzma.h>
#endif /* STATIC */
#include <linux/decompress/mm.h>
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
static long long INIT read_int(unsigned char *ptr, int size)
{
int i;
long long ret = 0;
for (i = 0; i < size; i++)
ret = (ret << 8) | ptr[size-i-1];
return ret;
}
#define ENDIAN_CONVERT(x) \
x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
/* Small range coder implementation for lzma.
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
*Copyright (c) 1999-2005 Igor Pavlov
*/
#include <linux/compiler.h>
#define LZMA_IOBUF_SIZE 0x10000
struct rc {
long (*fill)(void*, unsigned long);
uint8_t *ptr;
uint8_t *buffer;
uint8_t *buffer_end;
long buffer_size;
uint32_t code;
uint32_t range;
uint32_t bound;
void (*error)(char *);
};
#define RC_TOP_BITS 24
#define RC_MOVE_BITS 5
#define RC_MODEL_TOTAL_BITS 11
static long INIT nofill(void *buffer, unsigned long len)
{
return -1;
}
/* Called twice: once at startup and once in rc_normalize() */
static void INIT rc_read(struct rc *rc)
{
rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
if (rc->buffer_size <= 0)
rc->error("unexpected EOF");
rc->ptr = rc->buffer;
rc->buffer_end = rc->buffer + rc->buffer_size;
}
/* Called once */
static inline void INIT rc_init(struct rc *rc,
long (*fill)(void*, unsigned long),
char *buffer, long buffer_size)
{
if (fill)
rc->fill = fill;
else
rc->fill = nofill;
rc->buffer = (uint8_t *)buffer;
rc->buffer_size = buffer_size;
rc->buffer_end = rc->buffer + rc->buffer_size;
rc->ptr = rc->buffer;
rc->code = 0;
rc->range = 0xFFFFFFFF;
}
static inline void INIT rc_init_code(struct rc *rc)
{
int i;
for (i = 0; i < 5; i++) {
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->code = (rc->code << 8) | *rc->ptr++;
}
}
/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
static void INIT rc_do_normalize(struct rc *rc)
{
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->range <<= 8;
rc->code = (rc->code << 8) | *rc->ptr++;
}
static inline void INIT rc_normalize(struct rc *rc)
{
if (rc->range < (1 << RC_TOP_BITS))
rc_do_normalize(rc);
}
/* Called 9 times */
/* Why rc_is_bit_0_helper exists?
*Because we want to always expose (rc->code < rc->bound) to optimizer
*/
static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
{
rc_normalize(rc);
rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
return rc->bound;
}
static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
{
uint32_t t = rc_is_bit_0_helper(rc, p);
return rc->code < t;
}
/* Called ~10 times, but very small, thus inlined */
static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
{
rc->range = rc->bound;
*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
}
static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p)
{
rc->range -= rc->bound;
rc->code -= rc->bound;
*p -= *p >> RC_MOVE_BITS;
}
/* Called 4 times in unlzma loop */
static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
{
if (rc_is_bit_0(rc, p)) {
rc_update_bit_0(rc, p);
*symbol *= 2;
return 0;
} else {
rc_update_bit_1(rc, p);
*symbol = *symbol * 2 + 1;
return 1;
}
}
/* Called once */
static inline int INIT rc_direct_bit(struct rc *rc)
{
rc_normalize(rc);
rc->range >>= 1;
if (rc->code >= rc->range) {
rc->code -= rc->range;
return 1;
}
return 0;
}
/* Called twice */
static inline void INIT
rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
{
int i = num_levels;
*symbol = 1;
while (i--)
rc_get_bit(rc, p + *symbol, symbol);
*symbol -= 1 << num_levels;
}
/*
* Small lzma deflate implementation.
* Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
*
* Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
* Copyright (C) 1999-2005 Igor Pavlov
*/
struct lzma_header {
uint8_t pos;
uint32_t dict_size;
uint64_t dst_size;
} __attribute__ ((packed)) ;
#define LZMA_BASE_SIZE 1846
#define LZMA_LIT_SIZE 768
#define LZMA_NUM_POS_BITS_MAX 4
#define LZMA_LEN_NUM_LOW_BITS 3
#define LZMA_LEN_NUM_MID_BITS 3
#define LZMA_LEN_NUM_HIGH_BITS 8
#define LZMA_LEN_CHOICE 0
#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
#define LZMA_LEN_MID (LZMA_LEN_LOW \
+ (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
#define LZMA_LEN_HIGH (LZMA_LEN_MID \
+(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
#define LZMA_NUM_STATES 12
#define LZMA_NUM_LIT_STATES 7
#define LZMA_START_POS_MODEL_INDEX 4
#define LZMA_END_POS_MODEL_INDEX 14
#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
#define LZMA_NUM_POS_SLOT_BITS 6
#define LZMA_NUM_LEN_TO_POS_STATES 4
#define LZMA_NUM_ALIGN_BITS 4
#define LZMA_MATCH_MIN_LEN 2
#define LZMA_IS_MATCH 0
#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
+ (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
#define LZMA_SPEC_POS (LZMA_POS_SLOT \
+(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
#define LZMA_ALIGN (LZMA_SPEC_POS \
+ LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
struct writer {
uint8_t *buffer;
uint8_t previous_byte;
size_t buffer_pos;
int bufsize;
size_t global_pos;
long (*flush)(void*, unsigned long);
struct lzma_header *header;
};
struct cstate {
int state;
uint32_t rep0, rep1, rep2, rep3;
};
static inline size_t INIT get_pos(struct writer *wr)
{
return
wr->global_pos + wr->buffer_pos;
}
static inline uint8_t INIT peek_old_byte(struct writer *wr,
uint32_t offs)
{
if (!wr->flush) {
int32_t pos;
while (offs > wr->header->dict_size)
offs -= wr->header->dict_size;
pos = wr->buffer_pos - offs;
return wr->buffer[pos];
} else {
uint32_t pos = wr->buffer_pos - offs;
while (pos >= wr->header->dict_size)
pos += wr->header->dict_size;
return wr->buffer[pos];
}
}
static inline int INIT write_byte(struct writer *wr, uint8_t byte)
{
wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
wr->buffer_pos = 0;
wr->global_pos += wr->header->dict_size;
if (wr->flush((char *)wr->buffer, wr->header->dict_size)
!= wr->header->dict_size)
return -1;
}
return 0;
}
static inline int INIT copy_byte(struct writer *wr, uint32_t offs)
{
return write_byte(wr, peek_old_byte(wr, offs));
}
static inline int INIT copy_bytes(struct writer *wr,
uint32_t rep0, int len)
{
do {
if (copy_byte(wr, rep0))
return -1;
len--;
} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
return len;
}
static inline int INIT process_bit0(struct writer *wr, struct rc *rc,
struct cstate *cst, uint16_t *p,
int pos_state, uint16_t *prob,
int lc, uint32_t literal_pos_mask) {
int mi = 1;
rc_update_bit_0(rc, prob);
prob = (p + LZMA_LITERAL +
(LZMA_LIT_SIZE
* (((get_pos(wr) & literal_pos_mask) << lc)
+ (wr->previous_byte >> (8 - lc))))
);
if (cst->state >= LZMA_NUM_LIT_STATES) {
int match_byte = peek_old_byte(wr, cst->rep0);
do {
int bit;
uint16_t *prob_lit;
match_byte <<= 1;
bit = match_byte & 0x100;
prob_lit = prob + 0x100 + bit + mi;
if (rc_get_bit(rc, prob_lit, &mi)) {
if (!bit)
break;
} else {
if (bit)
break;
}
} while (mi < 0x100);
}
while (mi < 0x100) {
uint16_t *prob_lit = prob + mi;
rc_get_bit(rc, prob_lit, &mi);
}
if (cst->state < 4)
cst->state = 0;
else if (cst->state < 10)
cst->state -= 3;
else
cst->state -= 6;
return write_byte(wr, mi);
}
static inline int INIT process_bit1(struct writer *wr, struct rc *rc,
struct cstate *cst, uint16_t *p,
int pos_state, uint16_t *prob) {
int offset;
uint16_t *prob_len;
int num_bits;
int len;
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
cst->rep3 = cst->rep2;
cst->rep2 = cst->rep1;
cst->rep1 = cst->rep0;
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
prob = p + LZMA_LEN_CODER;
} else {
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G0 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
prob = (p + LZMA_IS_REP_0_LONG
+ (cst->state <<
LZMA_NUM_POS_BITS_MAX) +
pos_state);
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
cst->state = cst->state < LZMA_NUM_LIT_STATES ?
