2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/drivers/hwmon/tmp513.c
Wang Qing c073292b16 hwmon: (tmp513) fix spelling typo in comments
Modify the comment typo: "compliment" -> "complement".

Signed-off-by: Wang Qing <wangqing@vivo.com>
Link: https://lore.kernel.org/r/1601086116-32218-1-git-send-email-wangqing@vivo.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-10-04 08:40:10 -07:00

772 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Texas Instruments TMP512, TMP513 power monitor chips
*
* TMP513:
* Thermal/Power Management with Triple Remote and
* Local Temperature Sensor and Current Shunt Monitor
* Datasheet: https://www.ti.com/lit/gpn/tmp513
*
* TMP512:
* Thermal/Power Management with Dual Remote
* and Local Temperature Sensor and Current Shunt Monitor
* Datasheet: https://www.ti.com/lit/gpn/tmp512
*
* Copyright (C) 2019 Eric Tremblay <etremblay@distech-controls.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/util_macros.h>
// Common register definition
#define TMP51X_SHUNT_CONFIG 0x00
#define TMP51X_TEMP_CONFIG 0x01
#define TMP51X_STATUS 0x02
#define TMP51X_SMBUS_ALERT 0x03
#define TMP51X_SHUNT_CURRENT_RESULT 0x04
#define TMP51X_BUS_VOLTAGE_RESULT 0x05
#define TMP51X_POWER_RESULT 0x06
#define TMP51X_BUS_CURRENT_RESULT 0x07
#define TMP51X_LOCAL_TEMP_RESULT 0x08
#define TMP51X_REMOTE_TEMP_RESULT_1 0x09
#define TMP51X_REMOTE_TEMP_RESULT_2 0x0A
#define TMP51X_SHUNT_CURRENT_H_LIMIT 0x0C
#define TMP51X_SHUNT_CURRENT_L_LIMIT 0x0D
#define TMP51X_BUS_VOLTAGE_H_LIMIT 0x0E
#define TMP51X_BUS_VOLTAGE_L_LIMIT 0x0F
#define TMP51X_POWER_LIMIT 0x10
#define TMP51X_LOCAL_TEMP_LIMIT 0x11
#define TMP51X_REMOTE_TEMP_LIMIT_1 0x12
#define TMP51X_REMOTE_TEMP_LIMIT_2 0x13
#define TMP51X_SHUNT_CALIBRATION 0x15
#define TMP51X_N_FACTOR_AND_HYST_1 0x16
#define TMP51X_N_FACTOR_2 0x17
#define TMP51X_MAN_ID_REG 0xFE
#define TMP51X_DEVICE_ID_REG 0xFF
// TMP513 specific register definition
#define TMP513_REMOTE_TEMP_RESULT_3 0x0B
#define TMP513_REMOTE_TEMP_LIMIT_3 0x14
#define TMP513_N_FACTOR_3 0x18
// Common attrs, and NULL
#define TMP51X_MANUFACTURER_ID 0x55FF
#define TMP512_DEVICE_ID 0x22FF
#define TMP513_DEVICE_ID 0x23FF
// Default config
#define TMP51X_SHUNT_CONFIG_DEFAULT 0x399F
#define TMP51X_SHUNT_VALUE_DEFAULT 1000
#define TMP51X_VBUS_RANGE_DEFAULT TMP51X_VBUS_RANGE_32V
#define TMP51X_PGA_DEFAULT 8
#define TMP51X_MAX_REGISTER_ADDR 0xFF
#define TMP512_TEMP_CONFIG_DEFAULT 0xBF80
#define TMP513_TEMP_CONFIG_DEFAULT 0xFF80
// Mask and shift
#define CURRENT_SENSE_VOLTAGE_320_MASK 0x1800
#define CURRENT_SENSE_VOLTAGE_160_MASK 0x1000
