2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 02:34:05 +08:00
linux-next/drivers/pci/host/vmd.c
Borislav Petkov 42db500a55 PCI: vmd: Fix suspend handlers defined-but-not-used warning
Fix the following warnings:

  drivers/pci/host/vmd.c:731:12: warning: ‘vmd_suspend’ defined but not used [-Wunused-function]
   static int vmd_suspend(struct device *dev)
              ^
  drivers/pci/host/vmd.c:739:12: warning: ‘vmd_resume’ defined but not used [-Wunused-function]
   static int vmd_resume(struct device *dev)
              ^

Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Bjorn Helgaas <helgaas@kernel.org>
Reviewed-by: Keith Busch <keith.busch@intel.com>
2016-12-07 12:17:27 -06:00

783 lines
20 KiB
C

/*
* Volume Management Device driver
* Copyright (c) 2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/srcu.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <asm/irqdomain.h>
#include <asm/device.h>
#include <asm/msi.h>
#include <asm/msidef.h>
#define VMD_CFGBAR 0
#define VMD_MEMBAR1 2
#define VMD_MEMBAR2 4
/*
* Lock for manipulating VMD IRQ lists.
*/
static DEFINE_RAW_SPINLOCK(list_lock);
/**
* struct vmd_irq - private data to map driver IRQ to the VMD shared vector
* @node: list item for parent traversal.
* @irq: back pointer to parent.
* @enabled: true if driver enabled IRQ
* @virq: the virtual IRQ value provided to the requesting driver.
*
* Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
* a VMD IRQ using this structure.
*/
struct vmd_irq {
struct list_head node;
struct vmd_irq_list *irq;
bool enabled;
unsigned int virq;
};
/**
* struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
* @irq_list: the list of irq's the VMD one demuxes to.
* @srcu: SRCU struct for local synchronization.
* @count: number of child IRQs assigned to this vector; used to track
* sharing.
*/
struct vmd_irq_list {
struct list_head irq_list;
struct srcu_struct srcu;
unsigned int count;
};
struct vmd_dev {
struct pci_dev *dev;
spinlock_t cfg_lock;
char __iomem *cfgbar;
int msix_count;
struct vmd_irq_list *irqs;
struct pci_sysdata sysdata;
struct resource resources[3];
struct irq_domain *irq_domain;
struct pci_bus *bus;
#ifdef CONFIG_X86_DEV_DMA_OPS
struct dma_map_ops dma_ops;
struct dma_domain dma_domain;
#endif
};
static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
{
return container_of(bus->sysdata, struct vmd_dev, sysdata);
}
static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
struct vmd_irq_list *irqs)
{
return irqs - vmd->irqs;
}
/*
* Drivers managing a device in a VMD domain allocate their own IRQs as before,
* but the MSI entry for the hardware it's driving will be programmed with a
* destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
* domain into one of its own, and the VMD driver de-muxes these for the
* handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
* and irq_chip to set this up.
*/
static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct vmd_irq *vmdirq = data->chip_data;
struct vmd_irq_list *irq = vmdirq->irq;
struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
msg->address_hi = MSI_ADDR_BASE_HI;
msg->address_lo = MSI_ADDR_BASE_LO |
MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
msg->data = 0;
}
/*
* We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
*/
static void vmd_irq_enable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
unsigned long flags;
raw_spin_lock_irqsave(&list_lock, flags);
WARN_ON(vmdirq->enabled);
list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
vmdirq->enabled = true;
raw_spin_unlock_irqrestore(&list_lock, flags);
data->chip->irq_unmask(data);
}
static void vmd_irq_disable(struct irq_data *data)
{
struct vmd_irq *vmdirq = data->chip_data;
unsigned long flags;
data->chip->irq_mask(data);
raw_spin_lock_irqsave(&list_lock, flags);
if (vmdirq->enabled) {
list_del_rcu(&vmdirq->node);
vmdirq->enabled = false;
}
raw_spin_unlock_irqrestore(&list_lock, flags);
}
/*
* XXX: Stubbed until we develop acceptable way to not create conflicts with
* other devices sharing the same vector.
