2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-14 08:34:02 +08:00
linux-next/drivers/hwmon/ltc2947-core.c
Nuno Sá 9f90fd652b hwmon: Add support for ltc2947
The ltc2947 is a high precision power and energy monitor with an
internal sense resistor supporting up to +/- 30A. Three internal no
Latency ADCs ensure accurate measurement of voltage and current, while
high-bandwidth analog multiplication of voltage and current provides
accurate power measurement in a wide range of applications. Internal or
external clocking options enable precise charge and energy measurements.

Signed-off-by: Nuno Sá <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/20191021154115.319073-1-nuno.sa@analog.com
[groeck: Removed unnecessary checks when reading temperature and energy;
	 PAGE{0,1} -> LTC2947_PAGE_{0,1}]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2019-11-06 14:37:19 -08:00

1184 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Analog Devices LTC2947 high precision power and energy monitor
*
* Copyright 2019 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include "ltc2947.h"
/* register's */
#define LTC2947_REG_PAGE_CTRL 0xFF
#define LTC2947_REG_CTRL 0xF0
#define LTC2947_REG_TBCTL 0xE9
#define LTC2947_CONT_MODE_MASK BIT(3)
#define LTC2947_CONT_MODE(x) FIELD_PREP(LTC2947_CONT_MODE_MASK, x)
#define LTC2947_PRE_MASK GENMASK(2, 0)
#define LTC2947_PRE(x) FIELD_PREP(LTC2947_PRE_MASK, x)
#define LTC2947_DIV_MASK GENMASK(7, 3)
#define LTC2947_DIV(x) FIELD_PREP(LTC2947_DIV_MASK, x)
#define LTC2947_SHUTDOWN_MASK BIT(0)
#define LTC2947_REG_ACCUM_POL 0xE1
#define LTC2947_ACCUM_POL_1_MASK GENMASK(1, 0)
#define LTC2947_ACCUM_POL_1(x) FIELD_PREP(LTC2947_ACCUM_POL_1_MASK, x)
#define LTC2947_ACCUM_POL_2_MASK GENMASK(3, 2)
#define LTC2947_ACCUM_POL_2(x) FIELD_PREP(LTC2947_ACCUM_POL_2_MASK, x)
#define LTC2947_REG_ACCUM_DEADBAND 0xE4
#define LTC2947_REG_GPIOSTATCTL 0x67
#define LTC2947_GPIO_EN_MASK BIT(0)
#define LTC2947_GPIO_EN(x) FIELD_PREP(LTC2947_GPIO_EN_MASK, x)
#define LTC2947_GPIO_FAN_EN_MASK BIT(6)
#define LTC2947_GPIO_FAN_EN(x) FIELD_PREP(LTC2947_GPIO_FAN_EN_MASK, x)
#define LTC2947_GPIO_FAN_POL_MASK BIT(7)
#define LTC2947_GPIO_FAN_POL(x) FIELD_PREP(LTC2947_GPIO_FAN_POL_MASK, x)
#define LTC2947_REG_GPIO_ACCUM 0xE3
/* 200Khz */
#define LTC2947_CLK_MIN 200000
/* 25Mhz */
#define LTC2947_CLK_MAX 25000000
#define LTC2947_PAGE0 0
#define LTC2947_PAGE1 1
/* Voltage registers */
#define LTC2947_REG_VOLTAGE 0xA0
#define LTC2947_REG_VOLTAGE_MAX 0x50
#define LTC2947_REG_VOLTAGE_MIN 0x52
#define LTC2947_REG_VOLTAGE_THRE_H 0x90
#define LTC2947_REG_VOLTAGE_THRE_L 0x92
#define LTC2947_REG_DVCC 0xA4
#define LTC2947_REG_DVCC_MAX 0x58
#define LTC2947_REG_DVCC_MIN 0x5A
#define LTC2947_REG_DVCC_THRE_H 0x98
#define LTC2947_REG_DVCC_THRE_L 0x9A
#define LTC2947_VOLTAGE_GEN_CHAN 0
#define LTC2947_VOLTAGE_DVCC_CHAN 1
/* in mV */
#define VOLTAGE_MAX 15500
#define VOLTAGE_MIN -300
#define VDVCC_MAX 15000
#define VDVCC_MIN 4750
/* Current registers */
#define LTC2947_REG_CURRENT 0x90
#define LTC2947_REG_CURRENT_MAX 0x40
#define LTC2947_REG_CURRENT_MIN 0x42
#define LTC2947_REG_CURRENT_THRE_H 0x80
#define LTC2947_REG_CURRENT_THRE_L 0x82
/* in mA */
#define CURRENT_MAX 30000
#define CURRENT_MIN -30000
/* Power registers */
#define LTC2947_REG_POWER 0x93
#define LTC2947_REG_POWER_MAX 0x44
#define LTC2947_REG_POWER_MIN 0x46
#define LTC2947_REG_POWER_THRE_H 0x84
#define LTC2947_REG_POWER_THRE_L 0x86
/* in uW */
#define POWER_MAX 450000000
#define POWER_MIN -450000000
/* Temperature registers */
#define LTC2947_REG_TEMP 0xA2
