mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-22 20:43:56 +08:00
7801bbe1bd
The CP0_EBase register is a standard feature of MIPS32r2, so we should always have been implementing it properly. However the register value was ignored and wasn't exposed to userland. Fix the emulation of exceptions and interrupts to use the value stored in guest CP0_EBase, and fix the masks so that the top 3 bits (rather than the standard 2) are fixed, so that it is always in the guest KSeg0 segment. Also add CP0_EBASE to the KVM one_reg interface so it can be accessed by userland, also allowing the CPU number field to be written (which isn't permitted by the guest). Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2756 lines
72 KiB
C
2756 lines
72 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* KVM/MIPS: Instruction/Exception emulation
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/random.h>
|
|
#include <asm/page.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cacheops.h>
|
|
#include <asm/cpu-info.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/inst.h>
|
|
|
|
#undef CONFIG_MIPS_MT
|
|
#include <asm/r4kcache.h>
|
|
#define CONFIG_MIPS_MT
|
|
|
|
#include "interrupt.h"
|
|
#include "commpage.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* Compute the return address and do emulate branch simulation, if required.
|
|
* This function should be called only in branch delay slot active.
|
|
*/
|
|
static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
|
|
unsigned long *out)
|
|
{
|
|
unsigned int dspcontrol;
|
|
union mips_instruction insn;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
long epc = instpc;
|
|
long nextpc;
|
|
int err;
|
|
|
|
if (epc & 3) {
|
|
kvm_err("%s: unaligned epc\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read the instruction */
|
|
err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
|
|
if (err)
|
|
return err;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
/* jr and jalr are in r_format format. */
|
|
case spec_op:
|
|
switch (insn.r_format.func) {
|
|
case jalr_op:
|
|
arch->gprs[insn.r_format.rd] = epc + 8;
|
|
/* Fall through */
|
|
case jr_op:
|
|
nextpc = arch->gprs[insn.r_format.rs];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* This group contains:
|
|
* bltz_op, bgez_op, bltzl_op, bgezl_op,
|
|
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
|
|
*/
|
|
case bcond_op:
|
|
switch (insn.i_format.rt) {
|
|
case bltz_op:
|
|
case bltzl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgez_op:
|
|
case bgezl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bltzal_op:
|
|
case bltzall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgezal_op:
|
|
case bgezall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
case bposge32_op:
|
|
if (!cpu_has_dsp) {
|
|
kvm_err("%s: DSP branch but not DSP ASE\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dspcontrol = rddsp(0x01);
|
|
|
|
if (dspcontrol >= 32)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/* These are unconditional and in j_format. */
|
|
case jal_op:
|
|
arch->gprs[31] = instpc + 8;
|
|
case j_op:
|
|
epc += 4;
|
|
epc >>= 28;
|
|
epc <<= 28;
|
|
epc |= (insn.j_format.target << 2);
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* These are conditional and in i_format. */
|
|
case beq_op:
|
|
case beql_op:
|
|
if (arch->gprs[insn.i_format.rs] ==
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bne_op:
|
|
case bnel_op:
|
|
if (arch->gprs[insn.i_format.rs] !=
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case blez_op: /* POP06 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case blezl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] <= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgtz_op: /* POP07 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case bgtzl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] > 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* And now the FPA/cp1 branch instructions. */
|
|
case cop1_op:
|
|
kvm_err("%s: unsupported cop1_op\n", __func__);
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_CPU_MIPSR6
|
|
/* R6 added the following compact branches with forbidden slots */
|
|
case blezl_op: /* POP26 */
|
|
case bgtzl_op: /* POP27 */
|
|
/* only rt == 0 isn't compact branch */
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop10_op:
|
|
case pop30_op:
|
|
/* only rs == rt == 0 is reserved, rest are compact branches */
|
|
if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop66_op:
|
|
case pop76_op:
|
|
/* only rs == 0 isn't compact branch */
|
|
if (insn.i_format.rs != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
compact_branch:
|
|
/*
|
|
* If we've hit an exception on the forbidden slot, then
|
|
* the branch must not have been taken.
|
|
*/
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
#else
|
|
compact_branch:
|
|
/* Fall through - Compact branches not supported before R6 */
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*out = nextpc;
|
|
return 0;
|
|
}
|
|
|
|
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
|
|
{
|
|
int err;
|
|
|
|
if (cause & CAUSEF_BD) {
|
|
err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
|
|
&vcpu->arch.pc);
|
|
if (err)
|
|
return EMULATE_FAIL;
|
|
} else {
|
|
vcpu->arch.pc += 4;
|
|
}
|
|
|
|
kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstr() - Get bad instruction encoding.
|
|
* @opc: Guest pointer to faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the faulting instruction, using the saved
|
|
* BadInstr register value if it exists, otherwise falling back to reading guest
|
|
* memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the faulting instruction.
|
|
*/
|
|
int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstr) {
|
|
*out = vcpu->arch.host_cp0_badinstr;
|
|
return 0;
|
|
} else {
|
|
return kvm_get_inst(opc, vcpu, out);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstrp() - Get bad prior instruction encoding.
|
|
* @opc: Guest pointer to prior faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the prior faulting instruction (the branch
|
|
* containing the delay slot which faulted), using the saved BadInstrP register
|
|
* value if it exists, otherwise falling back to reading guest memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the prior faulting instruction.
|
|
*/
|
|
int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstrp) {
|
|
*out = vcpu->arch.host_cp0_badinstrp;
|
|
return 0;
|
|
} else {
|
|
return kvm_get_inst(opc, vcpu, out);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Returns: 1 if the CP0_Count timer is disabled by either the guest
|
|
* CP0_Cause.DC bit or the count_ctl.DC bit.
|
|
* 0 otherwise (in which case CP0_Count timer is running).
