2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/kernel/user.c
Kay Sievers 3959214f97 sched: delayed cleanup of user_struct
During bootup performance tracing we see repeated occurrences of
/sys/kernel/uid/* events for the same uid, leading to a,
in this case, rather pointless userspace processing for the
same uid over and over.

This is usually caused by tools which change their uid to "nobody",
to run without privileges to read data supplied by untrusted users.

This change delays the execution of the (already existing) scheduled
work, to cleanup the uid after one second, so the allocated and announced
uid can possibly be re-used by another process.

This is the current behavior, where almost every invocation of a
binary, which changes the uid, creates two events:
  $ read START < /sys/kernel/uevent_seqnum; \
  for i in `seq 100`; do su --shell=/bin/true bin; done; \
  read END < /sys/kernel/uevent_seqnum; \
  echo $(($END - $START))
  178

With the delayed cleanup, we get only two events, and userspace finishes
a bit faster too:
  $ read START < /sys/kernel/uevent_seqnum; \
  for i in `seq 100`; do su --shell=/bin/true bin; done; \
  read END < /sys/kernel/uevent_seqnum; \
  echo $(($END - $START))
  1

Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-06-15 21:30:23 -07:00

511 lines
12 KiB
C

/*
* The "user cache".
*
* (C) Copyright 1991-2000 Linus Torvalds
*
* We have a per-user structure to keep track of how many
* processes, files etc the user has claimed, in order to be
* able to have per-user limits for system resources.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/key.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/user_namespace.h>
#include "cred-internals.h"
struct user_namespace init_user_ns = {
.kref = {
.refcount = ATOMIC_INIT(2),
},
.creator = &root_user,
};
EXPORT_SYMBOL_GPL(init_user_ns);
/*
* UID task count cache, to get fast user lookup in "alloc_uid"
* when changing user ID's (ie setuid() and friends).
*/
#define UIDHASH_MASK (UIDHASH_SZ - 1)
#define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
#define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid)))
static struct kmem_cache *uid_cachep;
/*
* The uidhash_lock is mostly taken from process context, but it is
* occasionally also taken from softirq/tasklet context, when
* task-structs get RCU-freed. Hence all locking must be softirq-safe.
* But free_uid() is also called with local interrupts disabled, and running
* local_bh_enable() with local interrupts disabled is an error - we'll run
* softirq callbacks, and they can unconditionally enable interrupts, and
* the caller of free_uid() didn't expect that..
*/
static DEFINE_SPINLOCK(uidhash_lock);
/* root_user.__count is 2, 1 for init task cred, 1 for init_user_ns->creator */
struct user_struct root_user = {
.__count = ATOMIC_INIT(2),
.processes = ATOMIC_INIT(1),
.files = ATOMIC_INIT(0),
.sigpending = ATOMIC_INIT(0),
.locked_shm = 0,
.user_ns = &init_user_ns,
#ifdef CONFIG_USER_SCHED
.tg = &init_task_group,
#endif
};
/*
* These routines must be called with the uidhash spinlock held!
*/
static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
{
hlist_add_head(&up->uidhash_node, hashent);
}
static void uid_hash_remove(struct user_struct *up)
{
hlist_del_init(&up->uidhash_node);
put_user_ns(up->user_ns);
}
#ifdef CONFIG_USER_SCHED
static void sched_destroy_user(struct user_struct *up)
{
sched_destroy_group(up->tg);
}
static int sched_create_user(struct user_struct *up)
{
int rc = 0;
up->tg = sched_create_group(&root_task_group);
if (IS_ERR(up->tg))
rc = -ENOMEM;
set_tg_uid(up);
return rc;
}
#else /* CONFIG_USER_SCHED */
static void sched_destroy_user(struct user_struct *up) { }
static int sched_create_user(struct user_struct *up) { return 0; }
#endif /* CONFIG_USER_SCHED */
#if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)
static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
{
struct user_struct *user;
struct hlist_node *h;
hlist_for_each_entry(user, h, hashent, uidhash_node) {
if (user->uid == uid) {
/* possibly resurrect an "almost deleted" object */
