2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 15:14:03 +08:00
linux-next/fs/super.c
Linus Torvalds a867d7349e Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull userns vfs updates from Eric Biederman:
 "This tree contains some very long awaited work on generalizing the
  user namespace support for mounting filesystems to include filesystems
  with a backing store.  The real world target is fuse but the goal is
  to update the vfs to allow any filesystem to be supported.  This
  patchset is based on a lot of code review and testing to approach that
  goal.

  While looking at what is needed to support the fuse filesystem it
  became clear that there were things like xattrs for security modules
  that needed special treatment.  That the resolution of those concerns
  would not be fuse specific.  That sorting out these general issues
  made most sense at the generic level, where the right people could be
  drawn into the conversation, and the issues could be solved for
  everyone.

  At a high level what this patchset does a couple of simple things:

   - Add a user namespace owner (s_user_ns) to struct super_block.

   - Teach the vfs to handle filesystem uids and gids not mapping into
     to kuids and kgids and being reported as INVALID_UID and
     INVALID_GID in vfs data structures.

  By assigning a user namespace owner filesystems that are mounted with
  only user namespace privilege can be detected.  This allows security
  modules and the like to know which mounts may not be trusted.  This
  also allows the set of uids and gids that are communicated to the
  filesystem to be capped at the set of kuids and kgids that are in the
  owning user namespace of the filesystem.

  One of the crazier corner casees this handles is the case of inodes
  whose i_uid or i_gid are not mapped into the vfs.  Most of the code
  simply doesn't care but it is easy to confuse the inode writeback path
  so no operation that could cause an inode write-back is permitted for
  such inodes (aka only reads are allowed).

  This set of changes starts out by cleaning up the code paths involved
  in user namespace permirted mounts.  Then when things are clean enough
  adds code that cleanly sets s_user_ns.  Then additional restrictions
  are added that are possible now that the filesystem superblock
  contains owner information.

  These changes should not affect anyone in practice, but there are some
  parts of these restrictions that are changes in behavior.

   - Andy's restriction on suid executables that does not honor the
     suid bit when the path is from another mount namespace (think
     /proc/[pid]/fd/) or when the filesystem was mounted by a less
     privileged user.

   - The replacement of the user namespace implicit setting of MNT_NODEV
     with implicitly setting SB_I_NODEV on the filesystem superblock
     instead.

     Using SB_I_NODEV is a stronger form that happens to make this state
     user invisible.  The user visibility can be managed but it caused
     problems when it was introduced from applications reasonably
     expecting mount flags to be what they were set to.

  There is a little bit of work remaining before it is safe to support
  mounting filesystems with backing store in user namespaces, beyond
  what is in this set of changes.

   - Verifying the mounter has permission to read/write the block device
     during mount.

   - Teaching the integrity modules IMA and EVM to handle filesystems
     mounted with only user namespace root and to reduce trust in their
     security xattrs accordingly.

   - Capturing the mounters credentials and using that for permission
     checks in d_automount and the like.  (Given that overlayfs already
     does this, and we need the work in d_automount it make sense to
     generalize this case).

  Furthermore there are a few changes that are on the wishlist:

   - Get all filesystems supporting posix acls using the generic posix
     acls so that posix_acl_fix_xattr_from_user and
     posix_acl_fix_xattr_to_user may be removed.  [Maintainability]

   - Reducing the permission checks in places such as remount to allow
     the superblock owner to perform them.

   - Allowing the superblock owner to chown files with unmapped uids and
     gids to something that is mapped so the files may be treated
     normally.

  I am not considering even obvious relaxations of permission checks
  until it is clear there are no more corner cases that need to be
  locked down and handled generically.

  Many thanks to Seth Forshee who kept this code alive, and putting up
  with me rewriting substantial portions of what he did to handle more
  corner cases, and for his diligent testing and reviewing of my
  changes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (30 commits)
  fs: Call d_automount with the filesystems creds
  fs: Update i_[ug]id_(read|write) to translate relative to s_user_ns
  evm: Translate user/group ids relative to s_user_ns when computing HMAC
  dquot: For now explicitly don't support filesystems outside of init_user_ns
  quota: Handle quota data stored in s_user_ns in quota_setxquota
  quota: Ensure qids map to the filesystem
  vfs: Don't create inodes with a uid or gid unknown to the vfs
  vfs: Don't modify inodes with a uid or gid unknown to the vfs
  cred: Reject inodes with invalid ids in set_create_file_as()
  fs: Check for invalid i_uid in may_follow_link()
  vfs: Verify acls are valid within superblock's s_user_ns.
  userns: Handle -1 in k[ug]id_has_mapping when !CONFIG_USER_NS
  fs: Refuse uid/gid changes which don't map into s_user_ns
  selinux: Add support for unprivileged mounts from user namespaces
  Smack: Handle labels consistently in untrusted mounts
  Smack: Add support for unprivileged mounts from user namespaces
  fs: Treat foreign mounts as nosuid
  fs: Limit file caps to the user namespace of the super block
  userns: Remove the now unnecessary FS_USERNS_DEV_MOUNT flag
  userns: Remove implicit MNT_NODEV fragility.
  ...
2016-07-29 15:54:19 -07:00