#define LTC2947_REG_TEMP_MAX 0x54
#define LTC2947_REG_TEMP_MIN 0x56
#define LTC2947_REG_TEMP_THRE_H 0x94
#define LTC2947_REG_TEMP_THRE_L 0x96
#define LTC2947_REG_TEMP_FAN_THRE_H 0x9C
#define LTC2947_REG_TEMP_FAN_THRE_L 0x9E
#define LTC2947_TEMP_FAN_CHAN 1
/* in millidegress Celsius */
#define TEMP_MAX 85000
#define TEMP_MIN -40000
/* Energy registers */
#define LTC2947_REG_ENERGY1 0x06
#define LTC2947_REG_ENERGY2 0x16
/* Status/Alarm/Overflow registers */
#define LTC2947_REG_STATUS 0x80
#define LTC2947_REG_STATVT 0x81
#define LTC2947_REG_STATIP 0x82
#define LTC2947_REG_STATVDVCC 0x87
#define LTC2947_ALERTS_SIZE (LTC2947_REG_STATVDVCC - LTC2947_REG_STATUS)
#define LTC2947_MAX_VOLTAGE_MASK BIT(0)
#define LTC2947_MIN_VOLTAGE_MASK BIT(1)
#define LTC2947_MAX_CURRENT_MASK BIT(0)
#define LTC2947_MIN_CURRENT_MASK BIT(1)
#define LTC2947_MAX_POWER_MASK BIT(2)
#define LTC2947_MIN_POWER_MASK BIT(3)
#define LTC2947_MAX_TEMP_MASK BIT(2)
#define LTC2947_MIN_TEMP_MASK BIT(3)
#define LTC2947_MAX_TEMP_FAN_MASK BIT(4)
#define LTC2947_MIN_TEMP_FAN_MASK BIT(5)
struct ltc2947_data {
struct regmap *map;
struct device *dev;
/*
* The mutex is needed because the device has 2 memory pages. When
* reading/writing the correct page needs to be set so that, the
* complete sequence select_page->read/write needs to be protected.
*/
struct mutex lock;
u32 lsb_energy;
bool gpio_out;
};
static int __ltc2947_val_read16(const struct ltc2947_data *st, const u8 reg,
u64 *val)
{
__be16 __val = 0;
int ret;
ret = regmap_bulk_read(st->map, reg, &__val, 2);
if (ret)
return ret;
*val = be16_to_cpu(__val);
return 0;
}
static int __ltc2947_val_read24(const struct ltc2947_data *st, const u8 reg,
u64 *val)
{
__be32 __val = 0;
int ret;
ret = regmap_bulk_read(st->map, reg, &__val, 3);
if (ret)
return ret;
*val = be32_to_cpu(__val) >> 8;
return 0;
}
static int __ltc2947_val_read64(const struct ltc2947_data *st, const u8 reg,
u64 *val)
{
__be64 __val = 0;
int ret;
ret = regmap_bulk_read(st->map, reg, &__val, 6);
if (ret)
return ret;
*val = be64_to_cpu(__val) >> 16;
return 0;
}
static int ltc2947_val_read(struct ltc2947_data *st, const u8 reg,
const u8 page, const size_t size, s64 *val)
{
int ret;
u64 __val = 0;
mutex_lock(&st->lock);
ret = regmap_write(st->map, LTC2947_REG_PAGE_CTRL, page);
if (ret) {
mutex_unlock(&st->lock);
return ret;
}
dev_dbg(st->dev, "Read val, reg:%02X, p:%d sz:%zu\n", reg, page,
size);
switch (size) {
case 2:
ret = __ltc2947_val_read16(st, reg, &__val);
break;
case 3:
ret = __ltc2947_val_read24(st, reg, &__val);
break;
case 6:
ret = __ltc2947_val_read64(st, reg, &__val);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&st->lock);
if (ret)
return ret;
*val = sign_extend64(__val, (8 * size) - 1);
dev_dbg(st->dev, "Got s:%lld, u:%016llX\n", *val, __val);
return 0;
}
static int __ltc2947_val_write64(const struct ltc2947_data *st, const u8 reg,
const u64 val)
{
__be64 __val;
__val = cpu_to_be64(val << 16);
return regmap_bulk_write(st->map, reg, &__val, 6);
}
static int __ltc2947_val_write16(const struct ltc2947_data *st, const u8 reg,
const u16 val)
{
__be16 __val;
__val = cpu_to_be16(val);
return regmap_bulk_write(st->map, reg, &__val, 2);
}
static int ltc2947_val_write(struct ltc2947_data *st, const u8 reg,
const u8 page, const size_t size, const u64 val)
{
int ret;
mutex_lock(&st->lock);
/* set device on correct page */
ret = regmap_write(st->map, LTC2947_REG_PAGE_CTRL, page);
if (ret) {
mutex_unlock(&st->lock);
return ret;
}
dev_dbg(st->dev, "Write val, r:%02X, p:%d, sz:%zu, val:%016llX\n",
reg, page, size, val);
switch (size) {
case 2:
ret = __ltc2947_val_write16(st, reg, val);
break;
case 6:
ret = __ltc2947_val_write64(st, reg, val);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&st->lock);
return ret;
}
static int ltc2947_reset_history(struct ltc2947_data *st, const u8 reg_h,
const u8 reg_l)
{
int ret;
/*
* let's reset the tracking register's. Tracking register's have all
* 2 bytes size
*/
ret = ltc2947_val_write(st, reg_h, LTC2947_PAGE0, 2, 0x8000U);
if (ret)
return ret;
return ltc2947_val_write(st, reg_l, LTC2947_PAGE0, 2, 0x7FFFU);
}
static int ltc2947_alarm_read(struct ltc2947_data *st, const u8 reg,
const u32 mask, long *val)
{
u8 offset = reg - LTC2947_REG_STATUS;
/* +1 to include status reg */
char alarms[LTC2947_ALERTS_SIZE + 1];
int ret = 0;
memset(alarms, 0, sizeof(alarms));
mutex_lock(&st->lock);
ret = regmap_write(st->map, LTC2947_REG_PAGE_CTRL, LTC2947_PAGE0);
if (ret)
goto unlock;
dev_dbg(st->dev, "Read alarm, reg:%02X, mask:%02X\n", reg, mask);
/*
* As stated in the datasheet, when Threshold and Overflow registers
* are used, the status and all alert registers must be read in one
* multi-byte transaction.
*/
ret = regmap_bulk_read(st->map, LTC2947_REG_STATUS, alarms,
sizeof(alarms));
if (ret)
goto unlock;
/* get the alarm */
*val = !!(alarms[offset] & mask);
unlock:
mutex_unlock(&st->lock);
return ret;
}
static ssize_t ltc2947_show_value(struct device *dev,
struct device_attribute *da, char *buf)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int ret;
s64 val = 0;
ret = ltc2947_val_read(st, attr->index, LTC2947_PAGE0, 6, &val);
if (ret)
return ret;
/* value in microJoule. st->lsb_energy was multiplied by 10E9 */
val = div_s64(val * st->lsb_energy, 1000);
return sprintf(buf, "%lld\n", val);
}
static int ltc2947_read_temp(struct device *dev, const u32 attr, long *val,
const int channel)
{
int ret;
struct ltc2947_data *st = dev_get_drvdata(dev);
s64 __val = 0;
switch (attr) {
case hwmon_temp_input:
ret = ltc2947_val_read(st, LTC2947_REG_TEMP, LTC2947_PAGE0,
2, &__val);
break;
case hwmon_temp_highest:
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_MAX, LTC2947_PAGE0,
2, &__val);
break;
case hwmon_temp_lowest:
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_MIN, LTC2947_PAGE0,
2, &__val);
break;
case hwmon_temp_max_alarm:
if (channel == LTC2947_TEMP_FAN_CHAN)
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MAX_TEMP_FAN_MASK,
val);
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MAX_TEMP_MASK, val);
case hwmon_temp_min_alarm:
if (channel == LTC2947_TEMP_FAN_CHAN)
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MIN_TEMP_FAN_MASK,
val);
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MIN_TEMP_MASK, val);
case hwmon_temp_max:
if (channel == LTC2947_TEMP_FAN_CHAN)
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_FAN_THRE_H,
LTC2947_PAGE1, 2, &__val);
else
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_THRE_H,
LTC2947_PAGE1, 2, &__val);
break;
case hwmon_temp_min:
if (channel == LTC2947_TEMP_FAN_CHAN)
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_FAN_THRE_L,
LTC2947_PAGE1, 2, &__val);
else
ret = ltc2947_val_read(st, LTC2947_REG_TEMP_THRE_L,
LTC2947_PAGE1, 2, &__val);
break;
default:
return -ENOTSUPP;
}
if (ret)
return ret;
/* in milidegrees celcius, temp is given by: */
*val = (__val * 204) + 550;
return 0;
}
static int ltc2947_read_power(struct device *dev, const u32 attr, long *val)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
int ret;
u32 lsb = 200000; /* in uW */
s64 __val = 0;
switch (attr) {
case hwmon_power_input:
ret = ltc2947_val_read(st, LTC2947_REG_POWER, LTC2947_PAGE0,