*/
static int vmd_irq_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
return -EINVAL;
}
static struct irq_chip vmd_msi_controller = {
.name = "VMD-MSI",
.irq_enable = vmd_irq_enable,
.irq_disable = vmd_irq_disable,
.irq_compose_msi_msg = vmd_compose_msi_msg,
.irq_set_affinity = vmd_irq_set_affinity,
};
static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
msi_alloc_info_t *arg)
{
return 0;
}
/*
* XXX: We can be even smarter selecting the best IRQ once we solve the
* affinity problem.
*/
static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
{
int i, best = 1;
unsigned long flags;
if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
return &vmd->irqs[0];
raw_spin_lock_irqsave(&list_lock, flags);
for (i = 1; i < vmd->msix_count; i++)
if (vmd->irqs[i].count < vmd->irqs[best].count)
best = i;
vmd->irqs[best].count++;
raw_spin_unlock_irqrestore(&list_lock, flags);
return &vmd->irqs[best];
}
static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
unsigned int virq, irq_hw_number_t hwirq,
msi_alloc_info_t *arg)
{
struct msi_desc *desc = arg->desc;
struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
unsigned int index, vector;
if (!vmdirq)
return -ENOMEM;
INIT_LIST_HEAD(&vmdirq->node);
vmdirq->irq = vmd_next_irq(vmd, desc);
vmdirq->virq = virq;
index = index_from_irqs(vmd, vmdirq->irq);
vector = pci_irq_vector(vmd->dev, index);
irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
handle_untracked_irq, vmd, NULL);
return 0;
}
static void vmd_msi_free(struct irq_domain *domain,
struct msi_domain_info *info, unsigned int virq)
{
struct vmd_irq *vmdirq = irq_get_chip_data(virq);
unsigned long flags;
synchronize_srcu(&vmdirq->irq->srcu);
/* XXX: Potential optimization to rebalance */
raw_spin_lock_irqsave(&list_lock, flags);
vmdirq->irq->count--;
raw_spin_unlock_irqrestore(&list_lock, flags);
kfree(vmdirq);
}
static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *arg)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
if (nvec > vmd->msix_count)
return vmd->msix_count;
memset(arg, 0, sizeof(*arg));
return 0;
}
static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
{
arg->desc = desc;
}
static struct msi_domain_ops vmd_msi_domain_ops = {
.get_hwirq = vmd_get_hwirq,
.msi_init = vmd_msi_init,
.msi_free = vmd_msi_free,
.msi_prepare = vmd_msi_prepare,
.set_desc = vmd_set_desc,
};
static struct msi_domain_info vmd_msi_domain_info = {
.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX,
.ops = &vmd_msi_domain_ops,
.chip = &vmd_msi_controller,
};
#ifdef CONFIG_X86_DEV_DMA_OPS
/*
* VMD replaces the requester ID with its own. DMA mappings for devices in a
* VMD domain need to be mapped for the VMD, not the device requiring
* the mapping.
