2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/drivers/net/chelsio/sge.c
Jesse Gross eab6d18d20 vlan: Don't check for vlan group before vlan_tx_tag_present.
Many (but not all) drivers check to see whether there is a vlan
group configured before using a tag stored in the skb.  There's
not much point in this check since it just throws away data that
should only be present in the expected circumstances.  However,
it will soon be legal and expected to get a vlan tag when no
vlan group is configured, so remove this check from all drivers
to avoid dropping the tags.

Signed-off-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-21 01:26:52 -07:00

2143 lines
58 KiB
C

/*****************************************************************************
* *
* File: sge.c *
* $Revision: 1.26 $ *
* $Date: 2005/06/21 18:29:48 $ *
* Description: *
* DMA engine. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/ktime.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/slab.h>
#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"
/* This belongs in if_ether.h */
#define ETH_P_CPL5 0xf
#define SGE_CMDQ_N 2
#define SGE_FREELQ_N 2
#define SGE_CMDQ0_E_N 1024
#define SGE_CMDQ1_E_N 128
#define SGE_FREEL_SIZE 4096
#define SGE_JUMBO_FREEL_SIZE 512
#define SGE_FREEL_REFILL_THRESH 16
#define SGE_RESPQ_E_N 1024
#define SGE_INTRTIMER_NRES 1000
#define SGE_RX_SM_BUF_SIZE 1536
#define SGE_TX_DESC_MAX_PLEN 16384
#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
/*
* Period of the TX buffer reclaim timer. This timer does not need to run
* frequently as TX buffers are usually reclaimed by new TX packets.
*/
#define TX_RECLAIM_PERIOD (HZ / 4)
#define M_CMD_LEN 0x7fffffff
#define V_CMD_LEN(v) (v)
#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
#define V_CMD_GEN1(v) ((v) << 31)
#define V_CMD_GEN2(v) (v)
#define F_CMD_DATAVALID (1 << 1)
#define F_CMD_SOP (1 << 2)
#define V_CMD_EOP(v) ((v) << 3)
/*
* Command queue, receive buffer list, and response queue descriptors.
*/
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 addr_lo;
u32 len_gen;
u32 flags;
u32 addr_hi;
};
struct freelQ_e {
u32 addr_lo;
u32 len_gen;
u32 gen2;
u32 addr_hi;
};
struct respQ_e {
u32 Qsleeping : 4;
u32 Cmdq1CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq0DmaComplete : 5;
u32 FreelistQid : 2;
u32 CreditValid : 1;
u32 DataValid : 1;
u32 Offload : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 GenerationBit : 1;
u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 flags;
};
struct freelQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 gen2;
};
struct respQ_e {
u32 BufferLength;
u32 GenerationBit : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 Offload : 1;
u32 DataValid : 1;
u32 CreditValid : 1;
u32 FreelistQid : 2;
u32 Cmdq0DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq1CreditReturn : 5;
u32 Qsleeping : 4;
} ;
#endif
/*
* SW Context Command and Freelist Queue Descriptors
*/
struct cmdQ_ce {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(dma_addr);
DEFINE_DMA_UNMAP_LEN(dma_len);
};
struct freelQ_ce {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(dma_addr);
DEFINE_DMA_UNMAP_LEN(dma_len);
};
/*
* SW command, freelist and response rings
*/
struct cmdQ {
unsigned long status; /* HW DMA fetch status */
unsigned int in_use; /* # of in-use command descriptors */
unsigned int size; /* # of descriptors */
unsigned int processed; /* total # of descs HW has processed */
unsigned int cleaned; /* total # of descs SW has reclaimed */
unsigned int stop_thres; /* SW TX queue suspend threshold */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u8 genbit; /* current generation (=valid) bit */
u8 sop; /* is next entry start of packet? */
struct cmdQ_e *entries; /* HW command descriptor Q */
struct cmdQ_ce *centries; /* SW command context descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
spinlock_t lock; /* Lock to protect cmdQ enqueuing */
};
struct freelQ {
unsigned int credits; /* # of available RX buffers */
unsigned int size; /* free list capacity */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u16 rx_buffer_size; /* Buffer size on this free list */
u16 dma_offset; /* DMA offset to align IP headers */
u16 recycleq_idx; /* skb recycle q to use */
u8 genbit; /* current generation (=valid) bit */
struct freelQ_e *entries; /* HW freelist descriptor Q */
struct freelQ_ce *centries; /* SW freelist context descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
};
struct respQ {
unsigned int credits; /* credits to be returned to SGE */
unsigned int size; /* # of response Q descriptors */
u16 cidx; /* consumer index (SW) */
u8 genbit; /* current generation(=valid) bit */
struct respQ_e *entries; /* HW response descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
};
/* Bit flags for cmdQ.status */
enum {
CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
};
/* T204 TX SW scheduler */
/* Per T204 TX port */
struct sched_port {
unsigned int avail; /* available bits - quota */
unsigned int drain_bits_per_1024ns; /* drain rate */
unsigned int speed; /* drain rate, mbps */
unsigned int mtu; /* mtu size */
struct sk_buff_head skbq; /* pending skbs */
};
/* Per T204 device */
struct sched {
ktime_t last_updated; /* last time quotas were computed */
unsigned int max_avail; /* max bits to be sent to any port */
unsigned int port; /* port index (round robin ports) */
unsigned int num; /* num skbs in per port queues */
struct sched_port p[MAX_NPORTS];
struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
};
static void restart_sched(unsigned long);
/*
* Main SGE data structure
*
* Interrupts are handled by a single CPU and it is likely that on a MP system
* the application is migrated to another CPU. In that scenario, we try to
* separate the RX(in irq context) and TX state in order to decrease memory
* contention.
