2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/lib/swiotlb.c
Becky Bruce 42d7c5e353 swiotlb: change swiotlb_bus_to[phys,virt] prototypes
Add a hwdev argument that is needed on some architectures
in order to access a per-device offset that is taken into
account when producing a physical address (also needed to
get from bus address to virtual address because the physical
address is an intermediate step).

Also make swiotlb_bus_to_virt weak so architectures can
override it.

Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Acked-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Cc: jeremy@goop.org
Cc: ian.campbell@citrix.com
LKML-Reference: <1239199761-22886-8-git-send-email-galak@kernel.crashing.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-08 16:18:38 +02:00

933 lines
25 KiB
C

/*
* Dynamic DMA mapping support.
*
* This implementation is a fallback for platforms that do not support
* I/O TLBs (aka DMA address translation hardware).
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
* Copyright (C) 2000, 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
* unnecessary i-cache flushing.
* 04/07/.. ak Better overflow handling. Assorted fixes.
* 05/09/10 linville Add support for syncing ranges, support syncing for
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
* 08/12/11 beckyb Add highmem support
*/
#include <linux/cache.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/swiotlb.h>
#include <linux/pfn.h>
#include <linux/types.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/scatterlist.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/iommu-helper.h>
#define OFFSET(val,align) ((unsigned long) \
( (val) & ( (align) - 1)))
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
/*
* Minimum IO TLB size to bother booting with. Systems with mainly
* 64bit capable cards will only lightly use the swiotlb. If we can't
* allocate a contiguous 1MB, we're probably in trouble anyway.
*/
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
/*
* Enumeration for sync targets
*/
enum dma_sync_target {
SYNC_FOR_CPU = 0,
SYNC_FOR_DEVICE = 1,
};
int swiotlb_force;
/*
* Used to do a quick range check in unmap_single and
* sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
static char *io_tlb_start, *io_tlb_end;
/*
* The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
* io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
*/
static unsigned long io_tlb_nslabs;
/*
* When the IOMMU overflows we return a fallback buffer. This sets the size.
*/
static unsigned long io_tlb_overflow = 32*1024;
void *io_tlb_overflow_buffer;
/*
* This is a free list describing the number of free entries available from
* each index
*/
static unsigned int *io_tlb_list;
static unsigned int io_tlb_index;
/*
* We need to save away the original address corresponding to a mapped entry
* for the sync operations.
*/
static phys_addr_t *io_tlb_orig_addr;
/*
* Protect the above data structures in the map and unmap calls
*/
static DEFINE_SPINLOCK(io_tlb_lock);
static int __init
setup_io_tlb_npages(char *str)
{
if (isdigit(*str)) {
io_tlb_nslabs = simple_strtoul(str, &str, 0);
/* avoid tail segment of size < IO_TLB_SEGSIZE */
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
if (*str == ',')
++str;
if (!strcmp(str, "force"))
swiotlb_force = 1;
return 1;
}
__setup("swiotlb=", setup_io_tlb_npages);
/* make io_tlb_overflow tunable too? */
void * __weak __init swiotlb_alloc_boot(size_t size, unsigned long nslabs)
{
return alloc_bootmem_low_pages(size);
}
void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
{
return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
}
dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{
return paddr;
}
phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
{
return baddr;
}
static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
volatile void *address)
{
return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
}
void * __weak swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t address)
{
return phys_to_virt(swiotlb_bus_to_phys(hwdev, address));
}
int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev,
dma_addr_t addr, size_t size)
{
return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
}
int __weak swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size)
{
return 0;
}
static void swiotlb_print_info(unsigned long bytes)
{
phys_addr_t pstart, pend;
pstart = virt_to_phys(io_tlb_start);
pend = virt_to_phys(io_tlb_end);
printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
bytes >> 20, io_tlb_start, io_tlb_end);
printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
(unsigned long long)pstart,
(unsigned long long)pend);
}
/*
* Statically reserve bounce buffer space and initialize bounce buffer data
* structures for the software IO TLB used to implement the DMA API.