3, &__val);
lsb = 50000;
break;
case hwmon_power_input_highest:
ret = ltc2947_val_read(st, LTC2947_REG_POWER_MAX, LTC2947_PAGE0,
2, &__val);
break;
case hwmon_power_input_lowest:
ret = ltc2947_val_read(st, LTC2947_REG_POWER_MIN, LTC2947_PAGE0,
2, &__val);
break;
case hwmon_power_max_alarm:
return ltc2947_alarm_read(st, LTC2947_REG_STATIP,
LTC2947_MAX_POWER_MASK, val);
case hwmon_power_min_alarm:
return ltc2947_alarm_read(st, LTC2947_REG_STATIP,
LTC2947_MIN_POWER_MASK, val);
case hwmon_power_max:
ret = ltc2947_val_read(st, LTC2947_REG_POWER_THRE_H,
LTC2947_PAGE1, 2, &__val);
break;
case hwmon_power_min:
ret = ltc2947_val_read(st, LTC2947_REG_POWER_THRE_L,
LTC2947_PAGE1, 2, &__val);
break;
default:
return -ENOTSUPP;
}
if (ret)
return ret;
*val = __val * lsb;
return 0;
}
static int ltc2947_read_curr(struct device *dev, const u32 attr, long *val)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
int ret;
u8 lsb = 12; /* in mA */
s64 __val = 0;
switch (attr) {
case hwmon_curr_input:
ret = ltc2947_val_read(st, LTC2947_REG_CURRENT,
LTC2947_PAGE0, 3, &__val);
lsb = 3;
break;
case hwmon_curr_highest:
ret = ltc2947_val_read(st, LTC2947_REG_CURRENT_MAX,
LTC2947_PAGE0, 2, &__val);
break;
case hwmon_curr_lowest:
ret = ltc2947_val_read(st, LTC2947_REG_CURRENT_MIN,
LTC2947_PAGE0, 2, &__val);
break;
case hwmon_curr_max_alarm:
return ltc2947_alarm_read(st, LTC2947_REG_STATIP,
LTC2947_MAX_CURRENT_MASK, val);
case hwmon_curr_min_alarm:
return ltc2947_alarm_read(st, LTC2947_REG_STATIP,
LTC2947_MIN_CURRENT_MASK, val);
case hwmon_curr_max:
ret = ltc2947_val_read(st, LTC2947_REG_CURRENT_THRE_H,
LTC2947_PAGE1, 2, &__val);
break;
case hwmon_curr_min:
ret = ltc2947_val_read(st, LTC2947_REG_CURRENT_THRE_L,
LTC2947_PAGE1, 2, &__val);
break;
default:
return -ENOTSUPP;
}
if (ret)
return ret;
*val = __val * lsb;
return 0;
}
static int ltc2947_read_in(struct device *dev, const u32 attr, long *val,
const int channel)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
int ret;
u8 lsb = 2; /* in mV */
s64 __val = 0;
if (channel < 0 || channel > LTC2947_VOLTAGE_DVCC_CHAN) {
dev_err(st->dev, "Invalid chan%d for voltage", channel);
return -EINVAL;
}
switch (attr) {
case hwmon_in_input:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
ret = ltc2947_val_read(st, LTC2947_REG_DVCC,
LTC2947_PAGE0, 2, &__val);
lsb = 145;
} else {
ret = ltc2947_val_read(st, LTC2947_REG_VOLTAGE,
LTC2947_PAGE0, 2, &__val);
}
break;
case hwmon_in_highest:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
ret = ltc2947_val_read(st, LTC2947_REG_DVCC_MAX,
LTC2947_PAGE0, 2, &__val);
lsb = 145;
} else {
ret = ltc2947_val_read(st, LTC2947_REG_VOLTAGE_MAX,
LTC2947_PAGE0, 2, &__val);
}
break;
case hwmon_in_lowest:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
ret = ltc2947_val_read(st, LTC2947_REG_DVCC_MIN,
LTC2947_PAGE0, 2, &__val);
lsb = 145;
} else {
ret = ltc2947_val_read(st, LTC2947_REG_VOLTAGE_MIN,
LTC2947_PAGE0, 2, &__val);
}
break;
case hwmon_in_max_alarm:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN)
return ltc2947_alarm_read(st, LTC2947_REG_STATVDVCC,
LTC2947_MAX_VOLTAGE_MASK,
val);
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MAX_VOLTAGE_MASK, val);
case hwmon_in_min_alarm:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN)
return ltc2947_alarm_read(st, LTC2947_REG_STATVDVCC,
LTC2947_MIN_VOLTAGE_MASK,
val);
return ltc2947_alarm_read(st, LTC2947_REG_STATVT,
LTC2947_MIN_VOLTAGE_MASK, val);
case hwmon_in_max:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
ret = ltc2947_val_read(st, LTC2947_REG_DVCC_THRE_H,