#define CURRENT_SENSE_VOLTAGE_80_MASK 0x0800
#define CURRENT_SENSE_VOLTAGE_40_MASK 0
#define TMP51X_BUS_VOLTAGE_MASK 0x2000
#define TMP51X_NFACTOR_MASK 0xFF00
#define TMP51X_HYST_MASK 0x00FF
#define TMP51X_BUS_VOLTAGE_SHIFT 3
#define TMP51X_TEMP_SHIFT 3
// Alarms
#define TMP51X_SHUNT_CURRENT_H_LIMIT_POS 15
#define TMP51X_SHUNT_CURRENT_L_LIMIT_POS 14
#define TMP51X_BUS_VOLTAGE_H_LIMIT_POS 13
#define TMP51X_BUS_VOLTAGE_L_LIMIT_POS 12
#define TMP51X_POWER_LIMIT_POS 11
#define TMP51X_LOCAL_TEMP_LIMIT_POS 10
#define TMP51X_REMOTE_TEMP_LIMIT_1_POS 9
#define TMP51X_REMOTE_TEMP_LIMIT_2_POS 8
#define TMP513_REMOTE_TEMP_LIMIT_3_POS 7
#define TMP51X_VBUS_RANGE_32V 32000000
#define TMP51X_VBUS_RANGE_16V 16000000
// Max and Min value
#define MAX_BUS_VOLTAGE_32_LIMIT 32764
#define MAX_BUS_VOLTAGE_16_LIMIT 16382
// Max possible value is -256 to +256 but datasheet indicated -40 to 125.
#define MAX_TEMP_LIMIT 125000
#define MIN_TEMP_LIMIT -40000
#define MAX_TEMP_HYST 127500
static const u8 TMP51X_TEMP_INPUT[4] = {
TMP51X_LOCAL_TEMP_RESULT,
TMP51X_REMOTE_TEMP_RESULT_1,
TMP51X_REMOTE_TEMP_RESULT_2,
TMP513_REMOTE_TEMP_RESULT_3
};
static const u8 TMP51X_TEMP_CRIT[4] = {
TMP51X_LOCAL_TEMP_LIMIT,
TMP51X_REMOTE_TEMP_LIMIT_1,
TMP51X_REMOTE_TEMP_LIMIT_2,
TMP513_REMOTE_TEMP_LIMIT_3
};
static const u8 TMP51X_TEMP_CRIT_ALARM[4] = {
TMP51X_LOCAL_TEMP_LIMIT_POS,
TMP51X_REMOTE_TEMP_LIMIT_1_POS,
TMP51X_REMOTE_TEMP_LIMIT_2_POS,
TMP513_REMOTE_TEMP_LIMIT_3_POS
};
static const u8 TMP51X_TEMP_CRIT_HYST[4] = {
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_N_FACTOR_AND_HYST_1
};
static const u8 TMP51X_CURR_INPUT[2] = {
TMP51X_SHUNT_CURRENT_RESULT,
TMP51X_BUS_CURRENT_RESULT
};
static struct regmap_config tmp51x_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = TMP51X_MAX_REGISTER_ADDR,
};
enum tmp51x_ids {
tmp512, tmp513
};
struct tmp51x_data {
u16 shunt_config;
u16 pga_gain;
u32 vbus_range_uvolt;
u16 temp_config;
u32 nfactor[3];
u32 shunt_uohms;
u32 curr_lsb_ua;
u32 pwr_lsb_uw;
enum tmp51x_ids id;
struct regmap *regmap;
};
// Set the shift based on the gain 8=4, 4=3, 2=2, 1=1
static inline u8 tmp51x_get_pga_shift(struct tmp51x_data *data)
{
return 5 - ffs(data->pga_gain);
}
static int tmp51x_get_value(struct tmp51x_data *data, u8 reg, u8 pos,
unsigned int regval, long *val)
{
switch (reg) {
case TMP51X_STATUS:
*val = (regval >> pos) & 1;
break;
case TMP51X_SHUNT_CURRENT_RESULT:
case TMP51X_SHUNT_CURRENT_H_LIMIT:
case TMP51X_SHUNT_CURRENT_L_LIMIT:
/*
* The valus is read in voltage in the chip but reported as
* current to the user.
