2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/include/linux/dynamic_queue_limits.h
Peter Zijlstra 0cd39f4600 locking/seqlock, headers: Untangle the spaghetti monster
By using lockdep_assert_*() from seqlock.h, the spaghetti monster
attacked.

Attack back by reducing seqlock.h dependencies from two key high level headers:

 - <linux/seqlock.h>:               -Remove <linux/ww_mutex.h>
 - <linux/time.h>:                  -Remove <linux/seqlock.h>
 - <linux/sched.h>:                 +Add    <linux/seqlock.h>

The price was to add it to sched.h ...

Core header fallout, we add direct header dependencies instead of gaining them
parasitically from higher level headers:

 - <linux/dynamic_queue_limits.h>:  +Add <asm/bug.h>
 - <linux/hrtimer.h>:               +Add <linux/seqlock.h>
 - <linux/ktime.h>:                 +Add <asm/bug.h>
 - <linux/lockdep.h>:               +Add <linux/smp.h>
 - <linux/sched.h>:                 +Add <linux/seqlock.h>
 - <linux/videodev2.h>:             +Add <linux/kernel.h>

Arch headers fallout:

 - PARISC: <asm/timex.h>:           +Add <asm/special_insns.h>
 - SH:     <asm/io.h>:              +Add <asm/page.h>
 - SPARC:  <asm/timer_64.h>:        +Add <uapi/asm/asi.h>
 - SPARC:  <asm/vvar.h>:            +Add <asm/processor.h>, <asm/barrier.h>
                                    -Remove <linux/seqlock.h>
 - X86:    <asm/fixmap.h>:          +Add <asm/pgtable_types.h>
                                    -Remove <asm/acpi.h>

There's also a bunch of parasitic header dependency fallout in .c files, not listed
separately.

[ mingo: Extended the changelog, split up & fixed the original patch. ]

Co-developed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200804133438.GK2674@hirez.programming.kicks-ass.net
2020-08-06 16:13:13 +02:00

109 lines
3.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Dynamic queue limits (dql) - Definitions
*
* Copyright (c) 2011, Tom Herbert <therbert@google.com>
*
* This header file contains the definitions for dynamic queue limits (dql).
* dql would be used in conjunction with a producer/consumer type queue
* (possibly a HW queue). Such a queue would have these general properties:
*
* 1) Objects are queued up to some limit specified as number of objects.
* 2) Periodically a completion process executes which retires consumed
* objects.
* 3) Starvation occurs when limit has been reached, all queued data has
* actually been consumed, but completion processing has not yet run
* so queuing new data is blocked.
* 4) Minimizing the amount of queued data is desirable.
*
* The goal of dql is to calculate the limit as the minimum number of objects
* needed to prevent starvation.
*
* The primary functions of dql are:
* dql_queued - called when objects are enqueued to record number of objects
* dql_avail - returns how many objects are available to be queued based
* on the object limit and how many objects are already enqueued
* dql_completed - called at completion time to indicate how many objects
* were retired from the queue
*
* The dql implementation does not implement any locking for the dql data
* structures, the higher layer should provide this. dql_queued should
* be serialized to prevent concurrent execution of the function; this
* is also true for dql_completed. However, dql_queued and dlq_completed can
* be executed concurrently (i.e. they can be protected by different locks).
*/
#ifndef _LINUX_DQL_H
#define _LINUX_DQL_H
#ifdef __KERNEL__
#include <asm/bug.h>
struct dql {
/* Fields accessed in enqueue path (dql_queued) */
unsigned int num_queued; /* Total ever queued */
unsigned int adj_limit; /* limit + num_completed */
unsigned int last_obj_cnt; /* Count at last queuing */
/* Fields accessed only by completion path (dql_completed) */
unsigned int limit ____cacheline_aligned_in_smp; /* Current limit */
unsigned int num_completed; /* Total ever completed */
unsigned int prev_ovlimit; /* Previous over limit */
unsigned int prev_num_queued; /* Previous queue total */
unsigned int prev_last_obj_cnt; /* Previous queuing cnt */
unsigned int lowest_slack; /* Lowest slack found */
unsigned long slack_start_time; /* Time slacks seen */
/* Configuration */
unsigned int max_limit; /* Max limit */
unsigned int min_limit; /* Minimum limit */
unsigned int slack_hold_time; /* Time to measure slack */
};
/* Set some static maximums */
#define DQL_MAX_OBJECT (UINT_MAX / 16)
#define DQL_MAX_LIMIT ((UINT_MAX / 2) - DQL_MAX_OBJECT)
/*
* Record number of objects queued. Assumes that caller has already checked
* availability in the queue with dql_avail.
*/
static inline void dql_queued(struct dql *dql, unsigned int count)
{
BUG_ON(count > DQL_MAX_OBJECT);
dql->last_obj_cnt = count;
/* We want to force a write first, so that cpu do not attempt
* to get cache line containing last_obj_cnt, num_queued, adj_limit
* in Shared state, but directly does a Request For Ownership
* It is only a hint, we use barrier() only.
*/
barrier();
dql->num_queued += count;
}
/* Returns how many objects can be queued, < 0 indicates over limit. */
static inline int dql_avail(const struct dql *dql)
{
return READ_ONCE(dql->adj_limit) - READ_ONCE(dql->num_queued);
}
/* Record number of completed objects and recalculate the limit. */
void dql_completed(struct dql *dql, unsigned int count);
/* Reset dql state */
void dql_reset(struct dql *dql);
/* Initialize dql state */
void dql_init(struct dql *dql, unsigned int hold_time);
#endif /* _KERNEL_ */
#endif /* _LINUX_DQL_H */