2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/drivers/hwmon/adm9240.c
Chris Packham df885d912f hwmon: (adm9240) Convert to regmap
Convert the adm9240 driver to using regmap and add error handling.

Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Link: https://lore.kernel.org/r/20200924085102.15219-4-chris.packham@alliedtelesis.co.nz
[groeck: Fixed context conflict against 'hwmon: use simple i2c probe function']
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-09-24 07:44:51 -07:00

886 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* adm9240.c Part of lm_sensors, Linux kernel modules for hardware
* monitoring
*
* Copyright (C) 1999 Frodo Looijaard <frodol@dds.nl>
* Philip Edelbrock <phil@netroedge.com>
* Copyright (C) 2003 Michiel Rook <michiel@grendelproject.nl>
* Copyright (C) 2005 Grant Coady <gcoady.lk@gmail.com> with valuable
* guidance from Jean Delvare
*
* Driver supports Analog Devices ADM9240
* Dallas Semiconductor DS1780
* National Semiconductor LM81
*
* ADM9240 is the reference, DS1780 and LM81 are register compatibles
*
* Voltage Six inputs are scaled by chip, VID also reported
* Temperature Chip temperature to 0.5'C, maximum and max_hysteris
* Fans 2 fans, low speed alarm, automatic fan clock divider
* Alarms 16-bit map of active alarms
* Analog Out 0..1250 mV output
*
* Chassis Intrusion: clear CI latch with 'echo 0 > intrusion0_alarm'
*
* Test hardware: Intel SE440BX-2 desktop motherboard --Grant
*
* LM81 extended temp reading not implemented
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
#include <linux/regmap.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
enum chips { adm9240, ds1780, lm81 };
/* ADM9240 registers */
#define ADM9240_REG_MAN_ID 0x3e
#define ADM9240_REG_DIE_REV 0x3f
#define ADM9240_REG_CONFIG 0x40
#define ADM9240_REG_IN(nr) (0x20 + (nr)) /* 0..5 */
#define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define ADM9240_REG_FAN(nr) (0x28 + (nr)) /* 0..1 */
#define ADM9240_REG_FAN_MIN(nr) (0x3b + (nr))
#define ADM9240_REG_INT(nr) (0x41 + (nr))
#define ADM9240_REG_INT_MASK(nr) (0x43 + (nr))
#define ADM9240_REG_TEMP 0x27
#define ADM9240_REG_TEMP_MAX(nr) (0x39 + (nr)) /* 0, 1 = high, hyst */
#define ADM9240_REG_ANALOG_OUT 0x19
#define ADM9240_REG_CHASSIS_CLEAR 0x46
#define ADM9240_REG_VID_FAN_DIV 0x47
#define ADM9240_REG_I2C_ADDR 0x48
#define ADM9240_REG_VID4 0x49
#define ADM9240_REG_TEMP_CONF 0x4b
/* generalised scaling with integer rounding */
static inline int SCALE(long val, int mul, int div)
{
if (val < 0)
return (val * mul - div / 2) / div;
else
return (val * mul + div / 2) / div;
}
/* adm9240 internally scales voltage measurements */
static const u16 nom_mv[] = { 2500, 2700, 3300, 5000, 12000, 2700 };
static inline unsigned int IN_FROM_REG(u8 reg, int n)
{
return SCALE(reg, nom_mv[n], 192);
}
static inline u8 IN_TO_REG(unsigned long val, int n)
{
val = clamp_val(val, 0, nom_mv[n] * 255 / 192);
return SCALE(val, 192, nom_mv[n]);
}
/* temperature range: -40..125, 127 disables temperature alarm */
static inline s8 TEMP_TO_REG(long val)
{
val = clamp_val(val, -40000, 127000);
return SCALE(val, 1, 1000);
}
/* two fans, each with low fan speed limit */
static inline unsigned int FAN_FROM_REG(u8 reg, u8 div)
{
if (!reg) /* error */
return -1;
if (reg == 255)
return 0;
return SCALE(1350000, 1, reg * div);
}
/* analog out 0..1250mV */
static inline u8 AOUT_TO_REG(unsigned long val)
{
val = clamp_val(val, 0, 1250);
return SCALE(val, 255, 1250);
}
static inline unsigned int AOUT_FROM_REG(u8 reg)
{
return SCALE(reg, 1250, 255);
}
/* per client data */
struct adm9240_data {
struct i2c_client *client;
struct regmap *regmap;
struct mutex update_lock;
char valid;
unsigned long last_updated_measure;
unsigned long last_updated_config;
u8 in[6]; /* ro in0_input */
u8 in_max[6]; /* rw in0_max */
u8 in_min[6]; /* rw in0_min */
u8 fan[2]; /* ro fan1_input */
u8 fan_min[2]; /* rw fan1_min */
u8 fan_div[2]; /* rw fan1_div, read-only accessor */
s16 temp; /* ro temp1_input, 9-bit sign-extended */
s8 temp_max[2]; /* rw 0 -> temp_max, 1 -> temp_max_hyst */
u16 alarms; /* ro alarms */
u8 aout; /* rw aout_output */
u8 vid; /* ro vid */
u8 vrm; /* -- vrm set on startup, no accessor */
