mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 09:34:22 +08:00
af30d4f36e
Implementation of media controller centric device configuration will add code to the CAMERARX support section, which is already quite big. Move it to a separate file to make the code more manageable. No functional change is included. The cal_camerarx_init_regmap() function is kept in cal.c and renamed to cal_init_camerarx_regmap() as it's not specific to one CAMERARX instance, but related to the whole CAL device. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Benoit Parrot <bparrot@ti.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
650 lines
18 KiB
C
650 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* TI Camera Access Layer (CAL) - CAMERARX
|
|
*
|
|
* Copyright (c) 2015-2020 Texas Instruments Inc.
|
|
*
|
|
* Authors:
|
|
* Benoit Parrot <bparrot@ti.com>
|
|
* Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mfd/syscon.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_graph.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <media/v4l2-ctrls.h>
|
|
#include <media/v4l2-fwnode.h>
|
|
#include <media/v4l2-subdev.h>
|
|
|
|
#include "cal.h"
|
|
#include "cal_regs.h"
|
|
|
|
/* ------------------------------------------------------------------
|
|
* I/O Register Accessors
|
|
* ------------------------------------------------------------------
|
|
*/
|
|
|
|
static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
|
|
{
|
|
return ioread32(phy->base + offset);
|
|
}
|
|
|
|
static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
|
|
{
|
|
iowrite32(val, phy->base + offset);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------
|
|
* CAMERARX Management
|
|
* ------------------------------------------------------------------
|
|
*/
|
|
|
|
static s64 cal_camerarx_get_external_rate(struct cal_camerarx *phy)
|
|
{
|
|
struct v4l2_ctrl *ctrl;
|
|
s64 rate;
|
|
|
|
ctrl = v4l2_ctrl_find(phy->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE);
|
|
if (!ctrl) {
|
|
phy_err(phy, "no pixel rate control in subdev: %s\n",
|
|
phy->sensor->name);
|
|
return -EPIPE;
|
|
}
|
|
|
|
rate = v4l2_ctrl_g_ctrl_int64(ctrl);
|
|
phy_dbg(3, phy, "sensor Pixel Rate: %llu\n", rate);
|
|
|
|
return rate;
|
|
}
|
|
|
|
static void cal_camerarx_lane_config(struct cal_camerarx *phy)
|
|
{
|
|
u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
|
|
u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
|
|
u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
|
|
struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
|
|
&phy->endpoint.bus.mipi_csi2;
|
|
int lane;
|
|
|
|
cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
|
|
cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
|
|
for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
|
|
/*
|
|
* Every lane are one nibble apart starting with the
|
|
* clock followed by the data lanes so shift masks by 4.
|
|
*/
|
|
lane_mask <<= 4;
|
|
polarity_mask <<= 4;
|
|
cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
|
|
cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
|
|
polarity_mask);
|
|
}
|
|
|
|
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
|
|
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
|
|
phy->instance, val);
|
|
}
|
|
|
|
static void cal_camerarx_enable(struct cal_camerarx *phy)
|
|
{
|
|
u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
|
|
|
|
regmap_field_write(phy->fields[F_CAMMODE], 0);
|
|
/* Always enable all lanes at the phy control level */
|
|
regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
|
|
/* F_CSI_MODE is not present on every architecture */
|
|
if (phy->fields[F_CSI_MODE])
|
|
regmap_field_write(phy->fields[F_CSI_MODE], 1);
|
|
regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
|
|
}
|
|
|
|
void cal_camerarx_disable(struct cal_camerarx *phy)
|
|
{
|
|
regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
|
|
}
|
|
|
|
/*
|
|
* TCLK values are OK at their reset values
|
|
*/
|
|
#define TCLK_TERM 0
|
|
#define TCLK_MISS 1
|
|
#define TCLK_SETTLE 14
|
|
|
|
static void cal_camerarx_config(struct cal_camerarx *phy, s64 external_rate,
|
|
const struct cal_fmt *fmt)
|
|
{
|
|
unsigned int reg0, reg1;
|
|
unsigned int ths_term, ths_settle;
|
|
unsigned int csi2_ddrclk_khz;
|
|
struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
|
|
&phy->endpoint.bus.mipi_csi2;
|
|
u32 num_lanes = mipi_csi2->num_data_lanes;
|
|
|
|
/* DPHY timing configuration */
|
|
|
|
/*
|
|
* CSI-2 is DDR and we only count used lanes.