*/
struct sge {
struct adapter *adapter; /* adapter backpointer */
struct net_device *netdev; /* netdevice backpointer */
struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
struct respQ respQ; /* response Q */
unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
unsigned int jumbo_fl; /* jumbo freelist Q index */
unsigned int intrtimer_nres; /* no-resource interrupt timer */
unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
struct timer_list espibug_timer;
unsigned long espibug_timeout;
struct sk_buff *espibug_skb[MAX_NPORTS];
u32 sge_control; /* shadow value of sge control reg */
struct sge_intr_counts stats;
struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
struct sched *tx_sched;
struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
};
/*
* stop tasklet and free all pending skb's
*/
static void tx_sched_stop(struct sge *sge)
{
struct sched *s = sge->tx_sched;
int i;
tasklet_kill(&s->sched_tsk);
for (i = 0; i < MAX_NPORTS; i++)
__skb_queue_purge(&s->p[s->port].skbq);
}
/*
* t1_sched_update_parms() is called when the MTU or link speed changes. It
* re-computes scheduler parameters to scope with the change.
*/
unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
unsigned int mtu, unsigned int speed)
{
struct sched *s = sge->tx_sched;
struct sched_port *p = &s->p[port];
unsigned int max_avail_segs;
pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
if (speed)
p->speed = speed;
if (mtu)
p->mtu = mtu;
if (speed || mtu) {
unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
do_div(drain, (p->mtu + 50) * 1000);
p->drain_bits_per_1024ns = (unsigned int) drain;
if (p->speed < 1000)
p->drain_bits_per_1024ns =
90 * p->drain_bits_per_1024ns / 100;
}
if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
p->drain_bits_per_1024ns -= 16;
s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
max_avail_segs = max(1U, 4096 / (p->mtu - 40));
} else {
s->max_avail = 16384;
max_avail_segs = max(1U, 9000 / (p->mtu - 40));
}
pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
"max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
p->speed, s->max_avail, max_avail_segs,
p->drain_bits_per_1024ns);
return max_avail_segs * (p->mtu - 40);
}
#if 0
/*
* t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
* data that can be pushed per port.
*/
void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
{
struct sched *s = sge->tx_sched;
unsigned int i;
s->max_avail = val;
for (i = 0; i < MAX_NPORTS; i++)
t1_sched_update_parms(sge, i, 0, 0);
}
/*
* t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
* is draining.
*/
void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
unsigned int val)
{
struct sched *s = sge->tx_sched;
struct sched_port *p = &s->p[port];
p->drain_bits_per_1024ns = val * 1024 / 1000;
t1_sched_update_parms(sge, port, 0, 0);
}
#endif /* 0 */
/*
* get_clock() implements a ns clock (see ktime_get)
*/
static inline ktime_t get_clock(void)
{
struct timespec ts;
ktime_get_ts(&ts);
return timespec_to_ktime(ts);
}
/*
* tx_sched_init() allocates resources and does basic initialization.
*/
static int tx_sched_init(struct sge *sge)
{
struct sched *s;
int i;
s = kzalloc(sizeof (struct sched), GFP_KERNEL);
if (!s)
return -ENOMEM;
pr_debug("tx_sched_init\n");
tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
sge->tx_sched = s;
for (i = 0; i < MAX_NPORTS; i++) {
skb_queue_head_init(&s->p[i].skbq);
t1_sched_update_parms(sge, i, 1500, 1000);
}
return 0;
}
/*
* sched_update_avail() computes the delta since the last time it was called
* and updates the per port quota (number of bits that can be sent to the any
* port).
*/
static inline int sched_update_avail(struct sge *sge)
{
struct sched *s = sge->tx_sched;
ktime_t now = get_clock();
unsigned int i;
long long delta_time_ns;
delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
if (delta_time_ns < 15000)
return 0;
for (i = 0; i < MAX_NPORTS; i++) {
struct sched_port *p = &s->p[i];
unsigned int delta_avail;
delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
p->avail = min(p->avail + delta_avail, s->max_avail);
}
s->last_updated = now;
return 1;
}
/*
* sched_skb() is called from two different places. In the tx path, any
* packet generating load on an output port will call sched_skb()
* (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
* context (skb == NULL).
* The scheduler only returns a skb (which will then be sent) if the
* length of the skb is <= the current quota of the output port.
*/
static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
unsigned int credits)
{
struct sched *s = sge->tx_sched;
struct sk_buff_head *skbq;
unsigned int i, len, update = 1;
pr_debug("sched_skb %p\n", skb);
if (!skb) {
if (!s->num)
return NULL;
} else {
skbq = &s->p[skb->dev->if_port].skbq;
__skb_queue_tail(skbq, skb);
s->num++;
skb = NULL;
}
if (credits < MAX_SKB_FRAGS + 1)
goto out;
again:
for (i = 0; i < MAX_NPORTS; i++) {
s->port = (s->port + 1) & (MAX_NPORTS - 1);
skbq = &s->p[s->port].skbq;
skb = skb_peek(skbq);
if (!skb)
continue;
len = skb->len;
if (len <= s->p[s->port].avail) {
s->p[s->port].avail -= len;
s->num--;
__skb_unlink(skb, skbq);
goto out;
}
skb = NULL;
}
if (update-- && sched_update_avail(sge))
goto again;
out:
/* If there are more pending skbs, we use the hardware to schedule us
* again.