* 2's complement number shifted by one to four depending
* on the pga gain setting. 1lsb = 10uV
*/
*val = sign_extend32(regval, 17 - tmp51x_get_pga_shift(data));
*val = DIV_ROUND_CLOSEST(*val * 10000, data->shunt_uohms);
break;
case TMP51X_BUS_VOLTAGE_RESULT:
case TMP51X_BUS_VOLTAGE_H_LIMIT:
case TMP51X_BUS_VOLTAGE_L_LIMIT:
// 1lsb = 4mV
*val = (regval >> TMP51X_BUS_VOLTAGE_SHIFT) * 4;
break;
case TMP51X_POWER_RESULT:
case TMP51X_POWER_LIMIT:
// Power = (current * BusVoltage) / 5000
*val = regval * data->pwr_lsb_uw;
break;
case TMP51X_BUS_CURRENT_RESULT:
// Current = (ShuntVoltage * CalibrationRegister) / 4096
*val = sign_extend32(regval, 16) * data->curr_lsb_ua;
*val = DIV_ROUND_CLOSEST(*val, 1000);
break;
case TMP51X_LOCAL_TEMP_RESULT:
case TMP51X_REMOTE_TEMP_RESULT_1:
case TMP51X_REMOTE_TEMP_RESULT_2:
case TMP513_REMOTE_TEMP_RESULT_3:
case TMP51X_LOCAL_TEMP_LIMIT:
case TMP51X_REMOTE_TEMP_LIMIT_1:
case TMP51X_REMOTE_TEMP_LIMIT_2:
case TMP513_REMOTE_TEMP_LIMIT_3:
// 1lsb = 0.0625 degrees centigrade
*val = sign_extend32(regval, 16) >> TMP51X_TEMP_SHIFT;
*val = DIV_ROUND_CLOSEST(*val * 625, 10);
break;
case TMP51X_N_FACTOR_AND_HYST_1:
// 1lsb = 0.5 degrees centigrade
*val = (regval & TMP51X_HYST_MASK) * 500;
break;
default:
// Programmer goofed
WARN_ON_ONCE(1);
*val = 0;
return -EOPNOTSUPP;
}
return 0;
}
static int tmp51x_set_value(struct tmp51x_data *data, u8 reg, long val)
{
int regval, max_val;
u32 mask = 0;
switch (reg) {
case TMP51X_SHUNT_CURRENT_H_LIMIT:
case TMP51X_SHUNT_CURRENT_L_LIMIT:
/*
* The user enter current value and we convert it to
* voltage. 1lsb = 10uV
*/
val = DIV_ROUND_CLOSEST(val * data->shunt_uohms, 10000);
max_val = U16_MAX >> tmp51x_get_pga_shift(data);
regval = clamp_val(val, -max_val, max_val);
break;
case TMP51X_BUS_VOLTAGE_H_LIMIT:
case TMP51X_BUS_VOLTAGE_L_LIMIT:
// 1lsb = 4mV
max_val = (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) ?
MAX_BUS_VOLTAGE_32_LIMIT : MAX_BUS_VOLTAGE_16_LIMIT;
val = clamp_val(DIV_ROUND_CLOSEST(val, 4), 0, max_val);
regval = val << TMP51X_BUS_VOLTAGE_SHIFT;
break;
case TMP51X_POWER_LIMIT:
regval = clamp_val(DIV_ROUND_CLOSEST(val, data->pwr_lsb_uw), 0,
U16_MAX);
break;
case TMP51X_LOCAL_TEMP_LIMIT:
case TMP51X_REMOTE_TEMP_LIMIT_1:
case TMP51X_REMOTE_TEMP_LIMIT_2:
case TMP513_REMOTE_TEMP_LIMIT_3:
// 1lsb = 0.0625 degrees centigrade
val = clamp_val(val, MIN_TEMP_LIMIT, MAX_TEMP_LIMIT);
regval = DIV_ROUND_CLOSEST(val * 10, 625) << TMP51X_TEMP_SHIFT;
break;
case TMP51X_N_FACTOR_AND_HYST_1:
// 1lsb = 0.5 degrees centigrade
val = clamp_val(val, 0, MAX_TEMP_HYST);
regval = DIV_ROUND_CLOSEST(val, 500);
mask = TMP51X_HYST_MASK;
break;
default:
// Programmer goofed
WARN_ON_ONCE(1);
return -EOPNOTSUPP;
}
if (mask == 0)
return regmap_write(data->regmap, reg, regval);
else
return regmap_update_bits(data->regmap, reg, mask, regval);
}
static u8 tmp51x_get_reg(enum hwmon_sensor_types type, u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
return TMP51X_TEMP_INPUT[channel];
case hwmon_temp_crit_alarm:
return TMP51X_STATUS;
case hwmon_temp_crit:
return TMP51X_TEMP_CRIT[channel];
case hwmon_temp_crit_hyst:
return TMP51X_TEMP_CRIT_HYST[channel];
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
return TMP51X_BUS_VOLTAGE_RESULT;
