2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/drivers/iio/health/afe4404.c
Jonathan Cameron 73bba67096 iio:health: drop assign iio_info.driver_module and iio_trigger_ops.owner
The equivalent of both of these are now done via macro magic when
the relevant register calls are made.  The actual structure
elements will shortly go away.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-22 21:29:44 +01:00

636 lines
17 KiB
C

/*
* AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters
*
* Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include "afe440x.h"
#define AFE4404_DRIVER_NAME "afe4404"
/* AFE4404 registers */
#define AFE4404_TIA_GAIN_SEP 0x20
#define AFE4404_TIA_GAIN 0x21
#define AFE4404_PROG_TG_STC 0x34
#define AFE4404_PROG_TG_ENDC 0x35
#define AFE4404_LED3LEDSTC 0x36
#define AFE4404_LED3LEDENDC 0x37
#define AFE4404_CLKDIV_PRF 0x39
#define AFE4404_OFFDAC 0x3a
#define AFE4404_DEC 0x3d
#define AFE4404_AVG_LED2_ALED2VAL 0x3f
#define AFE4404_AVG_LED1_ALED1VAL 0x40
/* AFE4404 CONTROL2 register fields */
#define AFE440X_CONTROL2_OSC_ENABLE BIT(9)
enum afe4404_fields {
/* Gains */
F_TIA_GAIN_SEP, F_TIA_CF_SEP,
F_TIA_GAIN, TIA_CF,
/* LED Current */
F_ILED1, F_ILED2, F_ILED3,
/* Offset DAC */
F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2,
/* sentinel */
F_MAX_FIELDS
};
static const struct reg_field afe4404_reg_fields[] = {
/* Gains */
[F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2),
[F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5),
[F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2),
[TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5),
/* LED Current */
[F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5),
[F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11),
[F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17),
/* Offset DAC */
[F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4),
[F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9),
[F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14),
[F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19),
};
/**
* struct afe4404_data - AFE4404 device instance data
* @dev: Device structure
* @regmap: Register map of the device
* @fields: Register fields of the device
* @regulator: Pointer to the regulator for the IC
* @trig: IIO trigger for this device
* @irq: ADC_RDY line interrupt number
*/
struct afe4404_data {
struct device *dev;
struct regmap *regmap;
struct regmap_field *fields[F_MAX_FIELDS];
struct regulator *regulator;
struct iio_trigger *trig;
int irq;
};
enum afe4404_chan_id {
LED2 = 1,
ALED2,
LED1,
ALED1,
LED2_ALED2,
LED1_ALED1,
};
static const unsigned int afe4404_channel_values[] = {
[LED2] = AFE440X_LED2VAL,
[ALED2] = AFE440X_ALED2VAL,
[LED1] = AFE440X_LED1VAL,
[ALED1] = AFE440X_ALED1VAL,
[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
};
static const unsigned int afe4404_channel_leds[] = {
[LED2] = F_ILED2,
[ALED2] = F_ILED3,
[LED1] = F_ILED1,
};
static const unsigned int afe4404_channel_offdacs[] = {
[LED2] = F_OFFDAC_LED2,
[ALED2] = F_OFFDAC_AMB2,
[LED1] = F_OFFDAC_LED1,
[ALED1] = F_OFFDAC_AMB1,
};
static const struct iio_chan_spec afe4404_channels[] = {
/* ADC values */
AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
/* LED current */
AFE440X_CURRENT_CHAN(LED2),
AFE440X_CURRENT_CHAN(ALED2),
AFE440X_CURRENT_CHAN(LED1),
};
static const struct afe440x_val_table afe4404_res_table[] = {
{ .integer = 500000, .fract = 0 },
{ .integer = 250000, .fract = 0 },
{ .integer = 100000, .fract = 0 },
{ .integer = 50000, .fract = 0 },
{ .integer = 25000, .fract = 0 },
{ .integer = 10000, .fract = 0 },
{ .integer = 1000000, .fract = 0 },
{ .integer = 2000000, .fract = 0 },
};
AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table);
static const struct afe440x_val_table afe4404_cap_table[] = {
{ .integer = 0, .fract = 5000 },
{ .integer = 0, .fract = 2500 },
{ .integer = 0, .fract = 10000 },
{ .integer = 0, .fract = 7500 },
{ .integer = 0, .fract = 20000 },
{ .integer = 0, .fract = 17500 },
{ .integer = 0, .fract = 25000 },
{ .integer = 0, .fract = 22500 },
};
AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table);
static ssize_t afe440x_show_register(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4404_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
unsigned int reg_val;
int vals[2];
int ret;
ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
if (ret)
return ret;
if (reg_val >= afe440x_attr->table_size)
return -EINVAL;
vals[0] = afe440x_attr->val_table[reg_val].integer;