*/
if (s->num && !skb) {
struct cmdQ *q = &sge->cmdQ[0];
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
}
}
pr_debug("sched_skb ret %p\n", skb);
return skb;
}
/*
* PIO to indicate that memory mapped Q contains valid descriptor(s).
*/
static inline void doorbell_pio(struct adapter *adapter, u32 val)
{
wmb();
writel(val, adapter->regs + A_SG_DOORBELL);
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
{
unsigned int cidx = q->cidx;
while (q->credits--) {
struct freelQ_ce *ce = &q->centries[cidx];
pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(ce->skb);
ce->skb = NULL;
if (++cidx == q->size)
cidx = 0;
}
}
/*
* Free RX free list and response queue resources.
*/
static void free_rx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
if (sge->respQ.entries) {
size = sizeof(struct respQ_e) * sge->respQ.size;
pci_free_consistent(pdev, size, sge->respQ.entries,
sge->respQ.dma_addr);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
if (q->centries) {
free_freelQ_buffers(pdev, q);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct freelQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response queue.
*/
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
q->genbit = 1;
q->size = p->freelQ_size[i];
q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
size = sizeof(struct freelQ_e) * q->size;
q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
size = sizeof(struct freelQ_ce) * q->size;
q->centries = kzalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
*
* Note: For T2 FL0 and FL1 are reversed.
*/
sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof(struct cpl_rx_data) +
sge->freelQ[!sge->jumbo_fl].dma_offset;
size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
/*
* Setup which skb recycle Q should be used when recycling buffers from
* each free list.
*/
sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
sge->respQ.genbit = 1;
sge->respQ.size = SGE_RESPQ_E_N;
sge->respQ.credits = 0;
size = sizeof(struct respQ_e) * sge->respQ.size;
sge->respQ.entries =
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
if (!sge->respQ.entries)
goto err_no_mem;
return 0;
err_no_mem:
free_rx_resources(sge);
return -ENOMEM;
}
/*
* Reclaims n TX descriptors and frees the buffers associated with them.
*/
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
{
struct cmdQ_ce *ce;
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int cidx = q->cidx;
q->in_use -= n;
ce = &q->centries[cidx];
while (n--) {
if (likely(dma_unmap_len(ce, dma_len))) {
pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
if (q->sop)
q->sop = 0;
}
if (ce->skb) {
dev_kfree_skb_any(ce->skb);
q->sop = 1;
}
ce++;
if (++cidx == q->size) {
cidx = 0;
ce = q->centries;
}
}
q->cidx = cidx;
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
if (q->centries) {
if (q->in_use)
free_cmdQ_buffers(sge, q, q->in_use);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct cmdQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
q->genbit = 1;
q->sop = 1;
q->size = p->cmdQ_size[i];
q->in_use = 0;
q->status = 0;
q->processed = q->cleaned = 0;
q->stop_thres = 0;
spin_lock_init(&q->lock);
size = sizeof(struct cmdQ_e) * q->size;
q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
size = sizeof(struct cmdQ_ce) * q->size;
q->centries = kzalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
}
/*
* CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
* only. For queue 0 set the stop threshold so we can handle one more
* packet from each port, plus reserve an additional 24 entries for
* Ethernet packets only. Queue 1 never suspends nor do we reserve
* space for Ethernet packets.
*/
sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
(MAX_SKB_FRAGS + 1);
return 0;
err_no_mem:
free_tx_resources(sge);
return -ENOMEM;
}
static inline void setup_ring_params(struct adapter *adapter, u64 addr,
u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
writel((u32)addr, adapter->regs + base_reg_lo);
writel(addr >> 32, adapter->regs + base_reg_hi);
writel(size, adapter->regs + size_reg);
}
/*
* Enable/disable VLAN acceleration.
*/
void t1_set_vlan_accel(struct adapter *adapter, int on_off)
{
struct sge *sge = adapter->sge;
sge->sge_control &= ~F_VLAN_XTRACT;
if (on_off)
sge->sge_control |= F_VLAN_XTRACT;
if (adapter->open_device_map) {
writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
readl(adapter->regs + A_SG_CONTROL); /* flush */
}
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void configure_sge(struct sge *sge, struct sge_params *p)
{
struct adapter *ap = sge->adapter;
writel(0, ap->regs + A_SG_CONTROL);
setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].dma_addr,
sge->freelQ[0].size, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].dma_addr,
sge->freelQ[1].size, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if defined(__BIG_ENDIAN_BITFIELD)
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/* Initialize no-resource timer */
sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
t1_sge_set_coalesce_params(sge, p);
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
sge->freelQ[sge->jumbo_fl].dma_offset -
sizeof(struct cpl_rx_data);
}
/*
* Frees all SGE related resources and the sge structure itself
*/
void t1_sge_destroy(struct sge *sge)
{
int i;
for_each_port(sge->adapter, i)
free_percpu(sge->port_stats[i]);
kfree(sge->tx_sched);
free_tx_resources(sge);
free_rx_resources(sge);
kfree(sge);
}
/*
* Allocates new RX buffers on the freelist Q (and tracks them on the freelist
* context Q) until the Q is full or alloc_skb fails.
*
* It is possible that the generation bits already match, indicating that the
* buffer is already valid and nothing needs to be done. This happens when we
* copied a received buffer into a new sk_buff during the interrupt processing.
*
* If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
* aligned.