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
return TMP51X_STATUS;
case hwmon_in_lcrit:
return TMP51X_BUS_VOLTAGE_L_LIMIT;
case hwmon_in_crit:
return TMP51X_BUS_VOLTAGE_H_LIMIT;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
return TMP51X_CURR_INPUT[channel];
case hwmon_curr_lcrit_alarm:
case hwmon_curr_crit_alarm:
return TMP51X_STATUS;
case hwmon_curr_lcrit:
return TMP51X_SHUNT_CURRENT_L_LIMIT;
case hwmon_curr_crit:
return TMP51X_SHUNT_CURRENT_H_LIMIT;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_input:
return TMP51X_POWER_RESULT;
case hwmon_power_crit_alarm:
return TMP51X_STATUS;
case hwmon_power_crit:
return TMP51X_POWER_LIMIT;
}
break;
default:
break;
}
return 0;
}
static u8 tmp51x_get_status_pos(enum hwmon_sensor_types type, u32 attr,
int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_crit_alarm:
return TMP51X_TEMP_CRIT_ALARM[channel];
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_lcrit_alarm:
return TMP51X_BUS_VOLTAGE_L_LIMIT_POS;
case hwmon_in_crit_alarm:
return TMP51X_BUS_VOLTAGE_H_LIMIT_POS;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_lcrit_alarm:
return TMP51X_SHUNT_CURRENT_L_LIMIT_POS;
case hwmon_curr_crit_alarm:
return TMP51X_SHUNT_CURRENT_H_LIMIT_POS;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_crit_alarm:
return TMP51X_POWER_LIMIT_POS;
}
break;
default:
break;
}
return 0;
}
static int tmp51x_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct tmp51x_data *data = dev_get_drvdata(dev);
int ret;
u32 regval;
u8 pos = 0, reg = 0;
reg = tmp51x_get_reg(type, attr, channel);
if (reg == 0)
return -EOPNOTSUPP;
if (reg == TMP51X_STATUS)
pos = tmp51x_get_status_pos(type, attr, channel);
ret = regmap_read(data->regmap, reg, &regval);
if (ret < 0)
return ret;
return tmp51x_get_value(data, reg, pos, regval, val);
}
static int tmp51x_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
u8 reg = 0;
reg = tmp51x_get_reg(type, attr, channel);
if (reg == 0)
return -EOPNOTSUPP;
return tmp51x_set_value(dev_get_drvdata(dev), reg, val);
}
static umode_t tmp51x_is_visible(const void *_data,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct tmp51x_data *data = _data;
switch (type) {
case hwmon_temp:
if (data->id == tmp512 && channel == 4)
return 0;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_crit_alarm:
return 0444;
case hwmon_temp_crit:
return 0644;
case hwmon_temp_crit_hyst:
if (channel == 0)
return 0644;
return 0444;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
return 0444;
case hwmon_in_lcrit:
case hwmon_in_crit:
return 0644;
}
break;
case hwmon_curr:
if (!data->shunt_uohms)
return 0;
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_lcrit_alarm:
case hwmon_curr_crit_alarm:
return 0444;
case hwmon_curr_lcrit:
case hwmon_curr_crit:
return 0644;
}
break;
case hwmon_power:
if (!data->shunt_uohms)
return 0;
switch (attr) {
case hwmon_power_input:
case hwmon_power_crit_alarm:
return 0444;
case hwmon_power_crit:
return 0644;
}
break;
default:
break;
}
return 0;
}
static const struct hwmon_channel_info *tmp51x_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_ALARM |
HWMON_T_CRIT_HYST),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LCRIT | HWMON_I_LCRIT_ALARM |