|
|
*/
|
|
static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
|
|
(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
|
|
*
|
|
* Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
s64 now_ns, periods;
|
|
u64 delta;
|
|
|
|
now_ns = ktime_to_ns(now);
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
|
|
if (delta >= vcpu->arch.count_period) {
|
|
/* If delta is out of safe range the bias needs adjusting */
|
|
periods = div64_s64(now_ns, vcpu->arch.count_period);
|
|
vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
|
|
/* Recalculate delta with new bias */
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
}
|
|
|
|
/*
|
|
* We've ensured that:
|
|
* delta < count_period
|
|
*
|
|
* Therefore the intermediate delta*count_hz will never overflow since
|
|
* at the boundary condition:
|
|
* delta = count_period
|
|
* delta = NSEC_PER_SEC * 2^32 / count_hz
|
|
* delta * count_hz = NSEC_PER_SEC * 2^32
|
|
*/
|
|
return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_time() - Get effective current time.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Get effective monotonic ktime. This is usually a straightforward ktime_get(),
|
|
* except when the master disable bit is set in count_ctl, in which case it is
|
|
* count_resume, i.e. the time that the count was disabled.
|
|
*
|
|
* Returns: Effective monotonic ktime for CP0_Count.
|
|
*/
|
|
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return vcpu->arch.count_resume;
|
|
|
|
return ktime_get();
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count_running() - Read the current count value as if running.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: Kernel time to read CP0_Count at.
|
|
*
|
|
* Returns the current guest CP0_Count register at time @now and handles if the
|
|
* timer interrupt is pending and hasn't been handled yet.
|
|
*
|
|
* Returns: The current value of the guest CP0_Count register.
|
|
*/
|
|
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t expires, threshold;
|
|
u32 count, compare;
|
|
int running;
|
|
|
|
/* Calculate the biased and scaled guest CP0_Count */
|
|
count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
|
|
/*
|
|
* Find whether CP0_Count has reached the closest timer interrupt. If
|
|
* not, we shouldn't inject it.
|
|
*/
|
|
if ((s32)(count - compare) < 0)
|
|
return count;
|
|
|
|
/*
|
|
* The CP0_Count we're going to return has already reached the closest
|
|
* timer interrupt. Quickly check if it really is a new interrupt by
|
|
* looking at whether the interval until the hrtimer expiry time is
|
|
* less than 1/4 of the timer period.
|
|
*/
|
|
expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
|
|
threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
|
|
if (ktime_before(expires, threshold)) {
|
|
/*
|
|
* Cancel it while we handle it so there's no chance of
|
|
* interference with the timeout handler.
|
|
*/
|
|
running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/*
|
|
* Restart the timer if it was running based on the expiry time
|
|
* we read, so that we don't push it back 2 periods.
|
|
*/
|
|
if (running) {
|
|
expires = ktime_add_ns(expires,
|
|
vcpu->arch.count_period);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expires,
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count() - Read the current count value.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Read the current guest CP0_Count value, taking into account whether the timer
|
|
* is stopped.
|
|
*
|
|
* Returns: The current guest CP0_Count value.
|
|
*/
|
|
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
/* If count disabled just read static copy of count */
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
return kvm_read_c0_guest_count(cop0);
|
|
|
|
return kvm_mips_read_count_running(vcpu, ktime_get());
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Output pointer for CP0_Count value at point of freeze.
|
|
*
|
|
* Freeze the hrtimer safely and return both the ktime and the CP0_Count value
|
|
* at the point it was frozen. It is guaranteed that any pending interrupts at
|
|
* the point it was frozen are handled, and none after that point.
|
|
*
|
|
* This is useful where the time/CP0_Count is needed in the calculation of the
|
|
* new parameters.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*
|
|
* Returns: The ktime at the point of freeze.
|
|
*/
|
|
static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
|
|
{
|
|
ktime_t now;
|
|
|
|
/* stop hrtimer before finding time */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
now = ktime_get();
|
|
|
|
/* find count at this point and handle pending hrtimer */
|
|
*count = kvm_mips_read_count_running(vcpu, now);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: ktime at point of resume.
|
|
* @count: CP0_Count at point of resume.
|
|
*
|
|
* Resumes the timer and updates the timer expiry based on @now and @count.
|
|
* This can be used in conjunction with kvm_mips_freeze_timer() when timer
|
|
* parameters need to be changed.
|
|
*
|
|
* It is guaranteed that a timer interrupt immediately after resume will be
|
|
* handled, but not if CP_Compare is exactly at @count. That case is already
|
|
* handled by kvm_mips_freeze_timer().
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
|
|
ktime_t now, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 compare;
|
|
u64 delta;
|
|
ktime_t expire;
|
|
|
|
/* Calculate timeout (wrap 0 to 2^32) */
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(now, delta);
|
|
|
|
/* Update hrtimer to use new timeout */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_count() - Modify the count and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Guest CP0_Count value to set.
|
|
*
|
|
* Sets the CP0_Count value and updates the timer accordingly.
|
|
*/
|
|
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t now;
|
|
|
|
/* Calculate bias */
|
|
now = kvm_mips_count_time(vcpu);
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
/* The timer's disabled, adjust the static count */
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
else
|
|
/* Update timeout */
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_init_count() - Initialise timer.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
|
|
* it going if it's enabled.
|
|
*/
|
|
void kvm_mips_init_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* 100 MHz */
|
|
vcpu->arch.count_hz = 100*1000*1000;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
|
|
vcpu->arch.count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Starting at 0 */
|
|
kvm_mips_write_count(vcpu, 0);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_hz() - Update the frequency of the timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_hz: Frequency of CP0_Count timer in Hz.
|
|
*
|
|
* Change the frequency of the CP0_Count timer. This is done atomically so that
|
|
* CP0_Count is continuous and no timer interrupt is lost.
|
|
*
|
|
* Returns: -EINVAL if @count_hz is out of range.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
ktime_t now;
|
|
u32 count;
|
|
|
|
/* ensure the frequency is in a sensible range... */
|
|
if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
/* ... and has actually changed */
|
|
if (vcpu->arch.count_hz == count_hz)
|
|
return 0;
|
|
|
|
/* Safely freeze timer so we can keep it continuous */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (dc) {
|
|
now = kvm_mips_count_time(vcpu);
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
} else {
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
}
|
|
|
|
/* Update the frequency */
|
|
vcpu->arch.count_hz = count_hz;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Calculate adjusted bias so dynamic count is unchanged */
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
/* Update and resume hrtimer */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_compare() - Modify compare and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @compare: New CP0_Compare value.