};
/* write new fan div, callers must hold data->update_lock */
static int adm9240_write_fan_div(struct adm9240_data *data, int nr,
u8 fan_div)
{
unsigned int reg, old, shift = (nr + 2) * 2;
int err;
err = regmap_read(data->regmap, ADM9240_REG_VID_FAN_DIV, &reg);
if (err < 0)
return err;
old = (reg >> shift) & 3;
reg &= ~(3 << shift);
reg |= (fan_div << shift);
err = regmap_write(data->regmap, ADM9240_REG_VID_FAN_DIV, reg);
if (err < 0)
return err;
dev_dbg(&data->client->dev,
"fan%d clock divider changed from %u to %u\n",
nr + 1, 1 << old, 1 << fan_div);
return 0;
}
static int adm9240_update_measure(struct adm9240_data *data)
{
unsigned int val;
u8 regs[2];
int err;
int i;
err = regmap_bulk_read(data->regmap, ADM9240_REG_IN(0), &data->in[0], 6);
if (err < 0)
return err;
err = regmap_bulk_read(data->regmap, ADM9240_REG_INT(0), &regs, 2);
if (err < 0)
return err;
data->alarms = regs[0] | regs[1] << 8;
/*
* read temperature: assume temperature changes less than
* 0.5'C per two measurement cycles thus ignore possible
* but unlikely aliasing error on lsb reading. --Grant
*/
err = regmap_read(data->regmap, ADM9240_REG_TEMP, &val);
if (err < 0)
return err;
data->temp = val << 8;
err = regmap_read(data->regmap, ADM9240_REG_TEMP_CONF, &val);
if (err < 0)
return err;
data->temp |= val;
err = regmap_bulk_read(data->regmap, ADM9240_REG_FAN(0),
&data->fan[0], 2);
if (err < 0)
return err;
for (i = 0; i < 2; i++) { /* read fans */
/* adjust fan clock divider on overflow */
if (data->valid && data->fan[i] == 255 &&
data->fan_div[i] < 3) {
err = adm9240_write_fan_div(data, i,
++data->fan_div[i]);
if (err < 0)
return err;
/* adjust fan_min if active, but not to 0 */
if (data->fan_min[i] < 255 &&
data->fan_min[i] >= 2)
data->fan_min[i] /= 2;
}
}
return 0;
}
static int adm9240_update_config(struct adm9240_data *data)
{
unsigned int val;
int i;
int err;
for (i = 0; i < 6; i++) {
err = regmap_raw_read(data->regmap, ADM9240_REG_IN_MIN(i),
&data->in_min[i], 1);
if (err < 0)
return err;
err = regmap_raw_read(data->regmap, ADM9240_REG_IN_MAX(i),
&data->in_max[i], 1);
if (err < 0)
return err;
}
err = regmap_bulk_read(data->regmap, ADM9240_REG_FAN_MIN(0),
&data->fan_min[0], 2);
if (err < 0)
return err;
err = regmap_bulk_read(data->regmap, ADM9240_REG_TEMP_MAX(0),
&data->temp_max[0], 2);
if (err < 0)
return err;
/* read fan divs and 5-bit VID */
err = regmap_read(data->regmap, ADM9240_REG_VID_FAN_DIV, &val);
if (err < 0)
return err;
data->fan_div[0] = (val >> 4) & 3;
data->fan_div[1] = (val >> 6) & 3;
data->vid = val & 0x0f;
err = regmap_read(data->regmap, ADM9240_REG_VID4, &val);
if (err < 0)
return err;
data->vid |= (val & 1) << 4;
/* read analog out */
err = regmap_raw_read(data->regmap, ADM9240_REG_ANALOG_OUT,
&data->aout, 1);
return err;
}
static struct adm9240_data *adm9240_update_device(struct device *dev)
{
struct adm9240_data *data = dev_get_drvdata(dev);
int err;
mutex_lock(&data->update_lock);
/* minimum measurement cycle: 1.75 seconds */
if (time_after(jiffies, data->last_updated_measure + (HZ * 7 / 4))
|| !data->valid) {
err = adm9240_update_measure(data);
if (err < 0) {
data->valid = 0;
mutex_unlock(&data->update_lock);
return ERR_PTR(err);
}
data->last_updated_measure = jiffies;
}
/* minimum config reading cycle: 300 seconds */
if (time_after(jiffies, data->last_updated_config + (HZ * 300))
|| !data->valid) {
err = adm9240_update_config(data);
if (err < 0) {
data->valid = 0;
mutex_unlock(&data->update_lock);
return ERR_PTR(err);
}
data->last_updated_config = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/*** sysfs accessors ***/
/* temperature */
static ssize_t temp1_input_show(struct device *dev,
struct device_attribute *dummy, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", data->temp / 128 * 500); /* 9-bit value */
}
static ssize_t max_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", data->temp_max[attr->index] * 1000);
}
static ssize_t max_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_max[attr->index] = TEMP_TO_REG(val);
err = regmap_write(data->regmap, ADM9240_REG_TEMP_MAX(attr->index),
data->temp_max[attr->index]);
mutex_unlock(&data->update_lock);
return err < 0 ? err : count;
}