1430 lines
37 KiB
C

/*
* linux/fs/super.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* super.c contains code to handle: - mount structures
* - super-block tables
* - filesystem drivers list
* - mount system call
* - umount system call
* - ustat system call
*
* GK 2/5/95 - Changed to support mounting the root fs via NFS
*
* Added kerneld support: Jacques Gelinas and Bjorn Ekwall
* Added change_root: Werner Almesberger & Hans Lermen, Feb '96
* Added options to /proc/mounts:
* Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
* Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
* Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
*/
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h> /* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/cleancache.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include <linux/user_namespace.h>
#include "internal.h"
static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);
static char *sb_writers_name[SB_FREEZE_LEVELS] = {
"sb_writers",
"sb_pagefaults",
"sb_internal",
};
/*
* One thing we have to be careful of with a per-sb shrinker is that we don't
* drop the last active reference to the superblock from within the shrinker.
* If that happens we could trigger unregistering the shrinker from within the
* shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
* take a passive reference to the superblock to avoid this from occurring.
*/
static unsigned long super_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long fs_objects = 0;
long total_objects;
long freed = 0;
long dentries;
long inodes;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* Deadlock avoidance. We may hold various FS locks, and we don't want
* to recurse into the FS that called us in clear_inode() and friends..
*/
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
if (!trylock_super(sb))
return SHRINK_STOP;
if (sb->s_op->nr_cached_objects)
fs_objects = sb->s_op->nr_cached_objects(sb, sc);
inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects = dentries + inodes + fs_objects + 1;
if (!total_objects)
total_objects = 1;
/* proportion the scan between the caches */
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
/*
* prune the dcache first as the icache is pinned by it, then
* prune the icache, followed by the filesystem specific caches
*
* Ensure that we always scan at least one object - memcg kmem
* accounting uses this to fully empty the caches.
*/
sc->nr_to_scan = dentries + 1;
freed = prune_dcache_sb(sb, sc);
sc->nr_to_scan = inodes + 1;
freed += prune_icache_sb(sb, sc);
if (fs_objects) {
sc->nr_to_scan = fs_objects + 1;
freed += sb->s_op->free_cached_objects(sb, sc);
}
up_read(&sb->s_umount);
return freed;
}
static unsigned long super_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long total_objects = 0;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* Don't call trylock_super as it is a potential
* scalability bottleneck. The counts could get updated
* between super_cache_count and super_cache_scan anyway.
* Call to super_cache_count with shrinker_rwsem held
* ensures the safety of call to list_lru_shrink_count() and
* s_op->nr_cached_objects().
*/
if (sb->s_op && sb->s_op->nr_cached_objects)
total_objects = sb->s_op->nr_cached_objects(sb, sc);
total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
total_objects = vfs_pressure_ratio(total_objects);
return total_objects;
}
static void destroy_super_work(struct work_struct *work)
{
struct super_block *s = container_of(work, struct super_block,
destroy_work);
int i;
for (i = 0; i < SB_FREEZE_LEVELS; i++)
percpu_free_rwsem(&s->s_writers.rw_sem[i]);
kfree(s);
}
static void destroy_super_rcu(struct rcu_head *head)
{
struct super_block *s = container_of(head, struct super_block, rcu);
INIT_WORK(&s->destroy_work, destroy_super_work);
schedule_work(&s->destroy_work);
}
/**
* destroy_super - frees a superblock
* @s: superblock to free
*
* Frees a superblock.
*/
static void destroy_super(struct super_block *s)
{
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
security_sb_free(s);
WARN_ON(!list_empty(&s->s_mounts));
put_user_ns(s->s_user_ns);
kfree(s->s_subtype);
kfree(s->s_options);
call_rcu(&s->rcu, destroy_super_rcu);
}
/**
* alloc_super - create new superblock
* @type: filesystem type superblock should belong to
* @flags: the mount flags
* @user_ns: User namespace for the super_block
*
* Allocates and initializes a new &struct super_block. alloc_super()
* returns a pointer new superblock or %NULL if allocation had failed.
*/