if (atomic_inc_return(&user->__count) == 1)
cancel_delayed_work(&user->work);
return user;
}
}
return NULL;
}
static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
static DEFINE_MUTEX(uids_mutex);
static inline void uids_mutex_lock(void)
{
mutex_lock(&uids_mutex);
}
static inline void uids_mutex_unlock(void)
{
mutex_unlock(&uids_mutex);
}
/* uid directory attributes */
#ifdef CONFIG_FAIR_GROUP_SCHED
static ssize_t cpu_shares_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
}
static ssize_t cpu_shares_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t size)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
unsigned long shares;
int rc;
sscanf(buf, "%lu", &shares);
rc = sched_group_set_shares(up->tg, shares);
return (rc ? rc : size);
}
static struct kobj_attribute cpu_share_attr =
__ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
}
static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t size)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
unsigned long rt_runtime;
int rc;
sscanf(buf, "%ld", &rt_runtime);
rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
return (rc ? rc : size);
}
static struct kobj_attribute cpu_rt_runtime_attr =
__ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);
static ssize_t cpu_rt_period_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
}
static ssize_t cpu_rt_period_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t size)
{
struct user_struct *up = container_of(kobj, struct user_struct, kobj);
unsigned long rt_period;
int rc;
sscanf(buf, "%lu", &rt_period);
rc = sched_group_set_rt_period(up->tg, rt_period);
return (rc ? rc : size);
}
static struct kobj_attribute cpu_rt_period_attr =
__ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
#endif
/* default attributes per uid directory */
static struct attribute *uids_attributes[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
&cpu_share_attr.attr,
#endif
#ifdef CONFIG_RT_GROUP_SCHED
&cpu_rt_runtime_attr.attr,
&cpu_rt_period_attr.attr,
#endif
NULL
};
/* the lifetime of user_struct is not managed by the core (now) */
static void uids_release(struct kobject *kobj)
{
return;
}
static struct kobj_type uids_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = uids_attributes,
.release = uids_release,
};
/*
* Create /sys/kernel/uids/<uid>/cpu_share file for this user
* We do not create this file for users in a user namespace (until
* sysfs tagging is implemented).
*
* See Documentation/scheduler/sched-design-CFS.txt for ramifications.
*/
static int uids_user_create(struct user_struct *up)
{
struct kobject *kobj = &up->kobj;
int error;
memset(kobj, 0, sizeof(struct kobject));
if (up->user_ns != &init_user_ns)
return 0;
kobj->kset = uids_kset;
error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
if (error) {
kobject_put(kobj);
goto done;
}
kobject_uevent(kobj, KOBJ_ADD);
done:
return error;
}
/* create these entries in sysfs:
* "/sys/kernel/uids" directory
* "/sys/kernel/uids/0" directory (for root user)
* "/sys/kernel/uids/0/cpu_share" file (for root user)
*/
int __init uids_sysfs_init(void)
{
uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
if (!uids_kset)
return -ENOMEM;
return uids_user_create(&root_user);
}
/* delayed work function to remove sysfs directory for a user and free up
* corresponding structures.
*/
static void cleanup_user_struct(struct work_struct *w)
{
struct user_struct *up = container_of(w, struct user_struct, work.work);
unsigned long flags;
int remove_user = 0;
/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
* atomic.
*/
uids_mutex_lock();
spin_lock_irqsave(&uidhash_lock, flags);
if (atomic_read(&up->__count) == 0) {
uid_hash_remove(up);
remove_user = 1;
}
spin_unlock_irqrestore(&uidhash_lock, flags);
if (!remove_user)
goto done;
if (up->user_ns == &init_user_ns) {
kobject_uevent(&up->kobj, KOBJ_REMOVE);
kobject_del(&up->kobj);
kobject_put(&up->kobj);
}
sched_destroy_user(up);
key_put(up->uid_keyring);
key_put(up->session_keyring);
kmem_cache_free(uid_cachep, up);
done:
uids_mutex_unlock();
}
