2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/include/asm-generic/mshyperv.h
Michael Kelley 31e5e64694 drivers: hv: Decouple Hyper-V clock/timer code from VMbus drivers
Hyper-V clock/timer code in hyperv_timer.c is mostly independent from
other VMbus drivers, but building for ARM64 without hyperv_timer.c
shows some remaining entanglements.  A default implementation of
hv_read_reference_counter can just read a Hyper-V synthetic register
and be independent of hyperv_timer.c, so move this code out and into
hv_common.c. Then it can be used by the timesync driver even if
hyperv_timer.c isn't built on a particular architecture.  If
hyperv_timer.c *is* built, it can override with a faster implementation.

Also provide stubs for stimer functions called by the VMbus driver when
hyperv_timer.c isn't built.

No functional changes.

Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1626220906-22629-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
2021-07-19 09:24:28 +00:00

249 lines
7.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Linux-specific definitions for managing interactions with Microsoft's
* Hyper-V hypervisor. The definitions in this file are architecture
* independent. See arch/<arch>/include/asm/mshyperv.h for definitions
* that are specific to architecture <arch>.
*
* Definitions that are specified in the Hyper-V Top Level Functional
* Spec (TLFS) should not go in this file, but should instead go in
* hyperv-tlfs.h.
*
* Copyright (C) 2019, Microsoft, Inc.
*
* Author : Michael Kelley <mikelley@microsoft.com>
*/
#ifndef _ASM_GENERIC_MSHYPERV_H
#define _ASM_GENERIC_MSHYPERV_H
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/cpumask.h>
#include <linux/nmi.h>
#include <asm/ptrace.h>
#include <asm/hyperv-tlfs.h>
struct ms_hyperv_info {
u32 features;
u32 priv_high;
u32 misc_features;
u32 hints;
u32 nested_features;
u32 max_vp_index;
u32 max_lp_index;
u32 isolation_config_a;
u32 isolation_config_b;
};
extern struct ms_hyperv_info ms_hyperv;
extern void __percpu **hyperv_pcpu_input_arg;
extern void __percpu **hyperv_pcpu_output_arg;
extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
static inline int hv_result(u64 status)
{
return status & HV_HYPERCALL_RESULT_MASK;
}
static inline bool hv_result_success(u64 status)
{
return hv_result(status) == HV_STATUS_SUCCESS;
}
static inline unsigned int hv_repcomp(u64 status)
{
/* Bits [43:32] of status have 'Reps completed' data. */
return (status & HV_HYPERCALL_REP_COMP_MASK) >>
HV_HYPERCALL_REP_COMP_OFFSET;
}
/*
* Rep hypercalls. Callers of this functions are supposed to ensure that
* rep_count and varhead_size comply with Hyper-V hypercall definition.
*/
static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
void *input, void *output)
{
u64 control = code;
u64 status;
u16 rep_comp;
control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
do {
status = hv_do_hypercall(control, input, output);
if (!hv_result_success(status))
return status;
rep_comp = hv_repcomp(status);
control &= ~HV_HYPERCALL_REP_START_MASK;
control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
touch_nmi_watchdog();
} while (rep_comp < rep_count);
return status;
}
/* Generate the guest OS identifier as described in the Hyper-V TLFS */
static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
__u64 d_info2)
{
__u64 guest_id = 0;
guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
guest_id |= (d_info1 << 48);
guest_id |= (kernel_version << 16);
guest_id |= d_info2;
return guest_id;
}
/* Free the message slot and signal end-of-message if required */
static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
{
/*
* On crash we're reading some other CPU's message page and we need
* to be careful: this other CPU may already had cleared the header
* and the host may already had delivered some other message there.