|
|
* @ack: Whether to acknowledge timer interrupt.
|
|
*
|
|
* Update CP0_Compare to a new value and update the timeout.
|
|
* If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
|
|
* any pending timer interrupt is preserved.
|
|
*/
|
|
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
u32 old_compare = kvm_read_c0_guest_compare(cop0);
|
|
ktime_t now;
|
|
u32 count;
|
|
|
|
/* if unchanged, must just be an ack */
|
|
if (old_compare == compare) {
|
|
if (!ack)
|
|
return;
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
return;
|
|
}
|
|
|
|
/* freeze_hrtimer() takes care of timer interrupts <= count */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (!dc)
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
|
|
if (ack)
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
|
|
/* resume_hrtimer() takes care of timer interrupts > count */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable() - Disable count.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer. A timer interrupt on or before the final stop
|
|
* time will be handled but not after.
|
|
*
|
|
* Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
|
|
* count_ctl.DC has been set (count disabled).
|
|
*
|
|
* Returns: The time that the timer was stopped.
|
|
*/
|
|
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
ktime_t now;
|
|
|
|
/* Stop hrtimer */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Set the static count from the dynamic count, handling pending TI */
|
|
now = ktime_get();
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
|
|
* before the final stop time will be handled if the timer isn't disabled by
|
|
* count_ctl.DC, but not after.
|
|
*
|
|
* Assumes CP0_Cause.DC is clear (count enabled).
|
|
*/
|
|
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
|
|
if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
kvm_mips_count_disable(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
|
|
* the start time will be handled if the timer isn't disabled by count_ctl.DC,
|
|
* potentially before even returning, so the caller should be careful with
|
|
* ordering of CP0_Cause modifications so as not to lose it.
|
|
*
|
|
* Assumes CP0_Cause.DC is set (count disabled).
|
|
*/
|
|
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
|
|
|
|
/*
|
|
* Set the dynamic count to match the static count.
|
|
* This starts the hrtimer if count_ctl.DC allows it.
|
|
* Otherwise it conveniently updates the biases.
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
kvm_mips_write_count(vcpu, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_ctl() - Update the count control KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_ctl: Count control register new value.
|
|
*
|
|
* Set the count control KVM register. The timer is updated accordingly.
|
|
*
|
|
* Returns: -EINVAL if reserved bits are set.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
s64 changed = count_ctl ^ vcpu->arch.count_ctl;
|
|
s64 delta;
|
|
ktime_t expire, now;
|
|
u32 count, compare;
|
|
|
|
/* Only allow defined bits to be changed */
|
|
if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return -EINVAL;
|
|
|
|
/* Apply new value */
|
|
vcpu->arch.count_ctl = count_ctl;
|
|
|
|
/* Master CP0_Count disable */
|
|
if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* Is CP0_Cause.DC already disabling CP0_Count? */
|
|
if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
|
|
if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
|
|
/* Just record the current time */
|
|
vcpu->arch.count_resume = ktime_get();
|
|
} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* disable timer and record current time */
|
|
vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
|
|
} else {
|
|
/*
|
|
* Calculate timeout relative to static count at resume
|
|
* time (wrap 0 to 2^32).
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC,
|
|
vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(vcpu->arch.count_resume, delta);
|
|
|
|
/* Handle pending interrupt */
|
|
now = ktime_get();
|
|
if (ktime_compare(now, expire) >= 0)
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/* Resume hrtimer without changing bias */
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_resume() - Update the count resume KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_resume: Count resume register new value.
|
|
*
|
|
* Set the count resume KVM register.
|
|
*
|
|
* Returns: -EINVAL if out of valid range (0..now).
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
|
|
{
|
|
/*
|
|
* It doesn't make sense for the resume time to be in the future, as it
|
|
* would be possible for the next interrupt to be more than a full
|
|
* period in the future.
|
|
*/
|
|
if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.count_resume = ns_to_ktime(count_resume);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_timeout() - Push timer forward on timeout.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Handle an hrtimer event by push the hrtimer forward a period.
|
|
*
|
|
* Returns: The hrtimer_restart value to return to the hrtimer subsystem.
|
|
*/
|
|
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Add the Count period to the current expiry time */
|
|
hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
|
|
vcpu->arch.count_period);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
|
|
kvm_clear_c0_guest_status(cop0, ST0_ERL);
|
|
vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
|
|
} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
|
|
kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
|
|
kvm_read_c0_guest_epc(cop0));
|
|
kvm_clear_c0_guest_status(cop0, ST0_EXL);
|
|
vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
|
|
|
|
} else {
|
|
kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
|
|
vcpu->arch.pc);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
|
|
vcpu->arch.pending_exceptions);
|
|
|
|
++vcpu->stat.wait_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
vcpu->arch.wait = 1;
|
|
kvm_vcpu_block(vcpu);
|
|
|
|
/*
|
|
* We we are runnable, then definitely go off to user space to
|
|
* check if any I/O interrupts are pending.
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
}
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/*
|
|
* XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
|
|
* we can catch this, if things ever change
|
|
*/
|
|
enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
|
|
kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
|
|
* @vcpu: VCPU with changed mappings.
|
|
* @tlb: TLB entry being removed.
|
|
*
|
|
* This is called to indicate a single change in guest MMU mappings, so that we
|
|
* can arrange TLB flushes on this and other CPUs.