*/
static struct device *to_vmd_dev(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
return &vmd->dev->dev;
}
static struct dma_map_ops *vmd_dma_ops(struct device *dev)
{
return get_dma_ops(to_vmd_dev(dev));
}
static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
gfp_t flag, unsigned long attrs)
{
return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
attrs);
}
static void vmd_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t addr, unsigned long attrs)
{
return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
attrs);
}
static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t addr, size_t size,
unsigned long attrs)
{
return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
size, attrs);
}
static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t addr, size_t size,
unsigned long attrs)
{
return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
addr, size, attrs);
}
static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
dir, attrs);
}
static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
}
static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
}
static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
}
static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir)
{
vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
}
static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir)
{
vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
dir);
}
static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
}
static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
}
static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
{
return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
}
static int vmd_dma_supported(struct device *dev, u64 mask)
{
return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
}
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
static u64 vmd_get_required_mask(struct device *dev)
{
return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
}
#endif
static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
{
struct dma_domain *domain = &vmd->dma_domain;
if (get_dma_ops(&vmd->dev->dev))
del_dma_domain(domain);
}
#define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
do { \
if (source->fn) \
dest->fn = vmd_##fn; \
} while (0)
static void vmd_setup_dma_ops(struct vmd_dev *vmd)
{
const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
struct dma_map_ops *dest = &vmd->dma_ops;
struct dma_domain *domain = &vmd->dma_domain;
domain->domain_nr = vmd->sysdata.domain;
domain->dma_ops = dest;
if (!source)
return;
ASSIGN_VMD_DMA_OPS(source, dest, alloc);
ASSIGN_VMD_DMA_OPS(source, dest, free);
ASSIGN_VMD_DMA_OPS(source, dest, mmap);
ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
ASSIGN_VMD_DMA_OPS(source, dest, map_page);
ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
#endif
add_dma_domain(domain);
}
#undef ASSIGN_VMD_DMA_OPS
#else
static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
#endif
static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
unsigned int devfn, int reg, int len)
{
char __iomem *addr = vmd->cfgbar +
(bus->number << 20) + (devfn << 12) + reg;
if ((addr - vmd->cfgbar) + len >=
resource_size(&vmd->dev->resource[VMD_CFGBAR]))
return NULL;
return addr;
}
/*
* CPU may deadlock if config space is not serialized on some versions of this
* hardware, so all config space access is done under a spinlock.
*/
static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 *value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
unsigned long flags;
int ret = 0;
if (!addr)
return -EFAULT;
spin_lock_irqsave(&vmd->cfg_lock, flags);
switch (len) {
case 1:
*value = readb(addr);
break;
case 2:
*value = readw(addr);
break;
case 4:
*value = readl(addr);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
return ret;
}
/*
* VMD h/w converts non-posted config writes to posted memory writes. The
* read-back in this function forces the completion so it returns only after
* the config space was written, as expected.
*/
static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
int len, u32 value)
{
struct vmd_dev *vmd = vmd_from_bus(bus);
char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
unsigned long flags;
int ret = 0;
if (!addr)
return -EFAULT;
spin_lock_irqsave(&vmd->cfg_lock, flags);
switch (len) {
case 1:
writeb(value, addr);
readb(addr);
break;
case 2:
writew(value, addr);
readw(addr);
break;
case 4:
writel(value, addr);
readl(addr);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
return ret;
}
static struct pci_ops vmd_ops = {
.read = vmd_pci_read,
.write = vmd_pci_write,
};
static void vmd_attach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
}
static void vmd_detach_resources(struct vmd_dev *vmd)
{
vmd->dev->resource[VMD_MEMBAR1].child = NULL;
vmd->dev->resource[VMD_MEMBAR2].child = NULL;
}
/*
* VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
*/
static int vmd_find_free_domain(void)
{
int domain = 0xffff;
struct pci_bus *bus = NULL;
while ((bus = pci_find_next_bus(bus)) != NULL)
domain = max_t(int, domain, pci_domain_nr(bus));
return domain + 1;
}
static int vmd_enable_domain(struct vmd_dev *vmd)
{
struct pci_sysdata *sd = &vmd->sysdata;
struct resource *res;
u32 upper_bits;
unsigned long flags;
LIST_HEAD(resources);
res = &vmd->dev->resource[VMD_CFGBAR];
vmd->resources[0] = (struct resource) {
.name = "VMD CFGBAR",
.start = 0,
.end = (resource_size(res) >> 20) - 1,
.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
};
/*
* If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
* put 32-bit resources in the window.
*
* There's no hardware reason why a 64-bit window *couldn't*
* contain a 32-bit resource, but pbus_size_mem() computes the
* bridge window size assuming a 64-bit window will contain no
* 32-bit resources. __pci_assign_resource() enforces that
* artificial restriction to make sure everything will fit.
*
* The only way we could use a 64-bit non-prefechable MEMBAR is
* if its address is <4GB so that we can convert it to a 32-bit
* resource. To be visible to the host OS, all VMD endpoints must
* be initially configured by platform BIOS, which includes setting
* up these resources. We can assume the device is configured
* according to the platform needs.