static struct super_block *alloc_super(struct file_system_type *type, int flags,
struct user_namespace *user_ns)
{
struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
static const struct super_operations default_op;
int i;
if (!s)
return NULL;
INIT_LIST_HEAD(&s->s_mounts);
s->s_user_ns = get_user_ns(user_ns);
if (security_sb_alloc(s))
goto fail;
for (i = 0; i < SB_FREEZE_LEVELS; i++) {
if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
sb_writers_name[i],
&type->s_writers_key[i]))
goto fail;
}
init_waitqueue_head(&s->s_writers.wait_unfrozen);
s->s_bdi = &noop_backing_dev_info;
s->s_flags = flags;
if (s->s_user_ns != &init_user_ns)
s->s_iflags |= SB_I_NODEV;
INIT_HLIST_NODE(&s->s_instances);
INIT_HLIST_BL_HEAD(&s->s_anon);
mutex_init(&s->s_sync_lock);
INIT_LIST_HEAD(&s->s_inodes);
spin_lock_init(&s->s_inode_list_lock);
INIT_LIST_HEAD(&s->s_inodes_wb);
spin_lock_init(&s->s_inode_wblist_lock);
if (list_lru_init_memcg(&s->s_dentry_lru))
goto fail;
if (list_lru_init_memcg(&s->s_inode_lru))
goto fail;
init_rwsem(&s->s_umount);
lockdep_set_class(&s->s_umount, &type->s_umount_key);
/*
* sget() can have s_umount recursion.
*
* When it cannot find a suitable sb, it allocates a new
* one (this one), and tries again to find a suitable old
* one.
*
* In case that succeeds, it will acquire the s_umount
* lock of the old one. Since these are clearly distrinct
* locks, and this object isn't exposed yet, there's no
* risk of deadlocks.
*
* Annotate this by putting this lock in a different
* subclass.
*/
down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
s->s_count = 1;
atomic_set(&s->s_active, 1);
mutex_init(&s->s_vfs_rename_mutex);
lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
mutex_init(&s->s_dquot.dqio_mutex);
mutex_init(&s->s_dquot.dqonoff_mutex);
s->s_maxbytes = MAX_NON_LFS;
s->s_op = &default_op;
s->s_time_gran = 1000000000;
s->cleancache_poolid = CLEANCACHE_NO_POOL;
s->s_shrink.seeks = DEFAULT_SEEKS;
s->s_shrink.scan_objects = super_cache_scan;
s->s_shrink.count_objects = super_cache_count;
s->s_shrink.batch = 1024;
s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
return s;
fail:
destroy_super(s);
return NULL;
}
/* Superblock refcounting */
/*
* Drop a superblock's refcount. The caller must hold sb_lock.
*/
static void __put_super(struct super_block *sb)
{
if (!--sb->s_count) {
list_del_init(&sb->s_list);
destroy_super(sb);
}
}
/**
* put_super - drop a temporary reference to superblock
* @sb: superblock in question
*
* Drops a temporary reference, frees superblock if there's no
* references left.
*/
static void put_super(struct super_block *sb)
{
spin_lock(&sb_lock);
__put_super(sb);
spin_unlock(&sb_lock);
}
/**
* deactivate_locked_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Drops an active reference to superblock, converting it into a temporary
* one if there is no other active references left. In that case we
* tell fs driver to shut it down and drop the temporary reference we
* had just acquired.
*
* Caller holds exclusive lock on superblock; that lock is released.
*/
void deactivate_locked_super(struct super_block *s)
{
struct file_system_type *fs = s->s_type;
if (atomic_dec_and_test(&s->s_active)) {
cleancache_invalidate_fs(s);
unregister_shrinker(&s->s_shrink);
fs->kill_sb(s);
/*
* Since list_lru_destroy() may sleep, we cannot call it from
* put_super(), where we hold the sb_lock. Therefore we destroy
* the lru lists right now.
*/
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
put_filesystem(fs);
put_super(s);
} else {
up_write(&s->s_umount);
}
}
EXPORT_SYMBOL(deactivate_locked_super);
/**
* deactivate_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Variant of deactivate_locked_super(), except that superblock is *not*
* locked by caller. If we are going to drop the final active reference,
* lock will be acquired prior to that.
*/
void deactivate_super(struct super_block *s)
{
if (!atomic_add_unless(&s->s_active, -1, 1)) {
down_write(&s->s_umount);
deactivate_locked_super(s);
}
}
EXPORT_SYMBOL(deactivate_super);
/**
* grab_super - acquire an active reference
* @s: reference we are trying to make active
*
* Tries to acquire an active reference. grab_super() is used when we
* had just found a superblock in super_blocks or fs_type->fs_supers
* and want to turn it into a full-blown active reference. grab_super()
* is called with sb_lock held and drops it. Returns 1 in case of
* success, 0 if we had failed (superblock contents was already dead or
* dying when grab_super() had been called). Note that this is only
* called for superblocks not in rundown mode (== ones still on ->fs_supers