|
|
*/
|
|
static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
|
|
struct kvm_mips_tlb *tlb)
|
|
{
|
|
struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
|
|
struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
|
|
int cpu, i;
|
|
bool user;
|
|
|
|
/* No need to flush for entries which are already invalid */
|
|
if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
|
|
return;
|
|
/* Don't touch host kernel page tables or TLB mappings */
|
|
if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
|
|
return;
|
|
/* User address space doesn't need flushing for KSeg2/3 changes */
|
|
user = tlb->tlb_hi < KVM_GUEST_KSEG0;
|
|
|
|
preempt_disable();
|
|
|
|
/* Invalidate page table entries */
|
|
kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
|
|
|
|
/*
|
|
* Probe the shadow host TLB for the entry being overwritten, if one
|
|
* matches, invalidate it
|
|
*/
|
|
kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
|
|
|
|
/* Invalidate the whole ASID on other CPUs */
|
|
cpu = smp_processor_id();
|
|
for_each_possible_cpu(i) {
|
|
if (i == cpu)
|
|
continue;
|
|
if (user)
|
|
cpu_context(i, user_mm) = 0;
|
|
cpu_context(i, kern_mm) = 0;
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Write Guest TLB Entry @ Index */
|
|
enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int index = kvm_read_c0_guest_index(cop0);
|
|
struct kvm_mips_tlb *tlb = NULL;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
|
|
if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
|
|
kvm_debug("%s: illegal index: %d\n", __func__, index);
|
|
kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0),
|
|
kvm_read_c0_guest_pagemask(cop0));
|
|
index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
|
|
}
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
kvm_mips_invalidate_guest_tlb(vcpu, tlb);
|
|
|
|
tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
|
|
tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
|
|
tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
|
|
tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0),
|
|
kvm_read_c0_guest_pagemask(cop0));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/* Write Guest TLB Entry @ Random Index */
|
|
enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_mips_tlb *tlb = NULL;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
int index;
|
|
|
|
get_random_bytes(&index, sizeof(index));
|
|
index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
kvm_mips_invalidate_guest_tlb(vcpu, tlb);
|
|
|
|
tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
|
|
tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
|
|
tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
|
|
tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
long entryhi = kvm_read_c0_guest_entryhi(cop0);
|
|
unsigned long pc = vcpu->arch.pc;
|
|
int index = -1;
|
|
|
|
index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
|
|
|
|
kvm_write_c0_guest_index(cop0, index);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
|
|
index);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config1 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
/* Permit FPU to be present if FPU is supported */
|
|
if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
|
|
mask |= MIPS_CONF1_FP;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config3 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Config4 and ULRI are optional */
|
|
unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
|
|
|
|
/* Permit MSA to be present if MSA is supported */
|
|
if (kvm_mips_guest_can_have_msa(&vcpu->arch))
|
|
mask |= MIPS_CONF3_MSA;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config4 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Config5 is optional */
|
|
unsigned int mask = MIPS_CONF_M;
|
|
|
|
/* KScrExist */
|
|
mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config5 CP0
|
|
* register, by the guest itself.
|
|
*/
|
|
unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
/* Permit MSAEn changes if MSA supported and enabled */
|
|
if (kvm_mips_guest_has_msa(&vcpu->arch))
|
|
mask |= MIPS_CONF5_MSAEN;
|
|
|
|
/*
|
|
* Permit guest FPU mode changes if FPU is enabled and the relevant
|
|
* feature exists according to FIR register.
|
|
*/
|
|
if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
|
|
if (cpu_has_fre)
|
|
mask |= MIPS_CONF5_FRE;
|
|
/* We don't support UFR or UFE */
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
|
|
u32 *opc, u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 rt, rd, sel;
|
|
unsigned long curr_pc;
|
|
int cpu, i;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
if (inst.co_format.co) {
|
|
switch (inst.co_format.func) {
|
|
case tlbr_op: /* Read indexed TLB entry */
|
|
er = kvm_mips_emul_tlbr(vcpu);
|
|
break;
|
|
case tlbwi_op: /* Write indexed */
|
|
er = kvm_mips_emul_tlbwi(vcpu);
|
|
break;
|
|
case tlbwr_op: /* Write random */
|
|
er = kvm_mips_emul_tlbwr(vcpu);
|
|
break;
|
|
case tlbp_op: /* TLB Probe */
|
|
er = kvm_mips_emul_tlbp(vcpu);
|
|
break;
|
|
case rfe_op:
|
|
kvm_err("!!!COP0_RFE!!!\n");
|
|
break;
|
|
case eret_op:
|
|
er = kvm_mips_emul_eret(vcpu);
|
|
goto dont_update_pc;
|
|
case wait_op:
|
|
er = kvm_mips_emul_wait(vcpu);
|
|
break;
|
|
}
|
|
} else {
|
|
rt = inst.c0r_format.rt;
|
|
rd = inst.c0r_format.rd;
|
|
sel = inst.c0r_format.sel;
|
|
|
|
switch (inst.c0r_format.rs) {
|
|
case mfc_op:
|
|
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[rd][sel]++;
|
|
#endif
|
|
/* Get reg */
|
|
if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
|
|
vcpu->arch.gprs[rt] =
|
|
(s32)kvm_mips_read_count(vcpu);
|
|
} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
|
|
vcpu->arch.gprs[rt] = 0x0;
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mfc0(inst, opc, vcpu);
|
|
#endif
|
|
} else {
|
|
vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mfc0(inst, opc, vcpu);
|
|
#endif
|
|
}
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
break;
|
|
|
|
case dmfc_op:
|
|
vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
break;
|
|
|
|
case mtc_op:
|
|
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[rd][sel]++;
|
|
#endif
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
|
|
if ((rd == MIPS_CP0_TLB_INDEX)
|
|
&& (vcpu->arch.gprs[rt] >=
|
|
KVM_MIPS_GUEST_TLB_SIZE)) {
|
|
kvm_err("Invalid TLB Index: %ld",
|
|
vcpu->arch.gprs[rt]);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
|
|
/*
|
|
* Preserve core number, and keep the exception
|
|
* base in guest KSeg0.
|
|
*/
|
|
kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
|
|
vcpu->arch.gprs[rt]);
|
|
} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
|
|
u32 nasid =
|
|
vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
|
|
if (((kvm_read_c0_guest_entryhi(cop0) &
|
|
KVM_ENTRYHI_ASID) != nasid)) {
|
|
trace_kvm_asid_change(vcpu,
|
|
kvm_read_c0_guest_entryhi(cop0)
|
|
& KVM_ENTRYHI_ASID,
|
|
nasid);
|
|
|
|
/*
|
|
* Flush entries from the GVA page
|
|
* tables.