*/
static void refill_free_list(struct sge *sge, struct freelQ *q)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct freelQ_ce *ce = &q->centries[q->pidx];
struct freelQ_e *e = &q->entries[q->pidx];
unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
while (q->credits < q->size) {
struct sk_buff *skb;
dma_addr_t mapping;
skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
if (!skb)
break;
skb_reserve(skb, q->dma_offset);
mapping = pci_map_single(pdev, skb->data, dma_len,
PCI_DMA_FROMDEVICE);
skb_reserve(skb, sge->rx_pkt_pad);
ce->skb = skb;
dma_unmap_addr_set(ce, dma_addr, mapping);
dma_unmap_len_set(ce, dma_len, dma_len);
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
wmb();
e->gen2 = V_CMD_GEN2(q->genbit);
e++;
ce++;
if (++q->pidx == q->size) {
q->pidx = 0;
q->genbit ^= 1;
ce = q->centries;
e = q->entries;
}
q->credits++;
}
}
/*
* Calls refill_free_list for both free lists. If we cannot fill at least 1/4
* of both rings, we go into 'few interrupt mode' in order to give the system
* time to free up resources.
*/
static void freelQs_empty(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
u32 irqholdoff_reg;
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->fixed_intrtimer;
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
/* We reenable the Qs to force a freelist GTS interrupt later */
doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Disable SGE Interrupts
*/
void t1_sge_intr_disable(struct sge *sge)
{
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
}
/*
* Enable SGE interrupts.
*/
void t1_sge_intr_enable(struct sge *sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
if (sge->adapter->flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
}
/*
* Clear SGE interrupts.
*/
void t1_sge_intr_clear(struct sge *sge)
{
writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
}
/*
* SGE 'Error' interrupt handler
*/
int t1_sge_intr_error_handler(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
if (adapter->flags & TSO_CAPABLE)
cause &= ~F_PACKET_TOO_BIG;
if (cause & F_RESPQ_EXHAUSTED)
sge->stats.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->stats.respQ_overflow++;
pr_alert("%s: SGE response queue overflow\n",
adapter->name);
}
if (cause & F_FL_EXHAUSTED) {
sge->stats.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->stats.pkt_too_big++;
pr_alert("%s: SGE max packet size exceeded\n",
adapter->name);
}
if (cause & F_PACKET_MISMATCH) {
sge->stats.pkt_mismatch++;
pr_alert("%s: SGE packet mismatch\n", adapter->name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(adapter);
writel(cause, adapter->regs + A_SG_INT_CAUSE);
return 0;
}
const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
{
return &sge->stats;
}
void t1_sge_get_port_stats(const struct sge *sge, int port,
struct sge_port_stats *ss)
{
int cpu;
memset(ss, 0, sizeof(*ss));
for_each_possible_cpu(cpu) {
struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
ss->rx_cso_good += st->rx_cso_good;
ss->tx_cso += st->tx_cso;
ss->tx_tso += st->tx_tso;
ss->tx_need_hdrroom += st->tx_need_hdrroom;
ss->vlan_xtract += st->vlan_xtract;
ss->vlan_insert += st->vlan_insert;
}
}
/**
* recycle_fl_buf - recycle a free list buffer
* @fl: the free list
* @idx: index of buffer to recycle
*
* Recycles the specified buffer on the given free list by adding it at
* the next available slot on the list.
*/
static void recycle_fl_buf(struct freelQ *fl, int idx)
{
struct freelQ_e *from = &fl->entries[idx];
struct freelQ_e *to = &fl->entries[fl->pidx];
fl->centries[fl->pidx] = fl->centries[idx];
to->addr_lo = from->addr_lo;
to->addr_hi = from->addr_hi;
to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
wmb();
to->gen2 = V_CMD_GEN2(fl->genbit);
fl->credits++;
if (++fl->pidx == fl->size) {
fl->pidx = 0;
fl->genbit ^= 1;
}
}
static int copybreak __read_mostly = 256;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
/**
* get_packet - return the next ingress packet buffer
* @pdev: the PCI device that received the packet
* @fl: the SGE free list holding the packet
* @len: the actual packet length, excluding any SGE padding
*
* Get the next packet from a free list and complete setup of the
* sk_buff. If the packet is small we make a copy and recycle the
* original buffer, otherwise we use the original buffer itself. If a
* positive drop threshold is supplied packets are dropped and their
* buffers recycled if (a) the number of remaining buffers is under the
* threshold and the packet is too big to copy, or (b) the packet should
* be copied but there is no memory for the copy.
*/
static inline struct sk_buff *get_packet(struct pci_dev *pdev,
struct freelQ *fl, unsigned int len)
{
struct sk_buff *skb;
const struct freelQ_ce *ce = &fl->centries[fl->cidx];
if (len < copybreak) {
skb = alloc_skb(len + 2, GFP_ATOMIC);
if (!skb)
goto use_orig_buf;
skb_reserve(skb, 2); /* align IP header */
skb_put(skb, len);
pci_dma_sync_single_for_cpu(pdev,
dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(ce->skb, skb->data, len);
pci_dma_sync_single_for_device(pdev,
dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
recycle_fl_buf(fl, fl->cidx);
return skb;
}
use_orig_buf:
if (fl->credits < 2) {
recycle_fl_buf(fl, fl->cidx);
return NULL;
}
pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
skb = ce->skb;
prefetch(skb->data);
skb_put(skb, len);
return skb;
}
/**
* unexpected_offload - handle an unexpected offload packet
* @adapter: the adapter
* @fl: the free list that received the packet
*
* Called when we receive an unexpected offload packet (e.g., the TOE
* function is disabled or the card is a NIC). Prints a message and
* recycles the buffer.