*/
void __init
swiotlb_init_with_default_size(size_t default_size)
{
unsigned long i, bytes;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
/*
* Get IO TLB memory from the low pages
*/
io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
if (!io_tlb_start)
panic("Cannot allocate SWIOTLB buffer");
io_tlb_end = io_tlb_start + bytes;
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
for (i = 0; i < io_tlb_nslabs; i++)
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_index = 0;
io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
/*
* Get the overflow emergency buffer
*/
io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
if (!io_tlb_overflow_buffer)
panic("Cannot allocate SWIOTLB overflow buffer!\n");
swiotlb_print_info(bytes);
}
void __init
swiotlb_init(void)
{
swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
}
/*
* Systems with larger DMA zones (those that don't support ISA) can
* initialize the swiotlb later using the slab allocator if needed.
* This should be just like above, but with some error catching.
*/
int
swiotlb_late_init_with_default_size(size_t default_size)
{
unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
unsigned int order;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
/*
* Get IO TLB memory from the low pages
*/
order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
io_tlb_nslabs = SLABS_PER_PAGE << order;
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
if (io_tlb_start)
break;
order--;
}
if (!io_tlb_start)
goto cleanup1;
if (order != get_order(bytes)) {
printk(KERN_WARNING "Warning: only able to allocate %ld MB "
"for software IO TLB\n", (PAGE_SIZE << order) >> 20);
io_tlb_nslabs = SLABS_PER_PAGE << order;
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
}
io_tlb_end = io_tlb_start + bytes;
memset(io_tlb_start, 0, bytes);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs * sizeof(int)));
if (!io_tlb_list)
goto cleanup2;
for (i = 0; i < io_tlb_nslabs; i++)
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_index = 0;
io_tlb_orig_addr = (phys_addr_t *)
__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs *
sizeof(phys_addr_t)));
if (!io_tlb_orig_addr)
goto cleanup3;
memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
/*
* Get the overflow emergency buffer
*/
io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
get_order(io_tlb_overflow));
if (!io_tlb_overflow_buffer)
goto cleanup4;
swiotlb_print_info(bytes);
return 0;
cleanup4:
free_pages((unsigned long)io_tlb_orig_addr,
get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
io_tlb_orig_addr = NULL;
cleanup3:
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
sizeof(int)));
io_tlb_list = NULL;
cleanup2:
io_tlb_end = NULL;
free_pages((unsigned long)io_tlb_start, order);
io_tlb_start = NULL;
cleanup1:
io_tlb_nslabs = req_nslabs;
return -ENOMEM;
}
static inline int
address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
{
return swiotlb_arch_address_needs_mapping(hwdev, addr, size);
}
static inline int range_needs_mapping(phys_addr_t paddr, size_t size)
{
return swiotlb_force || swiotlb_arch_range_needs_mapping(paddr, size);
}
static int is_swiotlb_buffer(char *addr)
{
return addr >= io_tlb_start && addr < io_tlb_end;
}
/*
* Bounce: copy the swiotlb buffer back to the original dma location
*/
static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
enum dma_data_direction dir)
{
unsigned long pfn = PFN_DOWN(phys);
if (PageHighMem(pfn_to_page(pfn))) {
/* The buffer does not have a mapping. Map it in and copy */
unsigned int offset = phys & ~PAGE_MASK;
char *buffer;
unsigned int sz = 0;
unsigned long flags;
while (size) {
sz = min_t(size_t, PAGE_SIZE - offset, size);
local_irq_save(flags);
buffer = kmap_atomic(pfn_to_page(pfn),
KM_BOUNCE_READ);
if (dir == DMA_TO_DEVICE)
memcpy(dma_addr, buffer + offset, sz);
else
memcpy(buffer + offset, dma_addr, sz);
kunmap_atomic(buffer, KM_BOUNCE_READ);
local_irq_restore(flags);
size -= sz;
pfn++;
dma_addr += sz;
offset = 0;
}
} else {
if (dir == DMA_TO_DEVICE)
memcpy(dma_addr, phys_to_virt(phys), size);
else
memcpy(phys_to_virt(phys), dma_addr, size);
}
}
/*
* Allocates bounce buffer and returns its kernel virtual address.