|
|
* Guest user page table will get
|
|
* flushed lazily on re-entry to guest
|
|
* user if the guest ASID actually
|
|
* changes.
|
|
*/
|
|
kvm_mips_flush_gva_pt(kern_mm->pgd,
|
|
KMF_KERN);
|
|
|
|
/*
|
|
* Regenerate/invalidate kernel MMU
|
|
* context.
|
|
* The user MMU context will be
|
|
* regenerated lazily on re-entry to
|
|
* guest user if the guest ASID actually
|
|
* changes.
|
|
*/
|
|
preempt_disable();
|
|
cpu = smp_processor_id();
|
|
get_new_mmu_context(kern_mm, cpu);
|
|
for_each_possible_cpu(i)
|
|
if (i != cpu)
|
|
cpu_context(i, kern_mm) = 0;
|
|
preempt_enable();
|
|
}
|
|
kvm_write_c0_guest_entryhi(cop0,
|
|
vcpu->arch.gprs[rt]);
|
|
}
|
|
/* Are we writing to COUNT */
|
|
else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
|
|
kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
|
|
goto done;
|
|
} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
|
|
/* If we are writing to COMPARE */
|
|
/* Clear pending timer interrupt, if any */
|
|
kvm_mips_write_compare(vcpu,
|
|
vcpu->arch.gprs[rt],
|
|
true);
|
|
} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
|
|
unsigned int old_val, val, change;
|
|
|
|
old_val = kvm_read_c0_guest_status(cop0);
|
|
val = vcpu->arch.gprs[rt];
|
|
change = val ^ old_val;
|
|
|
|
/* Make sure that the NMI bit is never set */
|
|
val &= ~ST0_NMI;
|
|
|
|
/*
|
|
* Don't allow CU1 or FR to be set unless FPU
|
|
* capability enabled and exists in guest
|
|
* configuration.
|
|
*/
|
|
if (!kvm_mips_guest_has_fpu(&vcpu->arch))
|
|
val &= ~(ST0_CU1 | ST0_FR);
|
|
|
|
/*
|
|
* Also don't allow FR to be set if host doesn't
|
|
* support it.
|
|
*/
|
|
if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
|
|
val &= ~ST0_FR;
|
|
|
|
|
|
/* Handle changes in FPU mode */
|
|
preempt_disable();
|
|
|
|
/*
|
|
* FPU and Vector register state is made
|
|
* UNPREDICTABLE by a change of FR, so don't
|
|
* even bother saving it.
|
|
*/
|
|
if (change & ST0_FR)
|
|
kvm_drop_fpu(vcpu);
|
|
|
|
/*
|
|
* If MSA state is already live, it is undefined
|
|
* how it interacts with FR=0 FPU state, and we
|
|
* don't want to hit reserved instruction
|
|
* exceptions trying to save the MSA state later
|
|
* when CU=1 && FR=1, so play it safe and save
|
|
* it first.
|
|
*/
|
|
if (change & ST0_CU1 && !(val & ST0_FR) &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
|
|
kvm_lose_fpu(vcpu);
|
|
|
|
/*
|
|
* Propagate CU1 (FPU enable) changes
|
|
* immediately if the FPU context is already
|
|
* loaded. When disabling we leave the context
|
|
* loaded so it can be quickly enabled again in
|
|
* the near future.
|
|
*/
|
|
if (change & ST0_CU1 &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
|
|
change_c0_status(ST0_CU1, val);
|
|
|
|
preempt_enable();
|
|
|
|
kvm_write_c0_guest_status(cop0, val);
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/*
|
|
* If FPU present, we need CU1/FR bits to take
|
|
* effect fairly soon.
|
|
*/
|
|
if (!kvm_mips_guest_has_fpu(&vcpu->arch))
|
|
kvm_mips_trans_mtc0(inst, opc, vcpu);
|
|
#endif
|
|
} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
|
|
unsigned int old_val, val, change, wrmask;
|
|
|
|
old_val = kvm_read_c0_guest_config5(cop0);
|
|
val = vcpu->arch.gprs[rt];
|
|
|
|
/* Only a few bits are writable in Config5 */
|
|
wrmask = kvm_mips_config5_wrmask(vcpu);
|
|
change = (val ^ old_val) & wrmask;
|
|
val = old_val ^ change;
|
|
|
|
|
|
/* Handle changes in FPU/MSA modes */
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Propagate FRE changes immediately if the FPU
|
|
* context is already loaded.
|
|
*/
|
|
if (change & MIPS_CONF5_FRE &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
|
|
change_c0_config5(MIPS_CONF5_FRE, val);
|
|
|
|
/*
|
|
* Propagate MSAEn changes immediately if the
|
|
* MSA context is already loaded. When disabling
|
|
* we leave the context loaded so it can be
|
|
* quickly enabled again in the near future.