* of their type), so increment of ->s_count is OK here.
*/
static int grab_super(struct super_block *s) __releases(sb_lock)
{
s->s_count++;
spin_unlock(&sb_lock);
down_write(&s->s_umount);
if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
put_super(s);
return 1;
}
up_write(&s->s_umount);
put_super(s);
return 0;
}
/*
* trylock_super - try to grab ->s_umount shared
* @sb: reference we are trying to grab
*
* Try to prevent fs shutdown. This is used in places where we
* cannot take an active reference but we need to ensure that the
* filesystem is not shut down while we are working on it. It returns
* false if we cannot acquire s_umount or if we lose the race and
* filesystem already got into shutdown, and returns true with the s_umount
* lock held in read mode in case of success. On successful return,
* the caller must drop the s_umount lock when done.
*
* Note that unlike get_super() et.al. this one does *not* bump ->s_count.
* The reason why it's safe is that we are OK with doing trylock instead
* of down_read(). There's a couple of places that are OK with that, but
* it's very much not a general-purpose interface.
*/
bool trylock_super(struct super_block *sb)
{
if (down_read_trylock(&sb->s_umount)) {
if (!hlist_unhashed(&sb->s_instances) &&
sb->s_root && (sb->s_flags & MS_BORN))
return true;
up_read(&sb->s_umount);
}
return false;
}
/**
* generic_shutdown_super - common helper for ->kill_sb()
* @sb: superblock to kill
*
* generic_shutdown_super() does all fs-independent work on superblock
* shutdown. Typical ->kill_sb() should pick all fs-specific objects
* that need destruction out of superblock, call generic_shutdown_super()
* and release aforementioned objects. Note: dentries and inodes _are_
* taken care of and do not need specific handling.
*
* Upon calling this function, the filesystem may no longer alter or
* rearrange the set of dentries belonging to this super_block, nor may it
* change the attachments of dentries to inodes.
*/
void generic_shutdown_super(struct super_block *sb)
{
const struct super_operations *sop = sb->s_op;
if (sb->s_root) {
shrink_dcache_for_umount(sb);
sync_filesystem(sb);
sb->s_flags &= ~MS_ACTIVE;
fsnotify_unmount_inodes(sb);
cgroup_writeback_umount();
evict_inodes(sb);
if (sb->s_dio_done_wq) {
destroy_workqueue(sb->s_dio_done_wq);
sb->s_dio_done_wq = NULL;
}
if (sop->put_super)
sop->put_super(sb);
if (!list_empty(&sb->s_inodes)) {
printk("VFS: Busy inodes after unmount of %s. "
"Self-destruct in 5 seconds. Have a nice day...\n",
sb->s_id);
}
}
spin_lock(&sb_lock);
/* should be initialized for __put_super_and_need_restart() */
hlist_del_init(&sb->s_instances);
spin_unlock(&sb_lock);
up_write(&sb->s_umount);
}
EXPORT_SYMBOL(generic_shutdown_super);
/**
* sget_userns - find or create a superblock
* @type: filesystem type superblock should belong to
* @test: comparison callback
* @set: setup callback
* @flags: mount flags
* @user_ns: User namespace for the super_block
* @data: argument to each of them
*/
struct super_block *sget_userns(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
int flags, struct user_namespace *user_ns,
void *data)
{
struct super_block *s = NULL;
struct super_block *old;
int err;
if (!(flags & MS_KERNMOUNT) &&
!(type->fs_flags & FS_USERNS_MOUNT) &&
!capable(CAP_SYS_ADMIN))
return ERR_PTR(-EPERM);
retry:
spin_lock(&sb_lock);
if (test) {
hlist_for_each_entry(old, &type->fs_supers, s_instances) {
if (!test(old, data))
continue;
if (user_ns != old->s_user_ns) {
spin_unlock(&sb_lock);
if (s) {
up_write(&s->s_umount);
destroy_super(s);
}
return ERR_PTR(-EBUSY);
}
if (!grab_super(old))
goto retry;
if (s) {
up_write(&s->s_umount);
destroy_super(s);
s = NULL;
}
return old;
}
}
if (!s) {
spin_unlock(&sb_lock);
s = alloc_super(type, flags, user_ns);
if (!s)
return ERR_PTR(-ENOMEM);
goto retry;
}
err = set(s, data);
if (err) {
spin_unlock(&sb_lock);
up_write(&s->s_umount);
destroy_super(s);
return ERR_PTR(err);
}
s->s_type = type;
strlcpy(s->s_id, type->name, sizeof(s->s_id));
list_add_tail(&s->s_list, &super_blocks);
hlist_add_head(&s->s_instances, &type->fs_supers);
spin_unlock(&sb_lock);
get_filesystem(type);
register_shrinker(&s->s_shrink);
return s;
}
EXPORT_SYMBOL(sget_userns);
/**
* sget - find or create a superblock
* @type: filesystem type superblock should belong to
* @test: comparison callback
* @set: setup callback
* @flags: mount flags
* @data: argument to each of them
*/
struct super_block *sget(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
int flags,
void *data)
{