*/
static void *
map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
{
unsigned long flags;
char *dma_addr;
unsigned int nslots, stride, index, wrap;
int i;
unsigned long start_dma_addr;
unsigned long mask;
unsigned long offset_slots;
unsigned long max_slots;
mask = dma_get_seg_boundary(hwdev);
start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
/*
* Carefully handle integer overflow which can occur when mask == ~0UL.
*/
max_slots = mask + 1
? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
: 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
/*
* For mappings greater than a page, we limit the stride (and
* hence alignment) to a page size.
*/
nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
if (size > PAGE_SIZE)
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
else
stride = 1;
BUG_ON(!nslots);
/*
* Find suitable number of IO TLB entries size that will fit this
* request and allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
index = ALIGN(io_tlb_index, stride);
if (index >= io_tlb_nslabs)
index = 0;
wrap = index;
do {
while (iommu_is_span_boundary(index, nslots, offset_slots,
max_slots)) {
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
if (index == wrap)
goto not_found;
}
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot
* and mark the entries as '0' indicating unavailable.
*/
if (io_tlb_list[index] >= nslots) {
int count = 0;
for (i = index; i < (int) (index + nslots); i++)
io_tlb_list[i] = 0;
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
/*
* Update the indices to avoid searching in the next
* round.
*/
io_tlb_index = ((index + nslots) < io_tlb_nslabs
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
} while (index != wrap);
not_found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
return NULL;
found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
for (i = 0; i < nslots; i++)
io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
return dma_addr;
}
/*
* dma_addr is the kernel virtual address of the bounce buffer to unmap.
*/
static void
do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
{
unsigned long flags;
int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t phys = io_tlb_orig_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contigous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
io_tlb_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the
* slots with superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--)
io_tlb_list[i] = ++count;
/*
* Step 2: merge the returned slots with the preceding slots,
* if available (non zero)
*/
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
}
spin_unlock_irqrestore(&io_tlb_lock, flags);
}
static void
sync_single(struct device *hwdev, char *dma_addr, size_t size,
int dir, int target)
{
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t phys = io_tlb_orig_addr[index];
phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
switch (target) {
case SYNC_FOR_CPU:
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
else
BUG_ON(dir != DMA_TO_DEVICE);
break;
case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
else
BUG_ON(dir != DMA_FROM_DEVICE);
break;
default:
BUG();
}
}
void *
swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
dma_addr_t dev_addr;
void *ret;
int order = get_order(size);
u64 dma_mask = DMA_BIT_MASK(32);
if (hwdev && hwdev->coherent_dma_mask)
dma_mask = hwdev->coherent_dma_mask;
ret = (void *)__get_free_pages(flags, order);
if (ret &&
!is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
size)) {
/*
* The allocated memory isn't reachable by the device.
*/
free_pages((unsigned long) ret, order);
ret = NULL;
}
if (!ret) {
/*
* We are either out of memory or the device can't DMA
* to GFP_DMA memory; fall back on map_single(), which
* will grab memory from the lowest available address range.
*/
ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
if (!ret)
return NULL;
}
memset(ret, 0, size);
dev_addr = swiotlb_virt_to_bus(hwdev, ret);
/* Confirm address can be DMA'd by device */
if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
(unsigned long long)dma_mask,
(unsigned long long)dev_addr);
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
return NULL;
}
*dma_handle = dev_addr;
return ret;
}
EXPORT_SYMBOL(swiotlb_alloc_coherent);
void
swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
WARN_ON(irqs_disabled());
if (!is_swiotlb_buffer(vaddr))
free_pages((unsigned long) vaddr, get_order(size));
else
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
}
EXPORT_SYMBOL(swiotlb_free_coherent);
static void
swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
{
/*
* Ran out of IOMMU space for this operation. This is very bad.
* Unfortunately the drivers cannot handle this operation properly.
* unless they check for dma_mapping_error (most don't)
* When the mapping is small enough return a static buffer to limit
* the damage, or panic when the transfer is too big.
*/
printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
"device %s\n", size, dev ? dev_name(dev) : "?");
if (size > io_tlb_overflow && do_panic) {
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
panic("DMA: Memory would be corrupted\n");
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
panic("DMA: Random memory would be DMAed\n");
}
}
/*
* Map a single buffer of the indicated size for DMA in streaming mode. The
* physical address to use is returned.