|
|
*/
|
|
if (change & MIPS_CONF5_MSAEN &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
|
|
change_c0_config5(MIPS_CONF5_MSAEN,
|
|
val);
|
|
|
|
preempt_enable();
|
|
|
|
kvm_write_c0_guest_config5(cop0, val);
|
|
} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
|
|
u32 old_cause, new_cause;
|
|
|
|
old_cause = kvm_read_c0_guest_cause(cop0);
|
|
new_cause = vcpu->arch.gprs[rt];
|
|
/* Update R/W bits */
|
|
kvm_change_c0_guest_cause(cop0, 0x08800300,
|
|
new_cause);
|
|
/* DC bit enabling/disabling timer? */
|
|
if ((old_cause ^ new_cause) & CAUSEF_DC) {
|
|
if (new_cause & CAUSEF_DC)
|
|
kvm_mips_count_disable_cause(vcpu);
|
|
else
|
|
kvm_mips_count_enable_cause(vcpu);
|
|
}
|
|
} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
|
|
u32 mask = MIPS_HWRENA_CPUNUM |
|
|
MIPS_HWRENA_SYNCISTEP |
|
|
MIPS_HWRENA_CC |
|
|
MIPS_HWRENA_CCRES;
|
|
|
|
if (kvm_read_c0_guest_config3(cop0) &
|
|
MIPS_CONF3_ULRI)
|
|
mask |= MIPS_HWRENA_ULR;
|
|
cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
|
|
} else {
|
|
cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mtc0(inst, opc, vcpu);
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case dmtc_op:
|
|
kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
|
|
vcpu->arch.pc, rt, rd, sel);
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
|
|
case mfmc0_op:
|
|
#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[MIPS_CP0_STATUS][0]++;
|
|
#endif
|
|
if (rt != 0)
|
|
vcpu->arch.gprs[rt] =
|
|
kvm_read_c0_guest_status(cop0);
|
|
/* EI */
|
|
if (inst.mfmc0_format.sc) {
|
|
kvm_debug("[%#lx] mfmc0_op: EI\n",
|
|
vcpu->arch.pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_IE);
|
|
} else {
|
|
kvm_debug("[%#lx] mfmc0_op: DI\n",
|
|
vcpu->arch.pc);
|
|
kvm_clear_c0_guest_status(cop0, ST0_IE);
|
|
}
|
|
|
|
break;
|
|
|
|
case wrpgpr_op:
|
|
{
|
|
u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
|
|
u32 pss =
|
|
(cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
|
|
/*
|
|
* We don't support any shadow register sets, so
|
|
* SRSCtl[PSS] == SRSCtl[CSS] = 0
|
|
*/
|
|
if (css || pss) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
|
|
vcpu->arch.gprs[rt]);
|
|
vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
|
|
}
|
|
break;
|
|
default:
|
|
kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
|
|
vcpu->arch.pc, inst.c0r_format.rs);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* Rollback PC only if emulation was unsuccessful */
|
|
if (er == EMULATE_FAIL)
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
dont_update_pc:
|
|
/*
|
|
* This is for special instructions whose emulation
|
|
* updates the PC, so do not overwrite the PC under
|
|
* any circumstances
|
|
*/
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
|
|
u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DO_MMIO;
|
|
u32 rt;
|
|
u32 bytes;
|
|
void *data = run->mmio.data;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
rt = inst.i_format.rt;
|
|
|
|
switch (inst.i_format.opcode) {
|
|
case sb_op:
|
|
bytes = 1;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
*(u8 *) data = vcpu->arch.gprs[rt];
|
|
kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
|
|
*(u8 *) data);
|
|
|
|
break;
|
|
|
|
case sw_op:
|
|
bytes = 4;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
*(u32 *) data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *) data);
|
|
break;
|
|
|
|
case sh_op:
|
|
bytes = 2;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
*(u16 *) data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *) data);
|
|
break;
|
|
|
|
default:
|
|
kvm_err("Store not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
/* Rollback PC if emulation was unsuccessful */
|
|
if (er == EMULATE_FAIL)
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
|
|
u32 cause, struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DO_MMIO;
|
|
unsigned long curr_pc;
|
|
u32 op, rt;
|
|
u32 bytes;
|
|
|
|
rt = inst.i_format.rt;
|
|
op = inst.i_format.opcode;
|
|
|
|
/*
|
|
* Find the resume PC now while we have safe and easy access to the
|
|
* prior branch instruction, and save it for
|
|
* kvm_mips_complete_mmio_load() to restore later.
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
vcpu->arch.io_pc = vcpu->arch.pc;
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
vcpu->arch.io_gpr = rt;
|
|
|
|
switch (op) {
|
|
case lw_op:
|
|
bytes = 4;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 0;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 0;
|
|
break;
|
|
|
|
case lh_op:
|
|
case lhu_op:
|
|
bytes = 2;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 0;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 0;
|
|
|
|
if (op == lh_op)
|
|
vcpu->mmio_needed = 2;
|
|
else
|
|
vcpu->mmio_needed = 1;
|
|
|
|
break;
|
|
|
|
case lbu_op:
|
|
case lb_op:
|
|
bytes = 1;
|
|
if (bytes > sizeof(run->mmio.data)) {
|
|
kvm_err("%s: bad MMIO length: %d\n", __func__,
|
|
run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
run->mmio.phys_addr =
|
|
kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
|
|
host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
run->mmio.len = bytes;
|
|
run->mmio.is_write = 0;
|
|
vcpu->mmio_is_write = 0;
|
|
|
|
if (op == lb_op)
|
|
vcpu->mmio_needed = 2;
|
|
else
|
|
vcpu->mmio_needed = 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
kvm_err("Load not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
|
|
unsigned long curr_pc,
|
|
unsigned long addr,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu,
|
|
u32 cause)
|
|
{
|
|
int err;
|
|
|
|
for (;;) {
|
|
/* Carefully attempt the cache operation */
|
|
kvm_trap_emul_gva_lockless_begin(vcpu);
|
|
err = fn(addr);
|
|
kvm_trap_emul_gva_lockless_end(vcpu);
|
|
|
|
if (likely(!err))
|
|
return EMULATE_DONE;
|
|
|
|
/*
|
|
* Try to handle the fault and retry, maybe we just raced with a
|
|
* GVA invalidation.
|
|
*/
|
|
switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
|
|
case KVM_MIPS_GVA:
|
|
case KVM_MIPS_GPA:
|
|
/* bad virtual or physical address */
|
|
return EMULATE_FAIL;
|
|
case KVM_MIPS_TLB:
|
|
/* no matching guest TLB */
|
|
vcpu->arch.host_cp0_badvaddr = addr;
|
|
vcpu->arch.pc = curr_pc;
|
|
kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
|
|
return EMULATE_EXCEPT;
|
|
case KVM_MIPS_TLBINV:
|
|
/* invalid matching guest TLB */
|
|
vcpu->arch.host_cp0_badvaddr = addr;
|
|
vcpu->arch.pc = curr_pc;
|
|
kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
|
|
return EMULATE_EXCEPT;
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
|
|
u32 *opc, u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 cache, op_inst, op, base;
|
|
s16 offset;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long va;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
base = inst.i_format.rs;
|
|
op_inst = inst.i_format.rt;
|
|
if (cpu_has_mips_r6)
|
|
offset = inst.spec3_format.simmediate;
|
|
else
|
|
offset = inst.i_format.simmediate;
|
|
cache = op_inst & CacheOp_Cache;
|
|
op = op_inst & CacheOp_Op;
|
|
|
|
va = arch->gprs[base] + offset;
|
|
|
|
kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
cache, op, base, arch->gprs[base], offset);
|
|
|
|
/*
|
|
* Treat INDEX_INV as a nop, basically issued by Linux on startup to
|
|
* invalidate the caches entirely by stepping through all the
|
|
* ways/indexes
|
|
*/
|
|
if (op == Index_Writeback_Inv) {
|
|
kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
|
|
arch->gprs[base], offset);
|
|
|
|
if (cache == Cache_D)
|
|
r4k_blast_dcache();
|
|
else if (cache == Cache_I)
|
|
r4k_blast_icache();
|
|
else {
|
|
kvm_err("%s: unsupported CACHE INDEX operation\n",
|
|
__func__);
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_cache_index(inst, opc, vcpu);
|
|
#endif
|
|
goto done;
|
|
}
|
|
|
|
/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
|
|
if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
|
|
/*
|
|
* Perform the dcache part of icache synchronisation on the
|
|
* guest's behalf.