vals[1] = afe440x_attr->val_table[reg_val].fract;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
}
static ssize_t afe440x_store_register(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4404_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
int val, integer, fract, ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
if (ret)
return ret;
for (val = 0; val < afe440x_attr->table_size; val++)
if (afe440x_attr->val_table[val].integer == integer &&
afe440x_attr->val_table[val].fract == fract)
break;
if (val == afe440x_attr->table_size)
return -EINVAL;
ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
if (ret)
return ret;
return count;
}
static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table);
static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table);
static struct attribute *afe440x_attributes[] = {
&dev_attr_in_intensity_resistance_available.attr,
&dev_attr_in_intensity_capacitance_available.attr,
&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
NULL
};
static const struct attribute_group afe440x_attribute_group = {
.attrs = afe440x_attributes
};
static int afe4404_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct afe4404_data *afe = iio_priv(indio_dev);
unsigned int value_reg = afe4404_channel_values[chan->address];
unsigned int led_field = afe4404_channel_leds[chan->address];
unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
int ret;
switch (chan->type) {
case IIO_INTENSITY:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_read(afe->regmap, value_reg, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
ret = regmap_field_read(afe->fields[offdac_field], val);
if (ret)
return ret;
return IIO_VAL_INT;
}
break;
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_field_read(afe->fields[led_field], val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = 800000;
return IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
return -EINVAL;
}
static int afe4404_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct afe4404_data *afe = iio_priv(indio_dev);
unsigned int led_field = afe4404_channel_leds[chan->address];
unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
switch (chan->type) {
case IIO_INTENSITY:
switch (mask) {
case IIO_CHAN_INFO_OFFSET:
return regmap_field_write(afe->fields[offdac_field], val);
}
break;
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
return regmap_field_write(afe->fields[led_field], val);
}
break;
default:
break;
}
return -EINVAL;
}
static const struct iio_info afe4404_iio_info = {
.attrs = &afe440x_attribute_group,
.read_raw = afe4404_read_raw,
.write_raw = afe4404_write_raw,
};
static irqreturn_t afe4404_trigger_handler(int irq, void *private)
{
struct iio_poll_func *pf = private;
struct iio_dev *indio_dev = pf->indio_dev;
struct afe4404_data *afe = iio_priv(indio_dev);
int ret, bit, i = 0;
s32 buffer[10];
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = regmap_read(afe->regmap, afe4404_channel_values[bit],
&buffer[i++]);
if (ret)
goto err;
}
iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_trigger_ops afe4404_trigger_ops = {
};
/* Default timings from data-sheet */
#define AFE4404_TIMING_PAIRS \
{ AFE440X_PRPCOUNT, 39999 }, \
{ AFE440X_LED2LEDSTC, 0 }, \
{ AFE440X_LED2LEDENDC, 398 }, \
{ AFE440X_LED2STC, 80 }, \
{ AFE440X_LED2ENDC, 398 }, \
{ AFE440X_ADCRSTSTCT0, 5600 }, \
{ AFE440X_ADCRSTENDCT0, 5606 }, \
{ AFE440X_LED2CONVST, 5607 }, \
{ AFE440X_LED2CONVEND, 6066 }, \
{ AFE4404_LED3LEDSTC, 400 }, \
{ AFE4404_LED3LEDENDC, 798 }, \
{ AFE440X_ALED2STC, 480 }, \
{ AFE440X_ALED2ENDC, 798 }, \
{ AFE440X_ADCRSTSTCT1, 6068 }, \
{ AFE440X_ADCRSTENDCT1, 6074 }, \
{ AFE440X_ALED2CONVST, 6075 }, \
{ AFE440X_ALED2CONVEND, 6534 }, \
{ AFE440X_LED1LEDSTC, 800 }, \
{ AFE440X_LED1LEDENDC, 1198 }, \
{ AFE440X_LED1STC, 880 }, \
{ AFE440X_LED1ENDC, 1198 }, \
{ AFE440X_ADCRSTSTCT2, 6536 }, \
{ AFE440X_ADCRSTENDCT2, 6542 }, \
{ AFE440X_LED1CONVST, 6543 }, \
{ AFE440X_LED1CONVEND, 7003 }, \
{ AFE440X_ALED1STC, 1280 }, \
{ AFE440X_ALED1ENDC, 1598 }, \
{ AFE440X_ADCRSTSTCT3, 7005 }, \
{ AFE440X_ADCRSTENDCT3, 7011 }, \
{ AFE440X_ALED1CONVST, 7012 }, \
{ AFE440X_ALED1CONVEND, 7471 }, \
{ AFE440X_PDNCYCLESTC, 7671 }, \
{ AFE440X_PDNCYCLEENDC, 39199 }
static const struct reg_sequence afe4404_reg_sequences[] = {
AFE4404_TIMING_PAIRS,
{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
{ AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN },
{ AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE },
};
static const struct regmap_range afe4404_yes_ranges[] = {
regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL),
};
static const struct regmap_access_table afe4404_volatile_table = {
.yes_ranges = afe4404_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges),
};
static const struct regmap_config afe4404_regmap_config = {
.reg_bits = 8,
.val_bits = 24,
.max_register = AFE4404_AVG_LED1_ALED1VAL,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &afe4404_volatile_table,
};
static const struct of_device_id afe4404_of_match[] = {
{ .compatible = "ti,afe4404", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, afe4404_of_match);
static int __maybe_unused afe4404_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE,
AFE440X_CONTROL2_PDN_AFE);
if (ret)
return ret;
ret = regulator_disable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to disable regulator\n");
return ret;
}
return 0;
}
static int __maybe_unused afe4404_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE, 0);
if (ret)
return ret;
return 0;
}
static SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend, afe4404_resume);
static int afe4404_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct afe4404_data *afe;
int i, ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe));
if (!indio_dev)
return -ENOMEM;
afe = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
afe->dev = &client->dev;
afe->irq = client->irq;
afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config);
if (IS_ERR(afe->regmap)) {
dev_err(afe->dev, "Unable to allocate register map\n");
return PTR_ERR(afe->regmap);
}
for (i = 0; i < F_MAX_FIELDS; i++) {
afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
afe4404_reg_fields[i]);
if (IS_ERR(afe->fields[i])) {
dev_err(afe->dev, "Unable to allocate regmap fields\n");
return PTR_ERR(afe->fields[i]);
}
}
afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
if (IS_ERR(afe->regulator)) {
dev_err(afe->dev, "Unable to get regulator\n");
return PTR_ERR(afe->regulator);
}
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(afe->dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
AFE440X_CONTROL0_SW_RESET);
if (ret) {
dev_err(afe->dev, "Unable to reset device\n");
goto disable_reg;
}
ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences,
ARRAY_SIZE(afe4404_reg_sequences));
if (ret) {
dev_err(afe->dev, "Unable to set register defaults\n");
goto disable_reg;
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->dev.parent = afe->dev;
indio_dev->channels = afe4404_channels;
indio_dev->num_channels = ARRAY_SIZE(afe4404_channels);
indio_dev->name = AFE4404_DRIVER_NAME;
indio_dev->info = &afe4404_iio_info;
if (afe->irq > 0) {
afe->trig = devm_iio_trigger_alloc(afe->dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!afe->trig) {
dev_err(afe->dev, "Unable to allocate IIO trigger\n");
ret = -ENOMEM;
goto disable_reg;
}
iio_trigger_set_drvdata(afe->trig, indio_dev);
afe->trig->ops = &afe4404_trigger_ops;
afe->trig->dev.parent = afe->dev;
ret = iio_trigger_register(afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to register IIO trigger\n");
goto disable_reg;
}
ret = devm_request_threaded_irq(afe->dev, afe->irq,
iio_trigger_generic_data_rdy_poll,
NULL, IRQF_ONESHOT,
AFE4404_DRIVER_NAME,
afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to request IRQ\n");
goto disable_reg;
}
}
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
afe4404_trigger_handler, NULL);
if (ret) {
dev_err(afe->dev, "Unable to setup buffer\n");
goto unregister_trigger;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(afe->dev, "Unable to register IIO device\n");
goto unregister_triggered_buffer;
}
return 0;
unregister_triggered_buffer:
iio_triggered_buffer_cleanup(indio_dev);
unregister_trigger:
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
disable_reg:
regulator_disable(afe->regulator);
return ret;
}
static int afe4404_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
ret = regulator_disable(afe->regulator);
if (ret) {
dev_err(afe->dev, "Unable to disable regulator\n");
return ret;
}
return 0;
}
static const struct i2c_device_id afe4404_ids[] = {
{ "afe4404", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, afe4404_ids);
static struct i2c_driver afe4404_i2c_driver = {
.driver = {
.name = AFE4404_DRIVER_NAME,
.of_match_table = afe4404_of_match,
.pm = &afe4404_pm_ops,
},
.probe = afe4404_probe,
.remove = afe4404_remove,
.id_table = afe4404_ids,
};
module_i2c_driver(afe4404_i2c_driver);
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE");
MODULE_LICENSE("GPL v2");