*/
static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
{
struct freelQ_ce *ce = &fl->centries[fl->cidx];
struct sk_buff *skb = ce->skb;
pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
pr_err("%s: unexpected offload packet, cmd %u\n",
adapter->name, *skb->data);
recycle_fl_buf(fl, fl->cidx);
}
/*
* T1/T2 SGE limits the maximum DMA size per TX descriptor to
* SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
* stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
* Note that the *_large_page_tx_descs stuff will be optimized out when
* PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
*
* compute_large_page_descs() computes how many additional descriptors are
* required to break down the stack's request.
*/
static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
{
unsigned int count = 0;
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
unsigned int i, len = skb_headlen(skb);
while (len > SGE_TX_DESC_MAX_PLEN) {
count++;
len -= SGE_TX_DESC_MAX_PLEN;
}
for (i = 0; nfrags--; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
while (len > SGE_TX_DESC_MAX_PLEN) {
count++;
len -= SGE_TX_DESC_MAX_PLEN;
}
}
}
return count;
}
/*
* Write a cmdQ entry.
*
* Since this function writes the 'flags' field, it must not be used to
* write the first cmdQ entry.
*/
static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
unsigned int len, unsigned int gen,
unsigned int eop)
{
BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
}
/*
* See comment for previous function.
*
* write_tx_descs_large_page() writes additional SGE tx descriptors if
* *desc_len exceeds HW's capability.
*/
static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
struct cmdQ_e **e,
struct cmdQ_ce **ce,
unsigned int *gen,
dma_addr_t *desc_mapping,
unsigned int *desc_len,
unsigned int nfrags,
struct cmdQ *q)
{
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
struct cmdQ_e *e1 = *e;
struct cmdQ_ce *ce1 = *ce;
while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
*desc_len -= SGE_TX_DESC_MAX_PLEN;
write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
*gen, nfrags == 0 && *desc_len == 0);
ce1->skb = NULL;
dma_unmap_len_set(ce1, dma_len, 0);
*desc_mapping += SGE_TX_DESC_MAX_PLEN;
if (*desc_len) {
ce1++;
e1++;
if (++pidx == q->size) {
pidx = 0;
*gen ^= 1;
ce1 = q->centries;
e1 = q->entries;
}
}
}
*e = e1;
*ce = ce1;
}
return pidx;
}
/*
* Write the command descriptors to transmit the given skb starting at
* descriptor pidx with the given generation.
*/
static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
unsigned int pidx, unsigned int gen,
struct cmdQ *q)
{
dma_addr_t mapping, desc_mapping;
struct cmdQ_e *e, *e1;
struct cmdQ_ce *ce;
unsigned int i, flags, first_desc_len, desc_len,
nfrags = skb_shinfo(skb)->nr_frags;
e = e1 = &q->entries[pidx];
ce = &q->centries[pidx];
mapping = pci_map_single(adapter->pdev, skb->data,
skb_headlen(skb), PCI_DMA_TODEVICE);
desc_mapping = mapping;
desc_len = skb_headlen(skb);
flags = F_CMD_DATAVALID | F_CMD_SOP |
V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
V_CMD_GEN2(gen);
first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
desc_len : SGE_TX_DESC_MAX_PLEN;
e->addr_lo = (u32)desc_mapping;
e->addr_hi = (u64)desc_mapping >> 32;
e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
ce->skb = NULL;
dma_unmap_len_set(ce, dma_len, 0);
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
desc_len > SGE_TX_DESC_MAX_PLEN) {
desc_mapping += first_desc_len;
desc_len -= first_desc_len;
e1++;
ce++;
if (++pidx == q->size) {
pidx = 0;
gen ^= 1;
e1 = q->entries;
ce = q->centries;
}
pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
&desc_mapping, &desc_len,
nfrags, q);
if (likely(desc_len))
write_tx_desc(e1, desc_mapping, desc_len, gen,
nfrags == 0);
}
ce->skb = NULL;
dma_unmap_addr_set(ce, dma_addr, mapping);
dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
for (i = 0; nfrags--; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
e1++;
ce++;
if (++pidx == q->size) {
pidx = 0;
gen ^= 1;
e1 = q->entries;
ce = q->centries;
}
mapping = pci_map_page(adapter->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
desc_mapping = mapping;
desc_len = frag->size;
pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
&desc_mapping, &desc_len,
nfrags, q);
if (likely(desc_len))
write_tx_desc(e1, desc_mapping, desc_len, gen,
nfrags == 0);
ce->skb = NULL;
dma_unmap_addr_set(ce, dma_addr, mapping);
dma_unmap_len_set(ce, dma_len, frag->size);
}
ce->skb = skb;
wmb();
e->flags = flags;
}
/*
* Clean up completed Tx buffers.
*/
static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
{
unsigned int reclaim = q->processed - q->cleaned;
if (reclaim) {
pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
q->processed, q->cleaned);
free_cmdQ_buffers(sge, q, reclaim);
q->cleaned += reclaim;
}
}
/*
* Called from tasklet. Checks the scheduler for any
* pending skbs that can be sent.
*/
static void restart_sched(unsigned long arg)
{
struct sge *sge = (struct sge *) arg;
struct adapter *adapter = sge->adapter;
struct cmdQ *q = &sge->cmdQ[0];
struct sk_buff *skb;
unsigned int credits, queued_skb = 0;
spin_lock(&q->lock);
reclaim_completed_tx(sge, q);
credits = q->size - q->in_use;
pr_debug("restart_sched credits=%d\n", credits);
while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
unsigned int genbit, pidx, count;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
q->in_use += count;
genbit = q->genbit;
pidx = q->pidx;
q->pidx += count;
if (q->pidx >= q->size) {
q->pidx -= q->size;
q->genbit ^= 1;
}
write_tx_descs(adapter, skb, pidx, genbit, q);
credits = q->size - q->in_use;
queued_skb = 1;
}
if (queued_skb) {
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
}
spin_unlock(&q->lock);
}
/**
* sge_rx - process an ingress ethernet packet
* @sge: the sge structure
* @fl: the free list that contains the packet buffer
* @len: the packet length
*
* Process an ingress ethernet pakcet and deliver it to the stack.