struct user_namespace *user_ns = current_user_ns();
/* Ensure the requestor has permissions over the target filesystem */
if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
return ERR_PTR(-EPERM);
return sget_userns(type, test, set, flags, user_ns, data);
}
EXPORT_SYMBOL(sget);
void drop_super(struct super_block *sb)
{
up_read(&sb->s_umount);
put_super(sb);
}
EXPORT_SYMBOL(drop_super);
/**
* iterate_supers - call function for all active superblocks
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && (sb->s_flags & MS_BORN))
f(sb, arg);
up_read(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
/**
* iterate_supers_type - call function for superblocks of given type
* @type: fs type
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers_type(struct file_system_type *type,
void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && (sb->s_flags & MS_BORN))
f(sb, arg);
up_read(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
EXPORT_SYMBOL(iterate_supers_type);
/**
* get_super - get the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. %NULL is returned if no match is found.
*/
struct super_block *get_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_bdev == bdev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
/* still alive? */
if (sb->s_root && (sb->s_flags & MS_BORN))
return sb;
up_read(&sb->s_umount);
/* nope, got unmounted */
spin_lock(&sb_lock);
__put_super(sb);
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
EXPORT_SYMBOL(get_super);
/**
* get_super_thawed - get thawed superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device. The superblock is returned once it is thawed
* (or immediately if it was not frozen). %NULL is returned if no match
* is found.
*/
struct super_block *get_super_thawed(struct block_device *bdev)
{
while (1) {
struct super_block *s = get_super(bdev);
if (!s || s->s_writers.frozen == SB_UNFROZEN)
return s;
up_read(&s->s_umount);
wait_event(s->s_writers.wait_unfrozen,
s->s_writers.frozen == SB_UNFROZEN);
put_super(s);
}
}
EXPORT_SYMBOL(get_super_thawed);
/**
* get_active_super - get an active reference to the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. Returns the superblock with an active
* reference or %NULL if none was found.
*/
struct super_block *get_active_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
restart:
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_bdev == bdev) {
if (!grab_super(sb))
goto restart;
up_write(&sb->s_umount);
return sb;
}
}
spin_unlock(&sb_lock);
return NULL;
}
struct super_block *user_get_super(dev_t dev)
{
struct super_block *sb;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
if (sb->s_dev == dev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
/* still alive? */
if (sb->s_root && (sb->s_flags & MS_BORN))
return sb;
up_read(&sb->s_umount);
/* nope, got unmounted */
spin_lock(&sb_lock);
__put_super(sb);
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
/**
* do_remount_sb - asks filesystem to change mount options.
* @sb: superblock in question
* @flags: numeric part of options
* @data: the rest of options
* @force: whether or not to force the change
*
* Alters the mount options of a mounted file system.
*/
int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
{
int retval;
int remount_ro;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
#ifdef CONFIG_BLOCK
if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
return -EACCES;
#endif
remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
if (remount_ro) {
if (!hlist_empty(&sb->s_pins)) {
up_write(&sb->s_umount);
group_pin_kill(&sb->s_pins);
down_write(&sb->s_umount);
if (!sb->s_root)
return 0;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
}
}
shrink_dcache_sb(sb);
/* If we are remounting RDONLY and current sb is read/write,
make sure there are no rw files opened */
if (remount_ro) {
if (force) {
sb->s_readonly_remount = 1;
smp_wmb();
} else {
retval = sb_prepare_remount_readonly(sb);
if (retval)
return retval;
}
}
if (sb->s_op->remount_fs) {
retval = sb->s_op->remount_fs(sb, &flags, data);
if (retval) {
if (!force)
goto cancel_readonly;
/* If forced remount, go ahead despite any errors */
WARN(1, "forced remount of a %s fs returned %i\n",
sb->s_type->name, retval);
}
}
sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
/* Needs to be ordered wrt mnt_is_readonly() */
smp_wmb();
sb->s_readonly_remount = 0;
/*
* Some filesystems modify their metadata via some other path than the
* bdev buffer cache (eg. use a private mapping, or directories in
* pagecache, etc). Also file data modifications go via their own