LTC2947_PAGE1, 2, &__val);
lsb = 145;
} else {
ret = ltc2947_val_read(st, LTC2947_REG_VOLTAGE_THRE_H,
LTC2947_PAGE1, 2, &__val);
}
break;
case hwmon_in_min:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
ret = ltc2947_val_read(st, LTC2947_REG_DVCC_THRE_L,
LTC2947_PAGE1, 2, &__val);
lsb = 145;
} else {
ret = ltc2947_val_read(st, LTC2947_REG_VOLTAGE_THRE_L,
LTC2947_PAGE1, 2, &__val);
}
break;
default:
return -ENOTSUPP;
}
if (ret)
return ret;
*val = __val * lsb;
return 0;
}
static int ltc2947_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_in:
return ltc2947_read_in(dev, attr, val, channel);
case hwmon_curr:
return ltc2947_read_curr(dev, attr, val);
case hwmon_power:
return ltc2947_read_power(dev, attr, val);
case hwmon_temp:
return ltc2947_read_temp(dev, attr, val, channel);
default:
return -ENOTSUPP;
}
}
static int ltc2947_write_temp(struct device *dev, const u32 attr,
long val, const int channel)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
if (channel < 0 || channel > LTC2947_TEMP_FAN_CHAN) {
dev_err(st->dev, "Invalid chan%d for temperature", channel);
return -EINVAL;
}
switch (attr) {
case hwmon_temp_reset_history:
if (val != 1)
return -EINVAL;
return ltc2947_reset_history(st, LTC2947_REG_TEMP_MAX,
LTC2947_REG_TEMP_MIN);
case hwmon_temp_max:
val = clamp_val(val, TEMP_MIN, TEMP_MAX);
if (channel == LTC2947_TEMP_FAN_CHAN) {
if (!st->gpio_out)
return -ENOTSUPP;
return ltc2947_val_write(st,
LTC2947_REG_TEMP_FAN_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val - 550, 204));
}
return ltc2947_val_write(st, LTC2947_REG_TEMP_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val - 550, 204));
case hwmon_temp_min:
val = clamp_val(val, TEMP_MIN, TEMP_MAX);
if (channel == LTC2947_TEMP_FAN_CHAN) {
if (!st->gpio_out)
return -ENOTSUPP;
return ltc2947_val_write(st,
LTC2947_REG_TEMP_FAN_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val - 550, 204));
}
return ltc2947_val_write(st, LTC2947_REG_TEMP_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val - 550, 204));
default:
return -ENOTSUPP;
}
}
static int ltc2947_write_power(struct device *dev, const u32 attr,
long val)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
switch (attr) {
case hwmon_power_reset_history:
if (val != 1)
return -EINVAL;
return ltc2947_reset_history(st, LTC2947_REG_POWER_MAX,
LTC2947_REG_POWER_MIN);
case hwmon_power_max:
val = clamp_val(val, POWER_MIN, POWER_MAX);
return ltc2947_val_write(st, LTC2947_REG_POWER_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 200000));
case hwmon_power_min:
val = clamp_val(val, POWER_MIN, POWER_MAX);
return ltc2947_val_write(st, LTC2947_REG_POWER_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 200000));
default:
return -ENOTSUPP;
}
}
static int ltc2947_write_curr(struct device *dev, const u32 attr,
long val)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
switch (attr) {
case hwmon_curr_reset_history:
if (val != 1)
return -EINVAL;
return ltc2947_reset_history(st, LTC2947_REG_CURRENT_MAX,
LTC2947_REG_CURRENT_MIN);
case hwmon_curr_max:
val = clamp_val(val, CURRENT_MIN, CURRENT_MAX);
return ltc2947_val_write(st, LTC2947_REG_CURRENT_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 12));
case hwmon_curr_min:
val = clamp_val(val, CURRENT_MIN, CURRENT_MAX);
return ltc2947_val_write(st, LTC2947_REG_CURRENT_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 12));
default:
return -ENOTSUPP;
}
}
static int ltc2947_write_in(struct device *dev, const u32 attr, long val,
const int channel)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
if (channel > LTC2947_VOLTAGE_DVCC_CHAN) {