HWMON_I_CRIT | HWMON_I_CRIT_ALARM),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LCRIT | HWMON_C_LCRIT_ALARM |
HWMON_C_CRIT | HWMON_C_CRIT_ALARM,
HWMON_C_INPUT),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_CRIT | HWMON_P_CRIT_ALARM),
NULL
};
static const struct hwmon_ops tmp51x_hwmon_ops = {
.is_visible = tmp51x_is_visible,
.read = tmp51x_read,
.write = tmp51x_write,
};
static const struct hwmon_chip_info tmp51x_chip_info = {
.ops = &tmp51x_hwmon_ops,
.info = tmp51x_info,
};
/*
* Calibrate the tmp51x following the datasheet method
*/
static int tmp51x_calibrate(struct tmp51x_data *data)
{
int vshunt_max = data->pga_gain * 40;
u64 max_curr_ma;
u32 div;
/*
* If shunt_uohms is equal to 0, the calibration should be set to 0.
* The consequence will be that the current and power measurement engine
* of the sensor will not work. Temperature and voltage sensing will
* continue to work.
*/
if (data->shunt_uohms == 0)
return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION, 0);
max_curr_ma = DIV_ROUND_CLOSEST_ULL(vshunt_max * 1000 * 1000,
data->shunt_uohms);
/*
* Calculate the minimal bit resolution for the current and the power.
* Those values will be used during register interpretation.
*/
data->curr_lsb_ua = DIV_ROUND_CLOSEST_ULL(max_curr_ma * 1000, 32767);
data->pwr_lsb_uw = 20 * data->curr_lsb_ua;
div = DIV_ROUND_CLOSEST_ULL(data->curr_lsb_ua * data->shunt_uohms,
1000 * 1000);
return regmap_write(data->regmap, TMP51X_SHUNT_CALIBRATION,
DIV_ROUND_CLOSEST(40960, div));
}
/*
* Initialize the configuration and calibration registers.
*/
static int tmp51x_init(struct tmp51x_data *data)
{
unsigned int regval;
int ret = regmap_write(data->regmap, TMP51X_SHUNT_CONFIG,
data->shunt_config);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, TMP51X_TEMP_CONFIG, data->temp_config);
if (ret < 0)
return ret;
// nFactor configuration
ret = regmap_update_bits(data->regmap, TMP51X_N_FACTOR_AND_HYST_1,
TMP51X_NFACTOR_MASK, data->nfactor[0] << 8);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, TMP51X_N_FACTOR_2,
data->nfactor[1] << 8);
if (ret < 0)
return ret;
if (data->id == tmp513) {
ret = regmap_write(data->regmap, TMP513_N_FACTOR_3,
data->nfactor[2] << 8);
if (ret < 0)
return ret;
}
ret = tmp51x_calibrate(data);
if (ret < 0)
return ret;
// Read the status register before using as the datasheet propose
return regmap_read(data->regmap, TMP51X_STATUS, &regval);
}
static const struct i2c_device_id tmp51x_id[] = {
{ "tmp512", tmp512 },
{ "tmp513", tmp513 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tmp51x_id);
static const struct of_device_id tmp51x_of_match[] = {
{
.compatible = "ti,tmp512",
.data = (void *)tmp512
},
{
.compatible = "ti,tmp513",
.data = (void *)tmp513
},
{ },
};
MODULE_DEVICE_TABLE(of, tmp51x_of_match);
static int tmp51x_vbus_range_to_reg(struct device *dev,
struct tmp51x_data *data)
{
if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_32V) {
data->shunt_config |= TMP51X_BUS_VOLTAGE_MASK;
} else if (data->vbus_range_uvolt == TMP51X_VBUS_RANGE_16V) {
data->shunt_config &= ~TMP51X_BUS_VOLTAGE_MASK;
} else {
dev_err(dev, "ti,bus-range-microvolt is invalid: %u\n",
data->vbus_range_uvolt);
return -EINVAL;
}
return 0;
}
static int tmp51x_pga_gain_to_reg(struct device *dev, struct tmp51x_data *data)