static DEVICE_ATTR_RO(temp1_input);
static SENSOR_DEVICE_ATTR_RW(temp1_max, max, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, max, 1);
/* voltage */
static ssize_t in_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index],
attr->index));
}
static ssize_t in_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index],
attr->index));
}
static ssize_t in_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index],
attr->index));
}
static ssize_t in_min_store(struct device *dev,
struct device_attribute *devattr, const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[attr->index] = IN_TO_REG(val, attr->index);
err = regmap_write(data->regmap, ADM9240_REG_IN_MIN(attr->index),
data->in_min[attr->index]);
mutex_unlock(&data->update_lock);
return err < 0 ? err : count;
}
static ssize_t in_max_store(struct device *dev,
struct device_attribute *devattr, const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[attr->index] = IN_TO_REG(val, attr->index);
err = regmap_write(data->regmap, ADM9240_REG_IN_MAX(attr->index),
data->in_max[attr->index]);
mutex_unlock(&data->update_lock);
return err < 0 ? err : count;
}
static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
/* fans */
static ssize_t fan_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[attr->index],
1 << data->fan_div[attr->index]));
}
static ssize_t fan_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[attr->index],
1 << data->fan_div[attr->index]));
}
static ssize_t fan_div_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", 1 << data->fan_div[attr->index]);
}
/*
* set fan speed low limit:
*
* - value is zero: disable fan speed low limit alarm
*
* - value is below fan speed measurement range: enable fan speed low
* limit alarm to be asserted while fan speed too slow to measure
*
* - otherwise: select fan clock divider to suit fan speed low limit,
* measurement code may adjust registers to ensure fan speed reading
*/
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->index;
u8 new_div;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if (!val) {
data->fan_min[nr] = 255;
new_div = data->fan_div[nr];
dev_dbg(&client->dev, "fan%u low limit set disabled\n",
nr + 1);
} else if (val < 1350000 / (8 * 254)) {
new_div = 3;
data->fan_min[nr] = 254;
dev_dbg(&client->dev, "fan%u low limit set minimum %u\n",
nr + 1, FAN_FROM_REG(254, 1 << new_div));
} else {
unsigned int new_min = 1350000 / val;
new_div = 0;
while (new_min > 192 && new_div < 3) {
new_div++;
new_min /= 2;
}
if (!new_min) /* keep > 0 */
new_min++;
data->fan_min[nr] = new_min;
dev_dbg(&client->dev, "fan%u low limit set fan speed %u\n",
nr + 1, FAN_FROM_REG(new_min, 1 << new_div));
}
if (new_div != data->fan_div[nr]) {
data->fan_div[nr] = new_div;
adm9240_write_fan_div(data, nr, new_div);
}
err = regmap_write(data->regmap, ADM9240_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return err < 0 ? err : count;
}
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RO(fan1_div, fan_div, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RO(fan2_div, fan_div, 1);
/* alarms */
static ssize_t alarms_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR_RO(alarms);
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9);
static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
/* vid */
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR_RO(cpu0_vid);
/* analog output */
static ssize_t aout_output_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", AOUT_FROM_REG(data->aout));
}
static ssize_t aout_output_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm9240_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->aout = AOUT_TO_REG(val);
err = regmap_write(data->regmap, ADM9240_REG_ANALOG_OUT, data->aout);
mutex_unlock(&data->update_lock);
return err < 0 ? err : count;
}
static DEVICE_ATTR_RW(aout_output);
static ssize_t alarm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm9240_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
if (kstrtoul(buf, 10, &val) || val != 0)
return -EINVAL;
mutex_lock(&data->update_lock);
err = regmap_write(data->regmap, ADM9240_REG_CHASSIS_CLEAR, 0x80);
data->valid = 0; /* Force cache refresh */
mutex_unlock(&data->update_lock);
if (err < 0)
return err;