dev_err(st->dev, "Invalid chan%d for voltage", channel);
return -EINVAL;
}
switch (attr) {
case hwmon_in_reset_history:
if (val != 1)
return -EINVAL;
if (channel == LTC2947_VOLTAGE_DVCC_CHAN)
return ltc2947_reset_history(st, LTC2947_REG_DVCC_MAX,
LTC2947_REG_DVCC_MIN);
return ltc2947_reset_history(st, LTC2947_REG_VOLTAGE_MAX,
LTC2947_REG_VOLTAGE_MIN);
case hwmon_in_max:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
val = clamp_val(val, VDVCC_MIN, VDVCC_MAX);
return ltc2947_val_write(st, LTC2947_REG_DVCC_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 145));
}
val = clamp_val(val, VOLTAGE_MIN, VOLTAGE_MAX);
return ltc2947_val_write(st, LTC2947_REG_VOLTAGE_THRE_H,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 2));
case hwmon_in_min:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN) {
val = clamp_val(val, VDVCC_MIN, VDVCC_MAX);
return ltc2947_val_write(st, LTC2947_REG_DVCC_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 145));
}
val = clamp_val(val, VOLTAGE_MIN, VOLTAGE_MAX);
return ltc2947_val_write(st, LTC2947_REG_VOLTAGE_THRE_L,
LTC2947_PAGE1, 2,
DIV_ROUND_CLOSEST(val, 2));
default:
return -ENOTSUPP;
}
}
static int ltc2947_write(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_in:
return ltc2947_write_in(dev, attr, val, channel);
case hwmon_curr:
return ltc2947_write_curr(dev, attr, val);
case hwmon_power:
return ltc2947_write_power(dev, attr, val);
case hwmon_temp:
return ltc2947_write_temp(dev, attr, val, channel);
default:
return -ENOTSUPP;
}
}
static int ltc2947_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_in:
if (channel == LTC2947_VOLTAGE_DVCC_CHAN)
*str = "DVCC";
else
*str = "VP-VM";
return 0;
case hwmon_curr:
*str = "IP-IM";
return 0;
case hwmon_temp:
if (channel == LTC2947_TEMP_FAN_CHAN)
*str = "TEMPFAN";
else
*str = "Ambient";
return 0;
case hwmon_power:
*str = "Power";
return 0;
default:
return -ENOTSUPP;
}
}
static int ltc2947_in_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_in_input:
case hwmon_in_highest:
case hwmon_in_lowest:
case hwmon_in_max_alarm:
case hwmon_in_min_alarm:
case hwmon_in_label:
return 0444;
case hwmon_in_reset_history:
return 0200;
case hwmon_in_max:
case hwmon_in_min:
return 0644;
default:
return 0;
}
}
static int ltc2947_curr_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_highest:
case hwmon_curr_lowest:
case hwmon_curr_max_alarm:
case hwmon_curr_min_alarm:
case hwmon_curr_label:
return 0444;
case hwmon_curr_reset_history:
return 0200;
case hwmon_curr_max:
case hwmon_curr_min:
return 0644;
default:
return 0;
}
}
static int ltc2947_power_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_power_input:
case hwmon_power_input_highest:
case hwmon_power_input_lowest:
case hwmon_power_label:
case hwmon_power_max_alarm:
case hwmon_power_min_alarm:
return 0444;
case hwmon_power_reset_history:
return 0200;
case hwmon_power_max:
case hwmon_power_min:
return 0644;
default:
return 0;
}
}
static int ltc2947_temp_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_highest:
case hwmon_temp_lowest:
case hwmon_temp_max_alarm:
case hwmon_temp_min_alarm:
case hwmon_temp_label:
return 0444;
case hwmon_temp_reset_history:
return 0200;
case hwmon_temp_max:
case hwmon_temp_min:
return 0644;
default:
return 0;
}
}
static umode_t ltc2947_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
return ltc2947_in_is_visible(attr);
case hwmon_curr:
return ltc2947_curr_is_visible(attr);
case hwmon_power:
return ltc2947_power_is_visible(attr);
case hwmon_temp:
return ltc2947_temp_is_visible(attr);
default:
return 0;
}
}