*/
static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
{
struct sk_buff *skb;
const struct cpl_rx_pkt *p;
struct adapter *adapter = sge->adapter;
struct sge_port_stats *st;
skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
if (unlikely(!skb)) {
sge->stats.rx_drops++;
return;
}
p = (const struct cpl_rx_pkt *) skb->data;
if (p->iff >= adapter->params.nports) {
kfree_skb(skb);
return;
}
__skb_pull(skb, sizeof(*p));
st = this_cpu_ptr(sge->port_stats[p->iff]);
skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
skb->protocol == htons(ETH_P_IP) &&
(skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
++st->rx_cso_good;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb_checksum_none_assert(skb);
if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
st->vlan_xtract++;
vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
ntohs(p->vlan));
} else
netif_receive_skb(skb);
}
/*
* Returns true if a command queue has enough available descriptors that
* we can resume Tx operation after temporarily disabling its packet queue.
*/
static inline int enough_free_Tx_descs(const struct cmdQ *q)
{
unsigned int r = q->processed - q->cleaned;
return q->in_use - r < (q->size >> 1);
}
/*
* Called when sufficient space has become available in the SGE command queues
* after the Tx packet schedulers have been suspended to restart the Tx path.
*/
static void restart_tx_queues(struct sge *sge)
{
struct adapter *adap = sge->adapter;
int i;
if (!enough_free_Tx_descs(&sge->cmdQ[0]))
return;
for_each_port(adap, i) {
struct net_device *nd = adap->port[i].dev;
if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
netif_running(nd)) {
sge->stats.cmdQ_restarted[2]++;
netif_wake_queue(nd);
}
}
}
/*
* update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
* information.
*/
static unsigned int update_tx_info(struct adapter *adapter,
unsigned int flags,
unsigned int pr0)
{
struct sge *sge = adapter->sge;
struct cmdQ *cmdq = &sge->cmdQ[0];
cmdq->processed += pr0;
if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
freelQs_empty(sge);
flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
}
if (flags & F_CMDQ0_ENABLE) {
clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
!test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
if (sge->tx_sched)
tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
flags &= ~F_CMDQ0_ENABLE;
}
if (unlikely(sge->stopped_tx_queues != 0))
restart_tx_queues(sge);
return flags;
}
/*
* Process SGE responses, up to the supplied budget. Returns the number of
* responses processed. A negative budget is effectively unlimited.
*/
static int process_responses(struct adapter *adapter, int budget)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
struct respQ_e *e = &q->entries[q->cidx];
int done = 0;
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
while (done < budget && e->GenerationBit == q->genbit) {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
/* We batch updates to the TX side to avoid cacheline
* ping-pong of TX state information on MP where the sender
* might run on a different CPU than this function...
*/
if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
cmdq_processed[0] = 0;
}
if (unlikely(cmdq_processed[1] > 16)) {
sge->cmdQ[1].processed += cmdq_processed[1];
cmdq_processed[1] = 0;
}
if (likely(e->DataValid)) {
struct freelQ *fl = &sge->freelQ[e->FreelistQid];
BUG_ON(!e->Sop || !e->Eop);
if (unlikely(e->Offload))
unexpected_offload(adapter, fl);
else
sge_rx(sge, fl, e->BufferLength);
++done;
/*
* Note: this depends on each packet consuming a
* single free-list buffer; cf. the BUG above.
*/
if (++fl->cidx == fl->size)
fl->cidx = 0;
prefetch(fl->centries[fl->cidx].skb);
if (unlikely(--fl->credits <
fl->size - SGE_FREEL_REFILL_THRESH))
refill_free_list(sge, fl);
} else
sge->stats.pure_rsps++;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
}
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
return done;
}
static inline int responses_pending(const struct adapter *adapter)
{
const struct respQ *Q = &adapter->sge->respQ;
const struct respQ_e *e = &Q->entries[Q->cidx];
return e->GenerationBit == Q->genbit;
}
/*
* A simpler version of process_responses() that handles only pure (i.e.,
* non data-carrying) responses. Such respones are too light-weight to justify
* calling a softirq when using NAPI, so we handle them specially in hard
* interrupt context. The function is called with a pointer to a response,
* which the caller must ensure is a valid pure response. Returns 1 if it
* encounters a valid data-carrying response, 0 otherwise.
*/
static int process_pure_responses(struct adapter *adapter)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
struct respQ_e *e = &q->entries[q->cidx];
const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
prefetch(fl->centries[fl->cidx].skb);
if (e->DataValid)
return 1;
do {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
sge->stats.pure_rsps++;
} while (e->GenerationBit == q->genbit && !e->DataValid);
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
return e->GenerationBit == q->genbit;
}
/*
* Handler for new data events when using NAPI. This does not need any locking
* or protection from interrupts as data interrupts are off at this point and
* other adapter interrupts do not interfere.