dev_dbg(&data->client->dev, "chassis intrusion latch cleared\n");
return count;
}
static SENSOR_DEVICE_ATTR_RW(intrusion0_alarm, alarm, 12);
static struct attribute *adm9240_attrs[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&dev_attr_temp1_input.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_aout_output.attr,
&sensor_dev_attr_intrusion0_alarm.dev_attr.attr,
&dev_attr_cpu0_vid.attr,
NULL
};
ATTRIBUTE_GROUPS(adm9240);
/*** sensor chip detect and driver install ***/
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm9240_detect(struct i2c_client *new_client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = new_client->adapter;
const char *name = "";
int address = new_client->addr;
u8 man_id, die_rev;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* verify chip: reg address should match i2c address */
if (i2c_smbus_read_byte_data(new_client, ADM9240_REG_I2C_ADDR)
!= address) {
dev_err(&adapter->dev, "detect fail: address match, 0x%02x\n",
address);
return -ENODEV;
}
/* check known chip manufacturer */
man_id = i2c_smbus_read_byte_data(new_client, ADM9240_REG_MAN_ID);
if (man_id == 0x23) {
name = "adm9240";
} else if (man_id == 0xda) {
name = "ds1780";
} else if (man_id == 0x01) {
name = "lm81";
} else {
dev_err(&adapter->dev, "detect fail: unknown manuf, 0x%02x\n",
man_id);
return -ENODEV;
}
/* successful detect, print chip info */
die_rev = i2c_smbus_read_byte_data(new_client, ADM9240_REG_DIE_REV);
dev_info(&adapter->dev, "found %s revision %u\n",
man_id == 0x23 ? "ADM9240" :
man_id == 0xda ? "DS1780" : "LM81", die_rev);
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int adm9240_init_client(struct i2c_client *client, struct adm9240_data *data)
{
u8 conf, mode;
int err;
err = regmap_raw_read(data->regmap, ADM9240_REG_CONFIG, &conf, 1);
if (err < 0)
return err;
err = regmap_raw_read(data->regmap, ADM9240_REG_TEMP_CONF, &mode, 1);
if (err < 0)
return err;
mode &= 3;
data->vrm = vid_which_vrm(); /* need this to report vid as mV */
dev_info(&client->dev, "Using VRM: %d.%d\n", data->vrm / 10,
data->vrm % 10);
if (conf & 1) { /* measurement cycle running: report state */
dev_info(&client->dev, "status: config 0x%02x mode %u\n",
conf, mode);
} else { /* cold start: open limits before starting chip */
int i;
for (i = 0; i < 6; i++) {
err = regmap_write(data->regmap,
ADM9240_REG_IN_MIN(i), 0);
if (err < 0)
return err;
err = regmap_write(data->regmap,
ADM9240_REG_IN_MAX(i), 255);
if (err < 0)
return err;
}
for (i = 0; i < 2; i++) {
err = regmap_write(data->regmap,
ADM9240_REG_FAN_MIN(i), 255);
if (err < 0)
return err;
}
for (i = 0; i < 2; i++) {
err = regmap_write(data->regmap,
ADM9240_REG_TEMP_MAX(i), 127);
if (err < 0)
return err;
}
/* start measurement cycle */
err = regmap_write(data->regmap, ADM9240_REG_CONFIG, 1);
if (err < 0)
return err;
dev_info(&client->dev,
"cold start: config was 0x%02x mode %u\n", conf, mode);
}
return 0;
}
static const struct regmap_config adm9240_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.use_single_read = true,
.use_single_write = true,
};
static int adm9240_probe(struct i2c_client *new_client)
{
struct device *dev = &new_client->dev;
struct device *hwmon_dev;
struct adm9240_data *data;
int err;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = new_client;
mutex_init(&data->update_lock);
data->regmap = devm_regmap_init_i2c(new_client, &adm9240_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
err = adm9240_init_client(new_client, data);
if (err < 0)
return err;
hwmon_dev = devm_hwmon_device_register_with_groups(dev,
new_client->name,
data,
adm9240_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adm9240_id[] = {
{ "adm9240", adm9240 },
{ "ds1780", ds1780 },
{ "lm81", lm81 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm9240_id);
static struct i2c_driver adm9240_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm9240",
},
.probe_new = adm9240_probe,
.id_table = adm9240_id,
.detect = adm9240_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adm9240_driver);
MODULE_AUTHOR("Michiel Rook <michiel@grendelproject.nl>, "
"Grant Coady <gcoady.lk@gmail.com> and others");
MODULE_DESCRIPTION("ADM9240/DS1780/LM81 driver");
MODULE_LICENSE("GPL");