static const struct hwmon_channel_info *ltc2947_info[] = {
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
HWMON_I_MAX | HWMON_I_MIN | HWMON_I_RESET_HISTORY |
HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM |
HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
HWMON_I_MAX | HWMON_I_MIN | HWMON_I_RESET_HISTORY |
HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM |
HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST |
HWMON_C_MAX | HWMON_C_MIN | HWMON_C_RESET_HISTORY |
HWMON_C_MIN_ALARM | HWMON_C_MAX_ALARM |
HWMON_C_LABEL),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_INPUT_LOWEST |
HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN |
HWMON_P_RESET_HISTORY | HWMON_P_MAX_ALARM |
HWMON_P_MIN_ALARM | HWMON_P_LABEL),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_LOWEST | HWMON_T_HIGHEST |
HWMON_T_MAX | HWMON_T_MIN | HWMON_T_RESET_HISTORY |
HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
HWMON_T_LABEL,
HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | HWMON_T_MAX |
HWMON_T_MIN | HWMON_T_LABEL),
NULL
};
static const struct hwmon_ops ltc2947_hwmon_ops = {
.is_visible = ltc2947_is_visible,
.read = ltc2947_read,
.write = ltc2947_write,
.read_string = ltc2947_read_labels,
};
static const struct hwmon_chip_info ltc2947_chip_info = {
.ops = &ltc2947_hwmon_ops,
.info = ltc2947_info,
};
/* energy attributes are 6bytes wide so we need u64 */
static SENSOR_DEVICE_ATTR(energy1_input, 0444, ltc2947_show_value, NULL,
LTC2947_REG_ENERGY1);
static SENSOR_DEVICE_ATTR(energy2_input, 0444, ltc2947_show_value, NULL,
LTC2947_REG_ENERGY2);
static struct attribute *ltc2947_attrs[] = {
&sensor_dev_attr_energy1_input.dev_attr.attr,
&sensor_dev_attr_energy2_input.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(ltc2947);
static void ltc2947_clk_disable(void *data)
{
struct clk *extclk = data;
clk_disable_unprepare(extclk);
}
static int ltc2947_setup(struct ltc2947_data *st)
{
int ret;
struct clk *extclk;
u32 dummy, deadband, pol;
u32 accum[2];
/* clear status register by reading it */
ret = regmap_read(st->map, LTC2947_REG_STATUS, &dummy);
if (ret)
return ret;
/*
* Set max/min for power here since the default values x scale
* would overflow on 32bit arch
*/
ret = ltc2947_val_write(st, LTC2947_REG_POWER_THRE_H, LTC2947_PAGE1, 2,
POWER_MAX / 200000);
if (ret)
return ret;
ret = ltc2947_val_write(st, LTC2947_REG_POWER_THRE_L, LTC2947_PAGE1, 2,
POWER_MIN / 200000);
if (ret)
return ret;
/* check external clock presence */
extclk = devm_clk_get(st->dev, NULL);
if (!IS_ERR(extclk)) {
unsigned long rate_hz;
u8 pre = 0, div, tbctl;
u64 aux;
/* let's calculate and set the right valus in TBCTL */
rate_hz = clk_get_rate(extclk);
if (rate_hz < LTC2947_CLK_MIN || rate_hz > LTC2947_CLK_MAX) {
dev_err(st->dev, "Invalid rate:%lu for external clock",
rate_hz);
return -EINVAL;
}
ret = clk_prepare_enable(extclk);
if (ret)
return ret;
ret = devm_add_action_or_reset(st->dev, ltc2947_clk_disable,
extclk);
if (ret)
return ret;
/* as in table 1 of the datasheet */
if (rate_hz >= LTC2947_CLK_MIN && rate_hz <= 1000000)
pre = 0;
else if (rate_hz > 1000000 && rate_hz <= 2000000)
pre = 1;
else if (rate_hz > 2000000 && rate_hz <= 4000000)
pre = 2;
else if (rate_hz > 4000000 && rate_hz <= 8000000)
pre = 3;
else if (rate_hz > 8000000 && rate_hz <= 16000000)
pre = 4;
else if (rate_hz > 16000000 && rate_hz <= LTC2947_CLK_MAX)
pre = 5;
/*
* Div is given by:
* floor(fref / (2^PRE * 32768))
*/
div = rate_hz / ((1 << pre) * 32768);
tbctl = LTC2947_PRE(pre) | LTC2947_DIV(div);
ret = regmap_write(st->map, LTC2947_REG_TBCTL, tbctl);