* mappings. So If we try to mount readonly then copy the filesystem
* from bdev, we could get stale data, so invalidate it to give a best
* effort at coherency.
*/
if (remount_ro && sb->s_bdev)
invalidate_bdev(sb->s_bdev);
return 0;
cancel_readonly:
sb->s_readonly_remount = 0;
return retval;
}
static void do_emergency_remount(struct work_struct *work)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (hlist_unhashed(&sb->s_instances))
continue;
sb->s_count++;
spin_unlock(&sb_lock);
down_write(&sb->s_umount);
if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
!(sb->s_flags & MS_RDONLY)) {
/*
* What lock protects sb->s_flags??
*/
do_remount_sb(sb, MS_RDONLY, NULL, 1);
}
up_write(&sb->s_umount);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
kfree(work);
printk("Emergency Remount complete\n");
}
void emergency_remount(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_emergency_remount);
schedule_work(work);
}
}
/*
* Unnamed block devices are dummy devices used by virtual
* filesystems which don't use real block-devices. -- jrs
*/
static DEFINE_IDA(unnamed_dev_ida);
static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
/* Many userspace utilities consider an FSID of 0 invalid.
* Always return at least 1 from get_anon_bdev.
*/
static int unnamed_dev_start = 1;
int get_anon_bdev(dev_t *p)
{
int dev;
int error;
retry:
if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
return -ENOMEM;
spin_lock(&unnamed_dev_lock);
error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
if (!error)
unnamed_dev_start = dev + 1;
spin_unlock(&unnamed_dev_lock);
if (error == -EAGAIN)
/* We raced and lost with another CPU. */
goto retry;
else if (error)
return -EAGAIN;
if (dev >= (1 << MINORBITS)) {
spin_lock(&unnamed_dev_lock);
ida_remove(&unnamed_dev_ida, dev);
if (unnamed_dev_start > dev)
unnamed_dev_start = dev;
spin_unlock(&unnamed_dev_lock);
return -EMFILE;
}
*p = MKDEV(0, dev & MINORMASK);
return 0;
}
EXPORT_SYMBOL(get_anon_bdev);
void free_anon_bdev(dev_t dev)
{
int slot = MINOR(dev);
spin_lock(&unnamed_dev_lock);
ida_remove(&unnamed_dev_ida, slot);
if (slot < unnamed_dev_start)
unnamed_dev_start = slot;
spin_unlock(&unnamed_dev_lock);
}
EXPORT_SYMBOL(free_anon_bdev);
int set_anon_super(struct super_block *s, void *data)
{
return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);
void kill_anon_super(struct super_block *sb)
{
dev_t dev = sb->s_dev;
generic_shutdown_super(sb);
free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);
void kill_litter_super(struct super_block *sb)
{
if (sb->s_root)
d_genocide(sb->s_root);
kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);
static int ns_test_super(struct super_block *sb, void *data)
{
return sb->s_fs_info == data;
}
static int ns_set_super(struct super_block *sb, void *data)
{
sb->s_fs_info = data;
return set_anon_super(sb, NULL);
}
struct dentry *mount_ns(struct file_system_type *fs_type,
int flags, void *data, void *ns, struct user_namespace *user_ns,
int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *sb;
/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
* over the namespace.
*/
if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
return ERR_PTR(-EPERM);
sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
user_ns, ns);
if (IS_ERR(sb))
return ERR_CAST(sb);
if (!sb->s_root) {
int err;
err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
if (err) {
deactivate_locked_super(sb);
return ERR_PTR(err);
}
sb->s_flags |= MS_ACTIVE;
}
return dget(sb->s_root);
}
EXPORT_SYMBOL(mount_ns);
#ifdef CONFIG_BLOCK
static int set_bdev_super(struct super_block *s, void *data)
{
s->s_bdev = data;
s->s_dev = s->s_bdev->bd_dev;
/*
* We set the bdi here to the queue backing, file systems can
* overwrite this in ->fill_super()
*/
s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
return 0;
}
static int test_bdev_super(struct super_block *s, void *data)
{
return (void *)s->s_bdev == data;
}
struct dentry *mount_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct block_device *bdev;
struct super_block *s;
fmode_t mode = FMODE_READ | FMODE_EXCL;
int error = 0;
if (!(flags & MS_RDONLY))
mode |= FMODE_WRITE;
bdev = blkdev_get_by_path(dev_name, mode, fs_type);
if (IS_ERR(bdev))
return ERR_CAST(bdev);
/*
* once the super is inserted into the list by sget, s_umount
* will protect the lockfs code from trying to start a snapshot
* while we are mounting
*/
mutex_lock(&bdev->bd_fsfreeze_mutex);
if (bdev->bd_fsfreeze_count > 0) {
mutex_unlock(&bdev->bd_fsfreeze_mutex);
error = -EBUSY;
goto error_bdev;