{
if (data->pga_gain == 8) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_320_MASK;
} else if (data->pga_gain == 4) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_160_MASK;
} else if (data->pga_gain == 2) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_80_MASK;
} else if (data->pga_gain == 1) {
data->shunt_config |= CURRENT_SENSE_VOLTAGE_40_MASK;
} else {
dev_err(dev, "ti,pga-gain is invalid: %u\n", data->pga_gain);
return -EINVAL;
}
return 0;
}
static int tmp51x_read_properties(struct device *dev, struct tmp51x_data *data)
{
int ret;
u32 nfactor[3];
u32 val;
ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms", &val);
data->shunt_uohms = (ret >= 0) ? val : TMP51X_SHUNT_VALUE_DEFAULT;
ret = device_property_read_u32(dev, "ti,bus-range-microvolt", &val);
data->vbus_range_uvolt = (ret >= 0) ? val : TMP51X_VBUS_RANGE_DEFAULT;
ret = tmp51x_vbus_range_to_reg(dev, data);
if (ret < 0)
return ret;
ret = device_property_read_u32(dev, "ti,pga-gain", &val);
data->pga_gain = (ret >= 0) ? val : TMP51X_PGA_DEFAULT;
ret = tmp51x_pga_gain_to_reg(dev, data);
if (ret < 0)
return ret;
ret = device_property_read_u32_array(dev, "ti,nfactor", nfactor,
(data->id == tmp513) ? 3 : 2);
if (ret >= 0)
memcpy(data->nfactor, nfactor, (data->id == tmp513) ? 3 : 2);
// Check if shunt value is compatible with pga-gain
if (data->shunt_uohms > data->pga_gain * 40 * 1000 * 1000) {
dev_err(dev, "shunt-resistor: %u too big for pga_gain: %u\n",
data->shunt_uohms, data->pga_gain);
return -EINVAL;
}
return 0;
}
static void tmp51x_use_default(struct tmp51x_data *data)
{
data->vbus_range_uvolt = TMP51X_VBUS_RANGE_DEFAULT;
data->pga_gain = TMP51X_PGA_DEFAULT;
data->shunt_uohms = TMP51X_SHUNT_VALUE_DEFAULT;
}
static int tmp51x_configure(struct device *dev, struct tmp51x_data *data)
{
data->shunt_config = TMP51X_SHUNT_CONFIG_DEFAULT;
data->temp_config = (data->id == tmp513) ?
TMP513_TEMP_CONFIG_DEFAULT : TMP512_TEMP_CONFIG_DEFAULT;
if (dev->of_node)
return tmp51x_read_properties(dev, data);
tmp51x_use_default(data);
return 0;
}
static int tmp51x_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tmp51x_data *data;
struct device *hwmon_dev;
int ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
if (client->dev.of_node)
data->id = (enum tmp51x_ids)device_get_match_data(&client->dev);
else
data->id = i2c_match_id(tmp51x_id, client)->driver_data;
ret = tmp51x_configure(dev, data);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return ret;
}
data->regmap = devm_regmap_init_i2c(client, &tmp51x_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(dev, "failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
ret = tmp51x_init(data);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
data,
&tmp51x_chip_info,
NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
dev_dbg(dev, "power monitor %s\n", client->name);
return 0;
}
static struct i2c_driver tmp51x_driver = {
.driver = {
.name = "tmp51x",
.of_match_table = of_match_ptr(tmp51x_of_match),
},
.probe_new = tmp51x_probe,
.id_table = tmp51x_id,
};
module_i2c_driver(tmp51x_driver);
MODULE_AUTHOR("Eric Tremblay <etremblay@distechcontrols.com>");
MODULE_DESCRIPTION("tmp51x driver");
MODULE_LICENSE("GPL");