* In case we blindly write msg->header.message_type we're going
* to lose it. We can still lose a message of the same type but
* we count on the fact that there can only be one
* CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
* on crash.
*/
if (cmpxchg(&msg->header.message_type, old_msg_type,
HVMSG_NONE) != old_msg_type)
return;
/*
* The cmxchg() above does an implicit memory barrier to
* ensure the write to MessageType (ie set to
* HVMSG_NONE) happens before we read the
* MessagePending and EOMing. Otherwise, the EOMing
* will not deliver any more messages since there is
* no empty slot
*/
if (msg->header.message_flags.msg_pending) {
/*
* This will cause message queue rescan to
* possibly deliver another msg from the
* hypervisor
*/
hv_set_register(HV_REGISTER_EOM, 0);
}
}
void hv_setup_vmbus_handler(void (*handler)(void));
void hv_remove_vmbus_handler(void);
void hv_setup_stimer0_handler(void (*handler)(void));
void hv_remove_stimer0_handler(void);
void hv_setup_kexec_handler(void (*handler)(void));
void hv_remove_kexec_handler(void);
void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
void hv_remove_crash_handler(void);
extern int vmbus_interrupt;
extern int vmbus_irq;
extern bool hv_root_partition;
#if IS_ENABLED(CONFIG_HYPERV)
/*
* Hypervisor's notion of virtual processor ID is different from
* Linux' notion of CPU ID. This information can only be retrieved
* in the context of the calling CPU. Setup a map for easy access
* to this information.
*/
extern u32 *hv_vp_index;
extern u32 hv_max_vp_index;
extern u64 (*hv_read_reference_counter)(void);
/* Sentinel value for an uninitialized entry in hv_vp_index array */
#define VP_INVAL U32_MAX
int __init hv_common_init(void);
void __init hv_common_free(void);
int hv_common_cpu_init(unsigned int cpu);
int hv_common_cpu_die(unsigned int cpu);
void *hv_alloc_hyperv_page(void);
void *hv_alloc_hyperv_zeroed_page(void);
void hv_free_hyperv_page(unsigned long addr);
/**
* hv_cpu_number_to_vp_number() - Map CPU to VP.
* @cpu_number: CPU number in Linux terms
*
* This function returns the mapping between the Linux processor
* number and the hypervisor's virtual processor number, useful
* in making hypercalls and such that talk about specific
* processors.
*
* Return: Virtual processor number in Hyper-V terms
*/
static inline int hv_cpu_number_to_vp_number(int cpu_number)
{
return hv_vp_index[cpu_number];
}
static inline int cpumask_to_vpset(struct hv_vpset *vpset,
const struct cpumask *cpus)
{
int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
/* valid_bank_mask can represent up to 64 banks */
if (hv_max_vp_index / 64 >= 64)
return 0;
/*
* Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
* structs are not cleared between calls, we risk flushing unneeded
* vCPUs otherwise.
*/
for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
vpset->bank_contents[vcpu_bank] = 0;
/*
* Some banks may end up being empty but this is acceptable.
*/
for_each_cpu(cpu, cpus) {
vcpu = hv_cpu_number_to_vp_number(cpu);
if (vcpu == VP_INVAL)
return -1;
vcpu_bank = vcpu / 64;
vcpu_offset = vcpu % 64;
__set_bit(vcpu_offset, (unsigned long *)
&vpset->bank_contents[vcpu_bank]);
if (vcpu_bank >= nr_bank)
nr_bank = vcpu_bank + 1;
}
vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
return nr_bank;
}
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
bool hv_is_hyperv_initialized(void);
bool hv_is_hibernation_supported(void);
enum hv_isolation_type hv_get_isolation_type(void);
bool hv_is_isolation_supported(void);
void hyperv_cleanup(void);
bool hv_query_ext_cap(u64 cap_query);
#else /* CONFIG_HYPERV */
static inline bool hv_is_hyperv_initialized(void) { return false; }
static inline bool hv_is_hibernation_supported(void) { return false; }
static inline void hyperv_cleanup(void) {}
#endif /* CONFIG_HYPERV */
#endif