*/
int t1_poll(struct napi_struct *napi, int budget)
{
struct adapter *adapter = container_of(napi, struct adapter, napi);
int work_done = process_responses(adapter, budget);
if (likely(work_done < budget)) {
napi_complete(napi);
writel(adapter->sge->respQ.cidx,
adapter->regs + A_SG_SLEEPING);
}
return work_done;
}
irqreturn_t t1_interrupt(int irq, void *data)
{
struct adapter *adapter = data;
struct sge *sge = adapter->sge;
int handled;
if (likely(responses_pending(adapter))) {
writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
if (napi_schedule_prep(&adapter->napi)) {
if (process_pure_responses(adapter))
__napi_schedule(&adapter->napi);
else {
/* no data, no NAPI needed */
writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
/* undo schedule_prep */
napi_enable(&adapter->napi);
}
}
return IRQ_HANDLED;
}
spin_lock(&adapter->async_lock);
handled = t1_slow_intr_handler(adapter);
spin_unlock(&adapter->async_lock);
if (!handled)
sge->stats.unhandled_irqs++;
return IRQ_RETVAL(handled != 0);
}
/*
* Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
*
* The code figures out how many entries the sk_buff will require in the
* cmdQ and updates the cmdQ data structure with the state once the enqueue
* has complete. Then, it doesn't access the global structure anymore, but
* uses the corresponding fields on the stack. In conjuction with a spinlock
* around that code, we can make the function reentrant without holding the
* lock when we actually enqueue (which might be expensive, especially on
* architectures with IO MMUs).
*
* This runs with softirqs disabled.
*/
static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid, struct net_device *dev)
{
struct sge *sge = adapter->sge;
struct cmdQ *q = &sge->cmdQ[qid];
unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
if (!spin_trylock(&q->lock))
return NETDEV_TX_LOCKED;
reclaim_completed_tx(sge, q);
pidx = q->pidx;
credits = q->size - q->in_use;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
/* Ethernet packet */
if (unlikely(credits < count)) {
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
sge->stats.cmdQ_full[2]++;
pr_err("%s: Tx ring full while queue awake!\n",
adapter->name);
}
spin_unlock(&q->lock);
return NETDEV_TX_BUSY;
}
if (unlikely(credits - count < q->stop_thres)) {
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
sge->stats.cmdQ_full[2]++;
}
/* T204 cmdQ0 skbs that are destined for a certain port have to go
* through the scheduler.
*/
if (sge->tx_sched && !qid && skb->dev) {
use_sched:
use_sched_skb = 1;
/* Note that the scheduler might return a different skb than
* the one passed in.
*/
skb = sched_skb(sge, skb, credits);
if (!skb) {
spin_unlock(&q->lock);
return NETDEV_TX_OK;
}
pidx = q->pidx;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
}
q->in_use += count;
genbit = q->genbit;
pidx = q->pidx;
q->pidx += count;
if (q->pidx >= q->size) {
q->pidx -= q->size;
q->genbit ^= 1;
}
spin_unlock(&q->lock);
write_tx_descs(adapter, skb, pidx, genbit, q);
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid)
doorbell_pio(adapter, F_CMDQ1_ENABLE);
else {
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
}
if (use_sched_skb) {
if (spin_trylock(&q->lock)) {
credits = q->size - q->in_use;
skb = NULL;
goto use_sched;
}
}
return NETDEV_TX_OK;
}
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
/*
* eth_hdr_len - return the length of an Ethernet header
* @data: pointer to the start of the Ethernet header
*
* Returns the length of an Ethernet header, including optional VLAN tag.
*/
static inline int eth_hdr_len(const void *data)
{
const struct ethhdr *e = data;
return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
}
/*
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
*/
netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct adapter *adapter = dev->ml_priv;
struct sge *sge = adapter->sge;
struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
struct cpl_tx_pkt *cpl;
struct sk_buff *orig_skb = skb;
int ret;
if (skb->protocol == htons(ETH_P_CPL5))
goto send;
/*
* We are using a non-standard hard_header_len.
* Allocate more header room in the rare cases it is not big enough.
*/
if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
++st->tx_need_hdrroom;
dev_kfree_skb_any(orig_skb);
if (!skb)
return NETDEV_TX_OK;
}
if (skb_shinfo(skb)->gso_size) {
int eth_type;
struct cpl_tx_pkt_lso *hdr;
++st->tx_tso;
eth_type = skb_network_offset(skb) == ETH_HLEN ?
CPL_ETH_II : CPL_ETH_II_VLAN;
hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
hdr->opcode = CPL_TX_PKT_LSO;
hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
hdr->ip_hdr_words = ip_hdr(skb)->ihl;
hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
skb_shinfo(skb)->gso_size));
hdr->len = htonl(skb->len - sizeof(*hdr));
cpl = (struct cpl_tx_pkt *)hdr;
} else {
/*
* Packets shorter than ETH_HLEN can break the MAC, drop them
* early. Also, we may get oversized packets because some
* parts of the kernel don't handle our unusual hard_header_len
* right, drop those too.
*/
if (unlikely(skb->len < ETH_HLEN ||
skb->len > dev->mtu + eth_hdr_len(skb->data))) {
pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
skb->len, eth_hdr_len(skb->data), dev->mtu);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
skb->ip_summed == CHECKSUM_PARTIAL &&
ip_hdr(skb)->protocol == IPPROTO_UDP) {
if (unlikely(skb_checksum_help(skb))) {
pr_debug("%s: unable to do udp checksum\n", dev->name);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
/* Hmmm, assuming to catch the gratious arp... and we'll use
* it to flush out stuck espi packets...
*/
if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
if (skb->protocol == htons(ETH_P_ARP) &&
arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
adapter->sge->espibug_skb[dev->if_port] = skb;
/* We want to re-use this skb later. We
* simply bump the reference count and it
* will not be freed...