}
s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
bdev);
mutex_unlock(&bdev->bd_fsfreeze_mutex);
if (IS_ERR(s))
goto error_s;
if (s->s_root) {
if ((flags ^ s->s_flags) & MS_RDONLY) {
deactivate_locked_super(s);
error = -EBUSY;
goto error_bdev;
}
/*
* s_umount nests inside bd_mutex during
* __invalidate_device(). blkdev_put() acquires
* bd_mutex and can't be called under s_umount. Drop
* s_umount temporarily. This is safe as we're
* holding an active reference.
*/
up_write(&s->s_umount);
blkdev_put(bdev, mode);
down_write(&s->s_umount);
} else {
s->s_mode = mode;
snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
sb_set_blocksize(s, block_size(bdev));
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
goto error;
}
s->s_flags |= MS_ACTIVE;
bdev->bd_super = s;
}
return dget(s->s_root);
error_s:
error = PTR_ERR(s);
error_bdev:
blkdev_put(bdev, mode);
error:
return ERR_PTR(error);
}
EXPORT_SYMBOL(mount_bdev);
void kill_block_super(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
fmode_t mode = sb->s_mode;
bdev->bd_super = NULL;
generic_shutdown_super(sb);
sync_blockdev(bdev);
WARN_ON_ONCE(!(mode & FMODE_EXCL));
blkdev_put(bdev, mode | FMODE_EXCL);
}
EXPORT_SYMBOL(kill_block_super);
#endif
struct dentry *mount_nodev(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
int error;
struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= MS_ACTIVE;
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);
static int compare_single(struct super_block *s, void *p)
{
return 1;
}
struct dentry *mount_single(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *s;
int error;
s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
if (!s->s_root) {
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= MS_ACTIVE;
} else {
do_remount_sb(s, flags, data, 0);
}
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);
struct dentry *
mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
{
struct dentry *root;
struct super_block *sb;
char *secdata = NULL;
int error = -ENOMEM;
if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
secdata = alloc_secdata();
if (!secdata)
goto out;
error = security_sb_copy_data(data, secdata);
if (error)
goto out_free_secdata;
}
root = type->mount(type, flags, name, data);
if (IS_ERR(root)) {
error = PTR_ERR(root);
goto out_free_secdata;
}
sb = root->d_sb;
BUG_ON(!sb);
WARN_ON(!sb->s_bdi);
sb->s_flags |= MS_BORN;
error = security_sb_kern_mount(sb, flags, secdata);
if (error)
goto out_sb;
/*
* filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
* but s_maxbytes was an unsigned long long for many releases. Throw
* this warning for a little while to try and catch filesystems that
* violate this rule.
*/
WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
"negative value (%lld)\n", type->name, sb->s_maxbytes);
up_write(&sb->s_umount);
free_secdata(secdata);
return root;
out_sb:
dput(root);
deactivate_locked_super(sb);
out_free_secdata:
free_secdata(secdata);
out:
return ERR_PTR(error);
}
/*
* This is an internal function, please use sb_end_{write,pagefault,intwrite}
* instead.
*/
void __sb_end_write(struct super_block *sb, int level)
{
percpu_up_read(sb->s_writers.rw_sem + level-1);
}
EXPORT_SYMBOL(__sb_end_write);
/*
* This is an internal function, please use sb_start_{write,pagefault,intwrite}
* instead.
*/
int __sb_start_write(struct super_block *sb, int level, bool wait)
{
bool force_trylock = false;
int ret = 1;
#ifdef CONFIG_LOCKDEP
/*
* We want lockdep to tell us about possible deadlocks with freezing
* but it's it bit tricky to properly instrument it. Getting a freeze
* protection works as getting a read lock but there are subtle
* problems. XFS for example gets freeze protection on internal level
* twice in some cases, which is OK only because we already hold a
* freeze protection also on higher level. Due to these cases we have
* to use wait == F (trylock mode) which must not fail.
*/
if (wait) {
int i;
for (i = 0; i < level - 1; i++)
if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
force_trylock = true;
break;
}
}
#endif
if (wait && !force_trylock)
percpu_down_read(sb->s_writers.rw_sem + level-1);
else
ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
WARN_ON(force_trylock && !ret);
return ret;
}
EXPORT_SYMBOL(__sb_start_write);
/**
* sb_wait_write - wait until all writers to given file system finish
* @sb: the super for which we wait
* @level: type of writers we wait for (normal vs page fault)
*
* This function waits until there are no writers of given type to given file
* system.
*/
static void sb_wait_write(struct super_block *sb, int level)