|
|
*
|
|
* csi2_ddrclk_khz = external_rate / 1000
|
|
* / (2 * num_lanes) * fmt->bpp;
|
|
*/
|
|
csi2_ddrclk_khz = div_s64(external_rate * fmt->bpp,
|
|
2 * num_lanes * 1000);
|
|
|
|
phy_dbg(1, phy, "csi2_ddrclk_khz: %d\n", csi2_ddrclk_khz);
|
|
|
|
/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
|
|
ths_term = 20 * csi2_ddrclk_khz / 1000000;
|
|
phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
|
|
|
|
/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
|
|
ths_settle = (105 * csi2_ddrclk_khz / 1000000) + 4;
|
|
phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
|
|
|
|
reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
|
|
cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
|
|
CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
|
|
cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
|
|
cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
|
|
|
|
phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
|
|
camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
|
|
|
|
reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
|
|
cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
|
|
cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
|
|
cal_set_field(®1, TCLK_MISS,
|
|
CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
|
|
cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
|
|
|
|
phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
|
|
camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
|
|
}
|
|
|
|
static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
|
|
{
|
|
u32 target_state;
|
|
unsigned int i;
|
|
|
|
target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
|
|
CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
|
|
|
|
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
u32 current_state;
|
|
|
|
current_state = cal_read_field(phy->cal,
|
|
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
|
|
|
|
if (current_state == target_state)
|
|
break;
|
|
|
|
usleep_range(1000, 1100);
|
|
}
|
|
|
|
if (i == 10)
|
|
phy_err(phy, "Failed to power %s complexio\n",
|
|
enable ? "up" : "down");
|
|
}
|
|
|
|
static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(750);
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cal_read_field(phy->cal,
|
|
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
|
|
break;
|
|
usleep_range(500, 5000);
|
|
}
|
|
|
|
if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
|
|
phy_err(phy, "Timeout waiting for Complex IO reset done\n");
|
|
}
|
|
|
|
static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(750);
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cal_read_field(phy->cal,
|
|
CAL_CSI2_TIMING(phy->instance),
|
|
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
|
|
break;
|
|
usleep_range(500, 5000);
|
|
}
|
|
|
|
if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
|
|
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
|
|
phy_err(phy, "Timeout waiting for stop state\n");
|
|
}
|
|
|
|
int cal_camerarx_start(struct cal_camerarx *phy, const struct cal_fmt *fmt)
|
|
{
|
|
s64 external_rate;
|
|
u32 sscounter;
|
|
u32 val;
|
|
int ret;
|
|
|
|
external_rate = cal_camerarx_get_external_rate(phy);
|
|
if (external_rate < 0)
|
|
return external_rate;
|
|
|
|
ret = v4l2_subdev_call(phy->sensor, core, s_power, 1);
|
|
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
|
|
phy_err(phy, "power on failed in subdev\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
|
|
* DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
|
|
* DRA80xM TRMs have a a slightly simplified sequence.
|
|
*/
|
|
|
|
/*
|
|
* 1. Configure all CSI-2 low level protocol registers to be ready to
|
|
* receive signals/data from the CSI-2 PHY.
|
|
*
|
|
* i.-v. Configure the lanes position and polarity.
|
|
*/
|
|
cal_camerarx_lane_config(phy);
|
|
|
|
/*
|
|
* vi.-vii. Configure D-PHY mode, enable the required lanes and
|
|
* enable the CAMERARX clock.
|
|
*/
|
|
cal_camerarx_enable(phy);
|
|
|
|
/*
|
|
* 2. CSI PHY and link initialization sequence.
|
|
*
|
|
* a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
|
|
* at this point, as it requires the external sensor to send the
|
|
* CSI-2 HS clock.
|
|
*/
|
|
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
|
|
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
|
|
phy->instance,
|
|
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
|
|
|
|
/* Dummy read to allow SCP reset to complete. */
|
|
camerarx_read(phy, CAL_CSI2_PHY_REG0);
|
|
|
|
/* Program the PHY timing parameters. */
|
|
cal_camerarx_config(phy, external_rate, fmt);
|
|
|
|
/*
|
|
* b. Assert the FORCERXMODE signal.
|
|
*
|
|
* The stop-state-counter is based on fclk cycles, and we always use
|
|
* the x16 and x4 settings, so stop-state-timeout =
|
|
* fclk-cycle * 16 * 4 * counter.
|
|
*
|
|
* Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
|
|
* calculate a timeout that's 100us (rounding up).
|
|
*/
|
|
sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
|
|
|
|
val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
|
|
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
|
|
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
|
|
cal_set_field(&val, sscounter,
|
|
CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
|
|
cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
|
|
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
|
|
phy->instance,
|
|
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
|
|
|
|
/* Assert the FORCERXMODE signal. */
|
|
cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
|
|
1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
|
|
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
|
|
phy->instance,
|
|
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
|
|
|
|
/*
|
|
* c. Connect pull-down on CSI-2 PHY link (using pad control).