*
* Once the device is given the dma address, the device owns this memory until
* either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
*/
dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
void *map;
BUG_ON(dir == DMA_NONE);
/*
* If the address happens to be in the device's DMA window,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (!address_needs_mapping(dev, dev_addr, size) &&
!range_needs_mapping(phys, size))
return dev_addr;
/*
* Oh well, have to allocate and map a bounce buffer.
*/
map = map_single(dev, phys, size, dir);
if (!map) {
swiotlb_full(dev, size, dir, 1);
map = io_tlb_overflow_buffer;
}
dev_addr = swiotlb_virt_to_bus(dev, map);
/*
* Ensure that the address returned is DMA'ble
*/
if (address_needs_mapping(dev, dev_addr, size))
panic("map_single: bounce buffer is not DMA'ble");
return dev_addr;
}
EXPORT_SYMBOL_GPL(swiotlb_map_page);
/*
* Unmap a single streaming mode DMA translation. The dma_addr and size must
* match what was provided for in a previous swiotlb_map_page call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guaranteed to see
* whatever the device wrote there.
*/
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir)
{
char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
BUG_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(dma_addr)) {
do_unmap_single(hwdev, dma_addr, size, dir);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
dma_mark_clean(dma_addr, size);
}
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unmap_single(hwdev, dev_addr, size, dir);
}
EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
/*
* Make physical memory consistent for a single streaming mode DMA translation
* after a transfer.
*
* If you perform a swiotlb_map_page() but wish to interrogate the buffer
* using the cpu, yet do not wish to teardown the dma mapping, you must
* call this function before doing so. At the next point you give the dma
* address back to the card, you must first perform a
* swiotlb_dma_sync_for_device, and then the device again owns the buffer
*/
static void
swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir, int target)
{
char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
BUG_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(dma_addr)) {
sync_single(hwdev, dma_addr, size, dir, target);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
dma_mark_clean(dma_addr, size);
}
void
swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
void
swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir)
{
swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL(swiotlb_sync_single_for_device);
/*
* Same as above, but for a sub-range of the mapping.
*/
static void
swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
unsigned long offset, size_t size,
int dir, int target)
{
swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
}
void
swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
void
swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
/*
* Map a set of buffers described by scatterlist in streaming mode for DMA.
* This is the scatter-gather version of the above swiotlb_map_page
* interface. Here the scatter gather list elements are each tagged with the
* appropriate dma address and length. They are obtained via
* sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for swiotlb_map_page are the
* same here.
*/
int
swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) {
phys_addr_t paddr = sg_phys(sg);
dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
if (range_needs_mapping(paddr, sg->length) ||
address_needs_mapping(hwdev, dev_addr, sg->length)) {
void *map = map_single(hwdev, sg_phys(sg),
sg->length, dir);
if (!map) {
/* Don't panic here, we expect map_sg users
to do proper error handling. */
swiotlb_full(hwdev, sg->length, dir, 0);
swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
attrs);
sgl[0].dma_length = 0;
return 0;
}
sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
} else
sg->dma_address = dev_addr;
sg->dma_length = sg->length;
}
return nelems;
}
EXPORT_SYMBOL(swiotlb_map_sg_attrs);
int
swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
int dir)
{
return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
}
EXPORT_SYMBOL(swiotlb_map_sg);
/*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
* concerning calls here are the same as for swiotlb_unmap_page() above.
*/
void
swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i)
unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
}
EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
void
swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
int dir)
{
return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
}
EXPORT_SYMBOL(swiotlb_unmap_sg);
/*
* Make physical memory consistent for a set of streaming mode DMA translations
* after a transfer.
*
* The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
* and usage.
*/
static void
swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
int nelems, int dir, int target)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nelems, i)
swiotlb_sync_single(hwdev, sg->dma_address,
sg->dma_length, dir, target);
}
void
swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
void
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
int
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
}
EXPORT_SYMBOL(swiotlb_dma_mapping_error);
/*
* Return whether the given device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
* during bus mastering, then you would pass 0x00ffffff as the mask to
* this function.
*/
int
swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
}
EXPORT_SYMBOL(swiotlb_dma_supported);