|
|
*/
|
|
er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/*
|
|
* Replace the CACHE instruction, with a SYNCI, not the same,
|
|
* but avoids a trap
|
|
*/
|
|
kvm_mips_trans_cache_va(inst, opc, vcpu);
|
|
#endif
|
|
} else if (op_inst == Hit_Invalidate_I) {
|
|
/* Perform the icache synchronisation on the guest's behalf */
|
|
er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
er = kvm_mips_guest_cache_op(protected_flush_icache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/* Replace the CACHE instruction, with a SYNCI */
|
|
kvm_mips_trans_cache_va(inst, opc, vcpu);
|
|
#endif
|
|
} else {
|
|
kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
cache, op, base, arch->gprs[base], offset);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
done:
|
|
/* Rollback PC only if emulation was unsuccessful */
|
|
if (er == EMULATE_FAIL)
|
|
vcpu->arch.pc = curr_pc;
|
|
/* Guest exception needs guest to resume */
|
|
if (er == EMULATE_EXCEPT)
|
|
er = EMULATE_DONE;
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
union mips_instruction inst;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
int err;
|
|
|
|
/* Fetch the instruction. */
|
|
if (cause & CAUSEF_BD)
|
|
opc += 1;
|
|
err = kvm_get_badinstr(opc, vcpu, &inst.word);
|
|
if (err)
|
|
return EMULATE_FAIL;
|
|
|
|
switch (inst.r_format.opcode) {
|
|
case cop0_op:
|
|
er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
|
|
break;
|
|
case sb_op:
|
|
case sh_op:
|
|
case sw_op:
|
|
er = kvm_mips_emulate_store(inst, cause, run, vcpu);
|
|
break;
|
|
case lb_op:
|
|
case lbu_op:
|
|
case lhu_op:
|
|
case lh_op:
|
|
case lw_op:
|
|
er = kvm_mips_emulate_load(inst, cause, run, vcpu);
|
|
break;
|
|
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case cache_op:
|
|
++vcpu->stat.cache_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
|
|
er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
|
|
break;
|
|
#else
|
|
case spec3_op:
|
|
switch (inst.spec3_format.func) {
|
|
case cache6_op:
|
|
++vcpu->stat.cache_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
|
|
er = kvm_mips_emulate_cache(inst, opc, cause, run,
|
|
vcpu);
|
|
break;
|
|
default:
|
|
goto unknown;
|
|
};
|
|
break;
|
|
unknown:
|
|
#endif
|
|
|
|
default:
|
|
kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
|
|
inst.word);
|
|
kvm_arch_vcpu_dump_regs(vcpu);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_guest_exception_base() - Find guest exception vector base address.
|
|
*
|
|
* Returns: The base address of the current guest exception vector, taking
|
|
* both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
|
|
*/
|
|
long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
|
|
return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
|
|
else
|
|
return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_syscall(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_SYS << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
/* set pc to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
|
|
|
|
} else {
|
|
kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
}
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBL << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi =
|
|
(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
/* set pc to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBL << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
}
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBS << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBS << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MOD << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
}
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_CPU << CAUSEB_EXCCODE));
|
|
kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_RI << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver RI when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_BP << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver BP when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TR << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver TRAP when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MSAFPE << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_FPE << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver FPE when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MSADIS << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver MSADIS when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
unsigned long curr_pc;
|
|
union mips_instruction inst;
|
|
int err;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
/* Fetch the instruction. */
|
|
if (cause & CAUSEF_BD)
|
|
opc += 1;
|
|
err = kvm_get_badinstr(opc, vcpu, &inst.word);
|
|
if (err) {
|
|
kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
if (inst.r_format.opcode == spec3_op &&
|
|
inst.r_format.func == rdhwr_op &&
|
|
inst.r_format.rs == 0 &&
|
|
(inst.r_format.re >> 3) == 0) {
|
|
int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
|
|
int rd = inst.r_format.rd;
|
|
int rt = inst.r_format.rt;
|
|
int sel = inst.r_format.re & 0x7;
|
|
|
|
/* If usermode, check RDHWR rd is allowed by guest HWREna */
|
|
if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
|
|
kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
|
|
rd, opc);
|
|
goto emulate_ri;
|
|
}
|
|
switch (rd) {
|
|
case MIPS_HWR_CPUNUM: /* CPU number */
|
|
arch->gprs[rt] = vcpu->vcpu_id;
|
|
break;
|
|
case MIPS_HWR_SYNCISTEP: /* SYNCI length */
|
|
arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
|
|
current_cpu_data.icache.linesz);
|
|
break;
|
|
case MIPS_HWR_CC: /* Read count register */
|
|
arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
|
|
break;
|
|
case MIPS_HWR_CCRES: /* Count register resolution */
|
|
switch (current_cpu_data.cputype) {
|
|
case CPU_20KC:
|
|
case CPU_25KF:
|
|
arch->gprs[rt] = 1;
|
|
break;
|
|
default:
|
|
arch->gprs[rt] = 2;
|
|
}
|
|
break;
|
|
case MIPS_HWR_ULR: /* Read UserLocal register */
|
|
arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
|
|
break;
|
|
|
|
default:
|
|
kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
|
|
goto emulate_ri;
|
|
}
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
} else {
|
|
kvm_debug("Emulate RI not supported @ %p: %#x\n",
|
|
opc, inst.word);
|
|
goto emulate_ri;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
|
|
emulate_ri:
|
|
/*
|
|
* Rollback PC (if in branch delay slot then the PC already points to
|
|
* branch target), and pass the RI exception to the guest OS.