*/
res = &vmd->dev->resource[VMD_MEMBAR1];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[1] = (struct resource) {
.name = "VMD MEMBAR1",
.start = res->start,
.end = res->end,
.flags = flags,
.parent = res,
};
res = &vmd->dev->resource[VMD_MEMBAR2];
upper_bits = upper_32_bits(res->end);
flags = res->flags & ~IORESOURCE_SIZEALIGN;
if (!upper_bits)
flags &= ~IORESOURCE_MEM_64;
vmd->resources[2] = (struct resource) {
.name = "VMD MEMBAR2",
.start = res->start + 0x2000,
.end = res->end,
.flags = flags,
.parent = res,
};
sd->vmd_domain = true;
sd->domain = vmd_find_free_domain();
if (sd->domain < 0)
return sd->domain;
sd->node = pcibus_to_node(vmd->dev->bus);
vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
x86_vector_domain);
if (!vmd->irq_domain)
return -ENODEV;
pci_add_resource(&resources, &vmd->resources[0]);
pci_add_resource(&resources, &vmd->resources[1]);
pci_add_resource(&resources, &vmd->resources[2]);
vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
&resources);
if (!vmd->bus) {
pci_free_resource_list(&resources);
irq_domain_remove(vmd->irq_domain);
return -ENODEV;
}
vmd_attach_resources(vmd);
vmd_setup_dma_ops(vmd);
dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
pci_rescan_bus(vmd->bus);
WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
"domain"), "Can't create symlink to domain\n");
return 0;
}
static irqreturn_t vmd_irq(int irq, void *data)
{
struct vmd_irq_list *irqs = data;
struct vmd_irq *vmdirq;
int idx;
idx = srcu_read_lock(&irqs->srcu);
list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
generic_handle_irq(vmdirq->virq);
srcu_read_unlock(&irqs->srcu, idx);
return IRQ_HANDLED;
}
static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct vmd_dev *vmd;
int i, err;
if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
return -ENOMEM;
vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
if (!vmd)
return -ENOMEM;
vmd->dev = dev;
err = pcim_enable_device(dev);
if (err < 0)
return err;
vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
if (!vmd->cfgbar)
return -ENOMEM;
pci_set_master(dev);
if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
return -ENODEV;
vmd->msix_count = pci_msix_vec_count(dev);
if (vmd->msix_count < 0)
return -ENODEV;
vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
if (vmd->msix_count < 0)
return vmd->msix_count;
vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
GFP_KERNEL);
if (!vmd->irqs)
return -ENOMEM;
for (i = 0; i < vmd->msix_count; i++) {
err = init_srcu_struct(&vmd->irqs[i].srcu);
if (err)
return err;
INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
vmd_irq, 0, "vmd", &vmd->irqs[i]);
if (err)
return err;
}
spin_lock_init(&vmd->cfg_lock);
pci_set_drvdata(dev, vmd);
err = vmd_enable_domain(vmd);
if (err)
return err;
dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
vmd->sysdata.domain);
return 0;
}
static void vmd_cleanup_srcu(struct vmd_dev *vmd)
{
int i;
for (i = 0; i < vmd->msix_count; i++)
cleanup_srcu_struct(&vmd->irqs[i].srcu);
}
static void vmd_remove(struct pci_dev *dev)
{
struct vmd_dev *vmd = pci_get_drvdata(dev);
vmd_detach_resources(vmd);
vmd_cleanup_srcu(vmd);
sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
pci_stop_root_bus(vmd->bus);
pci_remove_root_bus(vmd->bus);
vmd_teardown_dma_ops(vmd);
irq_domain_remove(vmd->irq_domain);
}
#ifdef CONFIG_PM_SLEEP
static int vmd_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
pci_save_state(pdev);
return 0;
}
static int vmd_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
pci_restore_state(pdev);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
static const struct pci_device_id vmd_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
{0,}
};
MODULE_DEVICE_TABLE(pci, vmd_ids);
static struct pci_driver vmd_drv = {
.name = "vmd",
.id_table = vmd_ids,
.probe = vmd_probe,
.remove = vmd_remove,
.driver = {
.pm = &vmd_dev_pm_ops,
},
};
module_pci_driver(vmd_drv);
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.6");