*/
skb = skb_get(skb);
}
}
cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
cpl->opcode = CPL_TX_PKT;
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
/* the length field isn't used so don't bother setting it */
st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
}
cpl->iff = dev->if_port;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
if (vlan_tx_tag_present(skb)) {
cpl->vlan_valid = 1;
cpl->vlan = htons(vlan_tx_tag_get(skb));
st->vlan_insert++;
} else
#endif
cpl->vlan_valid = 0;
send:
ret = t1_sge_tx(skb, adapter, 0, dev);
/* If transmit busy, and we reallocated skb's due to headroom limit,
* then silently discard to avoid leak.
*/
if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
dev_kfree_skb_any(skb);
ret = NETDEV_TX_OK;
}
return ret;
}
/*
* Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
*/
static void sge_tx_reclaim_cb(unsigned long data)
{
int i;
struct sge *sge = (struct sge *)data;
for (i = 0; i < SGE_CMDQ_N; ++i) {
struct cmdQ *q = &sge->cmdQ[i];
if (!spin_trylock(&q->lock))
continue;
reclaim_completed_tx(sge, q);
if (i == 0 && q->in_use) { /* flush pending credits */
writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
}
spin_unlock(&q->lock);
}
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
}
/*
* Propagate changes of the SGE coalescing parameters to the HW.
*/
int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
{
sge->fixed_intrtimer = p->rx_coalesce_usecs *
core_ticks_per_usec(sge->adapter);
writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
return 0;
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*/
int t1_sge_configure(struct sge *sge, struct sge_params *p)
{
if (alloc_rx_resources(sge, p))
return -ENOMEM;
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return -ENOMEM;
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return 0;
}
/*
* Disables the DMA engine.
*/
void t1_sge_stop(struct sge *sge)
{
int i;
writel(0, sge->adapter->regs + A_SG_CONTROL);
readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
if (is_T2(sge->adapter))
del_timer_sync(&sge->espibug_timer);
del_timer_sync(&sge->tx_reclaim_timer);
if (sge->tx_sched)
tx_sched_stop(sge);
for (i = 0; i < MAX_NPORTS; i++)
kfree_skb(sge->espibug_skb[i]);
}
/*
* Enables the DMA engine.
*/
void t1_sge_start(struct sge *sge)
{
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
if (is_T2(sge->adapter))
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Callback for the T2 ESPI 'stuck packet feature' workaorund
*/
static void espibug_workaround_t204(unsigned long data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
unsigned int nports = adapter->params.nports;
u32 seop[MAX_NPORTS];
if (adapter->open_device_map & PORT_MASK) {
int i;
if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
return;
for (i = 0; i < nports; i++) {
struct sk_buff *skb = sge->espibug_skb[i];
if (!netif_running(adapter->port[i].dev) ||
netif_queue_stopped(adapter->port[i].dev) ||
!seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
continue;
if (!skb->cb[0]) {
u8 ch_mac_addr[ETH_ALEN] = {
0x0, 0x7, 0x43, 0x0, 0x0, 0x0
};
skb_copy_to_linear_data_offset(skb,
sizeof(struct cpl_tx_pkt),
ch_mac_addr,
ETH_ALEN);
skb_copy_to_linear_data_offset(skb,
skb->len - 10,
ch_mac_addr,
ETH_ALEN);
skb->cb[0] = 0xff;
}
/* bump the reference count to avoid freeing of
* the skb once the DMA has completed.
*/
skb = skb_get(skb);
t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
}
}
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
static void espibug_workaround(unsigned long data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
if (netif_running(adapter->port[0].dev)) {
struct sk_buff *skb = sge->espibug_skb[0];
u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff && skb) {
if (!skb->cb[0]) {
u8 ch_mac_addr[ETH_ALEN] =
{0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
skb_copy_to_linear_data_offset(skb,
sizeof(struct cpl_tx_pkt),
ch_mac_addr,
ETH_ALEN);
skb_copy_to_linear_data_offset(skb,
skb->len - 10,
ch_mac_addr,
ETH_ALEN);
skb->cb[0] = 0xff;
}
/* bump the reference count to avoid freeing of the
* skb once the DMA has completed.
*/
skb = skb_get(skb);
t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
}
}
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Creates a t1_sge structure and returns suggested resource parameters.
*/
struct sge * __devinit t1_sge_create(struct adapter *adapter,
struct sge_params *p)
{
struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
int i;
if (!sge)
return NULL;
sge->adapter = adapter;
sge->netdev = adapter->port[0].dev;
sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
for_each_port(adapter, i) {
sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
if (!sge->port_stats[i])
goto nomem_port;
}
init_timer(&sge->tx_reclaim_timer);
sge->tx_reclaim_timer.data = (unsigned long)sge;
sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
if (is_T2(sge->adapter)) {
init_timer(&sge->espibug_timer);
if (adapter->params.nports > 1) {
tx_sched_init(sge);
sge->espibug_timer.function = espibug_workaround_t204;
} else
sge->espibug_timer.function = espibug_workaround;
sge->espibug_timer.data = (unsigned long)sge->adapter;
sge->espibug_timeout = 1;
/* for T204, every 10ms */
if (adapter->params.nports > 1)
sge->espibug_timeout = HZ/100;
}
p->cmdQ_size[0] = SGE_CMDQ0_E_N;
p->cmdQ_size[1] = SGE_CMDQ1_E_N;
p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
if (sge->tx_sched) {
if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
p->rx_coalesce_usecs = 15;
else
p->rx_coalesce_usecs = 50;
} else
p->rx_coalesce_usecs = 50;
p->coalesce_enable = 0;
p->sample_interval_usecs = 0;
return sge;
nomem_port:
while (i >= 0) {
free_percpu(sge->port_stats[i]);
--i;
}
kfree(sge);
return NULL;
}