/* IRQs are disabled and uidhash_lock is held upon function entry.
* IRQ state (as stored in flags) is restored and uidhash_lock released
* upon function exit.
*/
static void free_user(struct user_struct *up, unsigned long flags)
{
spin_unlock_irqrestore(&uidhash_lock, flags);
INIT_DELAYED_WORK(&up->work, cleanup_user_struct);
schedule_delayed_work(&up->work, msecs_to_jiffies(1000));
}
#else /* CONFIG_USER_SCHED && CONFIG_SYSFS */
static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
{
struct user_struct *user;
struct hlist_node *h;
hlist_for_each_entry(user, h, hashent, uidhash_node) {
if (user->uid == uid) {
atomic_inc(&user->__count);
return user;
}
}
return NULL;
}
int uids_sysfs_init(void) { return 0; }
static inline int uids_user_create(struct user_struct *up) { return 0; }
static inline void uids_mutex_lock(void) { }
static inline void uids_mutex_unlock(void) { }
/* IRQs are disabled and uidhash_lock is held upon function entry.
* IRQ state (as stored in flags) is restored and uidhash_lock released
* upon function exit.
*/
static void free_user(struct user_struct *up, unsigned long flags)
{
uid_hash_remove(up);
spin_unlock_irqrestore(&uidhash_lock, flags);
sched_destroy_user(up);
key_put(up->uid_keyring);
key_put(up->session_keyring);
kmem_cache_free(uid_cachep, up);
}
#endif
#if defined(CONFIG_RT_GROUP_SCHED) && defined(CONFIG_USER_SCHED)
/*
* We need to check if a setuid can take place. This function should be called
* before successfully completing the setuid.
*/
int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
{
return sched_rt_can_attach(up->tg, tsk);
}
#else
int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
{
return 1;
}
#endif
/*
* Locate the user_struct for the passed UID. If found, take a ref on it. The
* caller must undo that ref with free_uid().
*
* If the user_struct could not be found, return NULL.
*/
struct user_struct *find_user(uid_t uid)
{
struct user_struct *ret;
unsigned long flags;
struct user_namespace *ns = current_user_ns();
spin_lock_irqsave(&uidhash_lock, flags);
ret = uid_hash_find(uid, uidhashentry(ns, uid));
spin_unlock_irqrestore(&uidhash_lock, flags);
return ret;
}
void free_uid(struct user_struct *up)
{
unsigned long flags;
if (!up)
return;
local_irq_save(flags);
if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
free_user(up, flags);
else
local_irq_restore(flags);
}
struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
{
struct hlist_head *hashent = uidhashentry(ns, uid);
struct user_struct *up, *new;
/* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
* atomic.
*/
uids_mutex_lock();
spin_lock_irq(&uidhash_lock);
up = uid_hash_find(uid, hashent);
spin_unlock_irq(&uidhash_lock);
if (!up) {
new = kmem_cache_zalloc(uid_cachep, GFP_KERNEL);
if (!new)
goto out_unlock;
new->uid = uid;
atomic_set(&new->__count, 1);
if (sched_create_user(new) < 0)
goto out_free_user;
new->user_ns = get_user_ns(ns);
if (uids_user_create(new))
goto out_destoy_sched;
/*
* Before adding this, check whether we raced
* on adding the same user already..
*/
spin_lock_irq(&uidhash_lock);
up = uid_hash_find(uid, hashent);
if (up) {
/* This case is not possible when CONFIG_USER_SCHED
* is defined, since we serialize alloc_uid() using
* uids_mutex. Hence no need to call
* sched_destroy_user() or remove_user_sysfs_dir().
*/
key_put(new->uid_keyring);
key_put(new->session_keyring);
kmem_cache_free(uid_cachep, new);
} else {
uid_hash_insert(new, hashent);
up = new;
}
spin_unlock_irq(&uidhash_lock);
}
uids_mutex_unlock();
return up;
out_destoy_sched:
sched_destroy_user(new);
put_user_ns(new->user_ns);
out_free_user:
kmem_cache_free(uid_cachep, new);
out_unlock:
uids_mutex_unlock();
return NULL;
}
static int __init uid_cache_init(void)
{
int n;
uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
for(n = 0; n < UIDHASH_SZ; ++n)
INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
/* Insert the root user immediately (init already runs as root) */
spin_lock_irq(&uidhash_lock);
uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
spin_unlock_irq(&uidhash_lock);
return 0;
}
module_init(uid_cache_init);