|
|
*
|
|
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
|
|
* implemented.
|
|
*/
|
|
|
|
/*
|
|
* d. Power up the CSI-2 PHY.
|
|
* e. Check whether the state status reaches the ON state.
|
|
*/
|
|
cal_camerarx_power(phy, true);
|
|
|
|
/*
|
|
* Start the sensor to enable the CSI-2 HS clock. We can now wait for
|
|
* CSI-2 PHY reset to complete.
|
|
*/
|
|
ret = v4l2_subdev_call(phy->sensor, video, s_stream, 1);
|
|
if (ret) {
|
|
v4l2_subdev_call(phy->sensor, core, s_power, 0);
|
|
phy_err(phy, "stream on failed in subdev\n");
|
|
return ret;
|
|
}
|
|
|
|
cal_camerarx_wait_reset(phy);
|
|
|
|
/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
|
|
cal_camerarx_wait_stop_state(phy);
|
|
|
|
phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
|
|
phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
|
|
|
|
/*
|
|
* g. Disable pull-down on CSI-2 PHY link (using pad control).
|
|
*
|
|
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
|
|
* implemented.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cal_camerarx_stop(struct cal_camerarx *phy)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
cal_camerarx_power(phy, false);
|
|
|
|
/* Assert Complex IO Reset */
|
|
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
|
|
|
|
/* Wait for power down completion */
|
|
for (i = 0; i < 10; i++) {
|
|
if (cal_read_field(phy->cal,
|
|
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
|
|
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETONGOING)
|
|
break;
|
|
usleep_range(1000, 1100);
|
|
}
|
|
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset (%d) %s\n",
|
|
phy->instance,
|
|
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)), i,
|
|
(i >= 10) ? "(timeout)" : "");
|
|
|
|
/* Disable the phy */
|
|
cal_camerarx_disable(phy);
|
|
|
|
if (v4l2_subdev_call(phy->sensor, video, s_stream, 0))
|
|
phy_err(phy, "stream off failed in subdev\n");
|
|
|
|
ret = v4l2_subdev_call(phy->sensor, core, s_power, 0);
|
|
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
|
|
phy_err(phy, "power off failed in subdev\n");
|
|
}
|
|
|
|
/*
|
|
* Errata i913: CSI2 LDO Needs to be disabled when module is powered on
|
|
*
|
|
* Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
|
|
* LDOs on the device are disabled if CSI-2 module is powered on
|
|
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
|
|
* | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
|
|
* current draw on the module supply in active mode.
|
|
*
|
|
* Errata does not apply when CSI-2 module is powered off
|
|
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
|
|
*
|
|
* SW Workaround:
|
|
* Set the following register bits to disable the LDO,
|
|
* which is essentially CSI2 REG10 bit 6:
|
|
*
|
|
* Core 0: 0x4845 B828 = 0x0000 0040
|
|
* Core 1: 0x4845 B928 = 0x0000 0040
|
|
*/
|
|
void cal_camerarx_i913_errata(struct cal_camerarx *phy)
|
|
{
|
|
u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
|
|
|
|
cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
|
|
|
|
phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
|
|
camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
|
|
}
|
|
|
|
/*
|
|
* Enable the expected IRQ sources
|
|
*/
|
|
void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
|
|
{
|
|
u32 val;
|
|
|
|
const u32 cio_err_mask =
|
|
CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
|
|
CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
|
|
CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
|
|
CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
|
|
|
|
/* Enable CIO error irqs */
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
|
|
CAL_HL_IRQ_CIO_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
|
|
cio_err_mask);
|
|
|
|
/* Always enable OCPO error */
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK);
|
|
|
|
/* Enable IRQ_WDMA_END 0/1 */
|
|
val = 0;
|
|
cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(1), val);
|
|
/* Enable IRQ_WDMA_START 0/1 */
|
|
val = 0;
|
|
cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(2), val);
|
|
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
|
|
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0xFF000000);
|
|
}
|
|
|
|
void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
|
|
{
|
|
u32 val;
|
|
|
|
/* Disable CIO error irqs */
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
|
|
CAL_HL_IRQ_CIO_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
|
|
|
|
/* Disable IRQ_WDMA_END 0/1 */
|
|
val = 0;
|
|
cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(1), val);