if (ret)
return ret;
/*
* The energy lsb is given by (in W*s):
* 06416 * (1/fref) * 2^PRE * (DIV + 1)
* The value is multiplied by 10E9
*/
aux = (div + 1) * ((1 << pre) * 641600000ULL);
st->lsb_energy = DIV_ROUND_CLOSEST_ULL(aux, rate_hz);
} else {
/* 19.89E-6 * 10E9 */
st->lsb_energy = 19890;
}
ret = of_property_read_u32_array(st->dev->of_node,
"adi,accumulator-ctl-pol", accum,
ARRAY_SIZE(accum));
if (!ret) {
u32 accum_reg = LTC2947_ACCUM_POL_1(accum[0]) |
LTC2947_ACCUM_POL_2(accum[1]);
ret = regmap_write(st->map, LTC2947_REG_ACCUM_POL, accum_reg);
if (ret)
return ret;
}
ret = of_property_read_u32(st->dev->of_node,
"adi,accumulation-deadband-microamp",
&deadband);
if (!ret) {
/* the LSB is the same as the current, so 3mA */
ret = regmap_write(st->map, LTC2947_REG_ACCUM_DEADBAND,
deadband / (1000 * 3));
if (ret)
return ret;
}
/* check gpio cfg */
ret = of_property_read_u32(st->dev->of_node, "adi,gpio-out-pol", &pol);
if (!ret) {
/* setup GPIO as output */
u32 gpio_ctl = LTC2947_GPIO_EN(1) | LTC2947_GPIO_FAN_EN(1) |
LTC2947_GPIO_FAN_POL(pol);
st->gpio_out = true;
ret = regmap_write(st->map, LTC2947_REG_GPIOSTATCTL, gpio_ctl);
if (ret)
return ret;
}
ret = of_property_read_u32_array(st->dev->of_node, "adi,gpio-in-accum",
accum, ARRAY_SIZE(accum));
if (!ret) {
/*
* Setup the accum options. The gpioctl is already defined as
* input by default.
*/
u32 accum_val = LTC2947_ACCUM_POL_1(accum[0]) |
LTC2947_ACCUM_POL_2(accum[1]);
if (st->gpio_out) {
dev_err(st->dev,
"Cannot have input gpio config if already configured as output");
return -EINVAL;
}
ret = regmap_write(st->map, LTC2947_REG_GPIO_ACCUM, accum_val);
if (ret)
return ret;
}
/* set continuos mode */
return regmap_update_bits(st->map, LTC2947_REG_CTRL,
LTC2947_CONT_MODE_MASK, LTC2947_CONT_MODE(1));
}
int ltc2947_core_probe(struct regmap *map, const char *name)
{
struct ltc2947_data *st;
struct device *dev = regmap_get_device(map);
struct device *hwmon;
int ret;
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->map = map;
st->dev = dev;
dev_set_drvdata(dev, st);
mutex_init(&st->lock);
ret = ltc2947_setup(st);
if (ret)
return ret;
hwmon = devm_hwmon_device_register_with_info(dev, name, st,
&ltc2947_chip_info,
ltc2947_groups);
return PTR_ERR_OR_ZERO(hwmon);
}
EXPORT_SYMBOL_GPL(ltc2947_core_probe);
static int __maybe_unused ltc2947_resume(struct device *dev)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
u32 ctrl = 0;
int ret;
/* dummy read to wake the device */
ret = regmap_read(st->map, LTC2947_REG_CTRL, &ctrl);
if (ret)
return ret;
/*
* Wait for the device. It takes 100ms to wake up so, 10ms extra
* should be enough.
*/
msleep(110);
ret = regmap_read(st->map, LTC2947_REG_CTRL, &ctrl);
if (ret)
return ret;
/* ctrl should be 0 */
if (ctrl != 0) {
dev_err(st->dev, "Device failed to wake up, ctl:%02X\n", ctrl);
return -ETIMEDOUT;
}
/* set continuous mode */
return regmap_update_bits(st->map, LTC2947_REG_CTRL,
LTC2947_CONT_MODE_MASK, LTC2947_CONT_MODE(1));
}
static int __maybe_unused ltc2947_suspend(struct device *dev)
{
struct ltc2947_data *st = dev_get_drvdata(dev);
return regmap_update_bits(st->map, LTC2947_REG_CTRL,
LTC2947_SHUTDOWN_MASK, 1);
}
SIMPLE_DEV_PM_OPS(ltc2947_pm_ops, ltc2947_suspend, ltc2947_resume);
EXPORT_SYMBOL_GPL(ltc2947_pm_ops);
const struct of_device_id ltc2947_of_match[] = {
{ .compatible = "adi,ltc2947" },
{}
};
EXPORT_SYMBOL_GPL(ltc2947_of_match);
MODULE_DEVICE_TABLE(of, ltc2947_of_match);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("LTC2947 power and energy monitor core driver");
MODULE_LICENSE("GPL");