|
|
*/
|
|
vcpu->arch.pc = curr_pc;
|
|
return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
|
|
}
|
|
|
|
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *run)
|
|
{
|
|
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if (run->mmio.len > sizeof(*gpr)) {
|
|
kvm_err("Bad MMIO length: %d", run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
/* Restore saved resume PC */
|
|
vcpu->arch.pc = vcpu->arch.io_pc;
|
|
|
|
switch (run->mmio.len) {
|
|
case 4:
|
|
*gpr = *(s32 *) run->mmio.data;
|
|
break;
|
|
|
|
case 2:
|
|
if (vcpu->mmio_needed == 2)
|
|
*gpr = *(s16 *) run->mmio.data;
|
|
else
|
|
*gpr = *(u16 *)run->mmio.data;
|
|
|
|
break;
|
|
case 1:
|
|
if (vcpu->mmio_needed == 2)
|
|
*gpr = *(s8 *) run->mmio.data;
|
|
else
|
|
*gpr = *(u8 *) run->mmio.data;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
return er;
|
|
}
|
|
|
|
static enum emulation_result kvm_mips_emulate_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(exccode << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
|
|
kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
|
|
exccode, kvm_read_c0_guest_epc(cop0),
|
|
kvm_read_c0_guest_badvaddr(cop0));
|
|
} else {
|
|
kvm_err("Trying to deliver EXC when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_check_privilege(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
|
|
|
|
int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
|
|
|
|
if (usermode) {
|
|
switch (exccode) {
|
|
case EXCCODE_INT:
|
|
case EXCCODE_SYS:
|
|
case EXCCODE_BP:
|
|
case EXCCODE_RI:
|
|
case EXCCODE_TR:
|
|
case EXCCODE_MSAFPE:
|
|
case EXCCODE_FPE:
|
|
case EXCCODE_MSADIS:
|
|
break;
|
|
|
|
case EXCCODE_CPU:
|
|
if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
|
|
case EXCCODE_MOD:
|
|
break;
|
|
|
|
case EXCCODE_TLBL:
|
|
/*
|
|
* We we are accessing Guest kernel space, then send an
|
|
* address error exception to the guest
|
|
*/
|
|
if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
|
|
kvm_debug("%s: LD MISS @ %#lx\n", __func__,
|
|
badvaddr);
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
|
|
er = EMULATE_PRIV_FAIL;
|
|
}
|
|
break;
|
|
|
|
case EXCCODE_TLBS:
|
|
/*
|
|
* We we are accessing Guest kernel space, then send an
|
|
* address error exception to the guest
|
|
*/
|
|
if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
|
|
kvm_debug("%s: ST MISS @ %#lx\n", __func__,
|
|
badvaddr);
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
|
|
er = EMULATE_PRIV_FAIL;
|
|
}
|
|
break;
|
|
|
|
case EXCCODE_ADES:
|
|
kvm_debug("%s: address error ST @ %#lx\n", __func__,
|
|
badvaddr);
|
|
if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
|
|
}
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
case EXCCODE_ADEL:
|
|
kvm_debug("%s: address error LD @ %#lx\n", __func__,
|
|
badvaddr);
|
|
if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
|
|
}
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
default:
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (er == EMULATE_PRIV_FAIL)
|
|
kvm_mips_emulate_exc(cause, opc, run, vcpu);
|
|
|
|
return er;
|
|
}
|
|
|
|
/*
|
|
* User Address (UA) fault, this could happen if
|
|
* (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
|
|
* case we pass on the fault to the guest kernel and let it handle it.
|
|
* (2) TLB entry is present in the Guest TLB but not in the shadow, in this
|
|
* case we inject the TLB from the Guest TLB into the shadow host TLB
|
|
*/
|
|
enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu,
|
|
bool write_fault)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
unsigned long va = vcpu->arch.host_cp0_badvaddr;
|
|
int index;
|
|
|
|
kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
|
|
/*
|
|
* KVM would not have got the exception if this entry was valid in the
|
|
* shadow host TLB. Check the Guest TLB, if the entry is not there then
|
|
* send the guest an exception. The guest exc handler should then inject
|
|
* an entry into the guest TLB.
|
|
*/
|
|
index = kvm_mips_guest_tlb_lookup(vcpu,
|
|
(va & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
|
|
KVM_ENTRYHI_ASID));
|
|
if (index < 0) {
|
|
if (exccode == EXCCODE_TLBL) {
|
|
er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
|
|
} else if (exccode == EXCCODE_TLBS) {
|
|
er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
|
|
} else {
|
|
kvm_err("%s: invalid exc code: %d\n", __func__,
|
|
exccode);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
} else {
|
|
struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
/*
|
|
* Check if the entry is valid, if not then setup a TLB invalid
|
|
* exception to the guest
|
|
*/
|
|
if (!TLB_IS_VALID(*tlb, va)) {
|
|
if (exccode == EXCCODE_TLBL) {
|
|
er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
|
|
vcpu);
|
|
} else if (exccode == EXCCODE_TLBS) {
|
|
er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
|
|
vcpu);
|
|
} else {
|
|
kvm_err("%s: invalid exc code: %d\n", __func__,
|
|
exccode);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
} else {
|
|
kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
|
|
tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
|
|
/*
|
|
* OK we have a Guest TLB entry, now inject it into the
|
|
* shadow host TLB
|
|
*/
|
|
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
|
|
write_fault)) {
|
|
kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
|
|
__func__, va, index, vcpu,
|
|
read_c0_entryhi());
|
|
er = EMULATE_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return er;
|
|
}
|