|
|
/* Disable IRQ_WDMA_START 0/1 */
|
|
val = 0;
|
|
cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
|
|
cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(2), val);
|
|
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
|
|
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0);
|
|
}
|
|
|
|
void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
|
|
{
|
|
cal_write(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), BIT(3));
|
|
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
|
|
1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
|
|
}
|
|
|
|
void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
|
|
{
|
|
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
|
|
0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
|
|
}
|
|
|
|
static int cal_camerarx_regmap_init(struct cal_dev *cal,
|
|
struct cal_camerarx *phy)
|
|
{
|
|
const struct cal_camerarx_data *phy_data;
|
|
unsigned int i;
|
|
|
|
if (!cal->data)
|
|
return -EINVAL;
|
|
|
|
phy_data = &cal->data->camerarx[phy->instance];
|
|
|
|
for (i = 0; i < F_MAX_FIELDS; i++) {
|
|
struct reg_field field = {
|
|
.reg = cal->syscon_camerrx_offset,
|
|
.lsb = phy_data->fields[i].lsb,
|
|
.msb = phy_data->fields[i].msb,
|
|
};
|
|
|
|
/*
|
|
* Here we update the reg offset with the
|
|
* value found in DT
|
|
*/
|
|
phy->fields[i] = devm_regmap_field_alloc(cal->dev,
|
|
cal->syscon_camerrx,
|
|
field);
|
|
if (IS_ERR(phy->fields[i])) {
|
|
cal_err(cal, "Unable to allocate regmap fields\n");
|
|
return PTR_ERR(phy->fields[i]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
|
|
{
|
|
struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
|
|
struct device_node *ep_node;
|
|
char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES * 2];
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
/*
|
|
* Find the endpoint node for the port corresponding to the PHY
|
|
* instance, and parse its CSI-2-related properties.
|
|
*/
|
|
ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
|
|
phy->instance, 0);
|
|
if (!ep_node) {
|
|
/*
|
|
* The endpoint is not mandatory, not all PHY instances need to
|
|
* be connected in DT.
|
|
*/
|
|
phy_dbg(3, phy, "Port has no endpoint\n");
|
|
return 0;
|
|
}
|
|
|
|
endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
|
|
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
|
|
if (ret < 0) {
|
|
phy_err(phy, "Failed to parse endpoint\n");
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
|
|
unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
|
|
|
|
if (lane > 4) {
|
|
phy_err(phy, "Invalid position %u for data lane %u\n",
|
|
lane, i);
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
data_lanes[i*2] = '0' + lane;
|
|
data_lanes[i*2+1] = ' ';
|
|
}
|
|
|
|
data_lanes[i*2-1] = '\0';
|
|
|
|
phy_dbg(3, phy,
|
|
"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
|
|
endpoint->bus.mipi_csi2.clock_lane, data_lanes,
|
|
endpoint->bus.mipi_csi2.flags);
|
|
|
|
/* Retrieve the connected device and store it for later use. */
|
|
phy->sensor_node = of_graph_get_remote_port_parent(ep_node);
|
|
if (!phy->sensor_node) {
|
|
phy_dbg(3, phy, "Can't get remote parent\n");
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
phy_dbg(1, phy, "Found connected device %pOFn\n", phy->sensor_node);
|
|
|
|
done:
|
|
of_node_put(ep_node);
|
|
return ret;
|
|
}
|
|
|
|
struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
|
|
unsigned int instance)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(cal->dev);
|
|
struct cal_camerarx *phy;
|
|
int ret;
|
|
|
|
phy = kzalloc(sizeof(*phy), GFP_KERNEL);
|
|
if (!phy)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
phy->cal = cal;
|
|
phy->instance = instance;
|
|
|
|
phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
(instance == 0) ?
|
|
"cal_rx_core0" :
|
|
"cal_rx_core1");
|
|
phy->base = devm_ioremap_resource(cal->dev, phy->res);
|
|
if (IS_ERR(phy->base)) {
|
|
cal_err(cal, "failed to ioremap\n");
|
|
ret = PTR_ERR(phy->base);
|
|
goto error;
|
|
}
|
|
|
|
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
|
|
phy->res->name, &phy->res->start, &phy->res->end);
|
|
|
|
ret = cal_camerarx_regmap_init(cal, phy);
|
|
if (ret)
|
|
goto error;
|
|
|
|
ret = cal_camerarx_parse_dt(phy);
|
|
if (ret)
|
|
goto error;
|
|
|
|
return phy;
|
|
|
|
error:
|
|
kfree(phy);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
void cal_camerarx_destroy(struct cal_camerarx *phy)
|
|
{
|
|
if (!phy)
|
|
return;
|
|
|
|
of_node_put(phy->sensor_node);
|
|
kfree(phy);
|
|
}
|