{
percpu_down_write(sb->s_writers.rw_sem + level-1);
/*
* We are going to return to userspace and forget about this lock, the
* ownership goes to the caller of thaw_super() which does unlock.
*
* FIXME: we should do this before return from freeze_super() after we
* called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
* should re-acquire these locks before s_op->unfreeze_fs(sb). However
* this leads to lockdep false-positives, so currently we do the early
* release right after acquire.
*/
percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
}
static void sb_freeze_unlock(struct super_block *sb)
{
int level;
for (level = 0; level < SB_FREEZE_LEVELS; ++level)
percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
percpu_up_write(sb->s_writers.rw_sem + level);
}
/**
* freeze_super - lock the filesystem and force it into a consistent state
* @sb: the super to lock
*
* Syncs the super to make sure the filesystem is consistent and calls the fs's
* freeze_fs. Subsequent calls to this without first thawing the fs will return
* -EBUSY.
*
* During this function, sb->s_writers.frozen goes through these values:
*
* SB_UNFROZEN: File system is normal, all writes progress as usual.
*
* SB_FREEZE_WRITE: The file system is in the process of being frozen. New
* writes should be blocked, though page faults are still allowed. We wait for
* all writes to complete and then proceed to the next stage.
*
* SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
* but internal fs threads can still modify the filesystem (although they
* should not dirty new pages or inodes), writeback can run etc. After waiting
* for all running page faults we sync the filesystem which will clean all
* dirty pages and inodes (no new dirty pages or inodes can be created when
* sync is running).
*
* SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
* modification are blocked (e.g. XFS preallocation truncation on inode
* reclaim). This is usually implemented by blocking new transactions for
* filesystems that have them and need this additional guard. After all
* internal writers are finished we call ->freeze_fs() to finish filesystem
* freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
* mostly auxiliary for filesystems to verify they do not modify frozen fs.
*
* sb->s_writers.frozen is protected by sb->s_umount.
*/
int freeze_super(struct super_block *sb)
{
int ret;
atomic_inc(&sb->s_active);
down_write(&sb->s_umount);
if (sb->s_writers.frozen != SB_UNFROZEN) {
deactivate_locked_super(sb);
return -EBUSY;
}
if (!(sb->s_flags & MS_BORN)) {
up_write(&sb->s_umount);
return 0; /* sic - it's "nothing to do" */
}
if (sb->s_flags & MS_RDONLY) {
/* Nothing to do really... */
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
up_write(&sb->s_umount);
return 0;
}
sb->s_writers.frozen = SB_FREEZE_WRITE;
/* Release s_umount to preserve sb_start_write -> s_umount ordering */
up_write(&sb->s_umount);
sb_wait_write(sb, SB_FREEZE_WRITE);
down_write(&sb->s_umount);
/* Now we go and block page faults... */
sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
/* All writers are done so after syncing there won't be dirty data */
sync_filesystem(sb);
/* Now wait for internal filesystem counter */
sb->s_writers.frozen = SB_FREEZE_FS;
sb_wait_write(sb, SB_FREEZE_FS);
if (sb->s_op->freeze_fs) {
ret = sb->s_op->freeze_fs(sb);
if (ret) {
printk(KERN_ERR
"VFS:Filesystem freeze failed\n");
sb->s_writers.frozen = SB_UNFROZEN;
sb_freeze_unlock(sb);
wake_up(&sb->s_writers.wait_unfrozen);
deactivate_locked_super(sb);
return ret;
}
}
/*
* This is just for debugging purposes so that fs can warn if it
* sees write activity when frozen is set to SB_FREEZE_COMPLETE.
*/
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
up_write(&sb->s_umount);
return 0;
}
EXPORT_SYMBOL(freeze_super);
/**
* thaw_super -- unlock filesystem
* @sb: the super to thaw
*
* Unlocks the filesystem and marks it writeable again after freeze_super().
*/
int thaw_super(struct super_block *sb)
{
int error;
down_write(&sb->s_umount);
if (sb->s_writers.frozen == SB_UNFROZEN) {
up_write(&sb->s_umount);
return -EINVAL;
}
if (sb->s_flags & MS_RDONLY) {
sb->s_writers.frozen = SB_UNFROZEN;
goto out;
}
if (sb->s_op->unfreeze_fs) {
error = sb->s_op->unfreeze_fs(sb);
if (error) {
printk(KERN_ERR
"VFS:Filesystem thaw failed\n");
up_write(&sb->s_umount);
return error;
}
}
sb->s_writers.frozen = SB_UNFROZEN;
sb_freeze_unlock(sb);
out:
wake_up(&sb->s_writers.wait_unfrozen);
deactivate_locked_super(sb);
return 0;
}
EXPORT_SYMBOL(thaw_super);