9 : 11;
return copy_byte(wr, cst->rep0);
} else {
rc_update_bit_1(rc, prob);
}
} else {
uint32_t distance;
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G1 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = cst->rep1;
} else {
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G2 + cst->state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = cst->rep2;
} else {
rc_update_bit_1(rc, prob);
distance = cst->rep3;
cst->rep3 = cst->rep2;
}
cst->rep2 = cst->rep1;
}
cst->rep1 = cst->rep0;
cst->rep0 = distance;
}
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
prob = p + LZMA_REP_LEN_CODER;
}
prob_len = prob + LZMA_LEN_CHOICE;
if (rc_is_bit_0(rc, prob_len)) {
rc_update_bit_0(rc, prob_len);
prob_len = (prob + LZMA_LEN_LOW
+ (pos_state <<
LZMA_LEN_NUM_LOW_BITS));
offset = 0;
num_bits = LZMA_LEN_NUM_LOW_BITS;
} else {
rc_update_bit_1(rc, prob_len);
prob_len = prob + LZMA_LEN_CHOICE_2;
if (rc_is_bit_0(rc, prob_len)) {
rc_update_bit_0(rc, prob_len);
prob_len = (prob + LZMA_LEN_MID
+ (pos_state <<
LZMA_LEN_NUM_MID_BITS));
offset = 1 << LZMA_LEN_NUM_LOW_BITS;
num_bits = LZMA_LEN_NUM_MID_BITS;
} else {
rc_update_bit_1(rc, prob_len);
prob_len = prob + LZMA_LEN_HIGH;
offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
+ (1 << LZMA_LEN_NUM_MID_BITS));
num_bits = LZMA_LEN_NUM_HIGH_BITS;
}
}
rc_bit_tree_decode(rc, prob_len, num_bits, &len);
len += offset;
if (cst->state < 4) {
int pos_slot;
cst->state += LZMA_NUM_LIT_STATES;
prob =
p + LZMA_POS_SLOT +
((len <
LZMA_NUM_LEN_TO_POS_STATES ? len :
LZMA_NUM_LEN_TO_POS_STATES - 1)
<< LZMA_NUM_POS_SLOT_BITS);
rc_bit_tree_decode(rc, prob,
LZMA_NUM_POS_SLOT_BITS,
&pos_slot);
if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
int i, mi;
num_bits = (pos_slot >> 1) - 1;
cst->rep0 = 2 | (pos_slot & 1);
if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
cst->rep0 <<= num_bits;
prob = p + LZMA_SPEC_POS +
cst->rep0 - pos_slot - 1;
} else {
num_bits -= LZMA_NUM_ALIGN_BITS;
while (num_bits--)
cst->rep0 = (cst->rep0 << 1) |
rc_direct_bit(rc);
prob = p + LZMA_ALIGN;
cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
num_bits = LZMA_NUM_ALIGN_BITS;
}
i = 1;
mi = 1;
while (num_bits--) {
if (rc_get_bit(rc, prob + mi, &mi))
cst->rep0 |= i;
i <<= 1;
}
} else
cst->rep0 = pos_slot;
if (++(cst->rep0) == 0)
return 0;
if (cst->rep0 > wr->header->dict_size
|| cst->rep0 > get_pos(wr))
return -1;
}
len += LZMA_MATCH_MIN_LEN;
return copy_bytes(wr, cst->rep0, len);
}
STATIC inline int INIT unlzma(unsigned char *buf, long in_len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *output,
long *posp,
void(*error)(char *x)
)
{
struct lzma_header header;
int lc, pb, lp;
uint32_t pos_state_mask;
uint32_t literal_pos_mask;
uint16_t *p;
int num_probs;
struct rc rc;
int i, mi;
struct writer wr;
struct cstate cst;
unsigned char *inbuf;
int ret = -1;
rc.error = error;
if (buf)
inbuf = buf;
else
inbuf = malloc(LZMA_IOBUF_SIZE);
if (!inbuf) {
error("Could not allocate input buffer");
goto exit_0;
}
cst.state = 0;
cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
wr.header = &header;
wr.flush = flush;
wr.global_pos = 0;
wr.previous_byte = 0;
wr.buffer_pos = 0;
rc_init(&rc, fill, inbuf, in_len);
for (i = 0; i < sizeof(header); i++) {
if (rc.ptr >= rc.buffer_end)
rc_read(&rc);
((unsigned char *)&header)[i] = *rc.ptr++;
}
if (header.pos >= (9 * 5 * 5)) {
error("bad header");
goto exit_1;
}
mi = 0;
lc = header.pos;
while (lc >= 9) {
mi++;
lc -= 9;
}
pb = 0;
lp = mi;
while (lp >= 5) {
pb++;
lp -= 5;
}
pos_state_mask = (1 << pb) - 1;
literal_pos_mask = (1 << lp) - 1;
ENDIAN_CONVERT(header.dict_size);
ENDIAN_CONVERT(header.dst_size);
if (header.dict_size == 0)
header.dict_size = 1;
if (output)
wr.buffer = output;
else {
wr.bufsize = MIN(header.dst_size, header.dict_size);
wr.buffer = large_malloc(wr.bufsize);
}
if (wr.buffer == NULL)
goto exit_1;
num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
if (p == NULL)
goto exit_2;
num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
for (i = 0; i < num_probs; i++)
p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
rc_init_code(&rc);
while (get_pos(&wr) < header.dst_size) {
int pos_state = get_pos(&wr) & pos_state_mask;
uint16_t *prob = p + LZMA_IS_MATCH +
(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
if (rc_is_bit_0(&rc, prob)) {
if (process_bit0(&wr, &rc, &cst, p, pos_state, prob,
lc, literal_pos_mask)) {
error("LZMA data is corrupt");
goto exit_3;
}
} else {
if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) {
error("LZMA data is corrupt");
goto exit_3;
}
if (cst.rep0 == 0)
break;
}
if (rc.buffer_size <= 0)
goto exit_3;
}
if (posp)
*posp = rc.ptr-rc.buffer;
if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos)
ret = 0;
exit_3:
large_free(p);
exit_2:
if (!output)
large_free(wr.buffer);
exit_1:
if (!buf)
free(inbuf);
exit_0:
return ret;
}
#ifdef PREBOOT
STATIC int INIT __decompress(unsigned char *buf, long in_len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *output, long out_len,
long *posp,
void (*error)(char *x))
{
return unlzma(buf, in_len - 4, fill, flush, output, posp, error);
}
#endif