2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-20 11:34:02 +08:00
linux-next/arch/x86/mm/mem_encrypt.c
Ashish Kalra e998879d4f x86,swiotlb: Adjust SWIOTLB bounce buffer size for SEV guests
For SEV, all DMA to and from guest has to use shared (un-encrypted) pages.
SEV uses SWIOTLB to make this happen without requiring changes to device
drivers.  However, depending on the workload being run, the default 64MB
of it might not be enough and it may run out of buffers to use for DMA,
resulting in I/O errors and/or performance degradation for high
I/O workloads.

Adjust the default size of SWIOTLB for SEV guests using a
percentage of the total memory available to guest for the SWIOTLB buffers.

Adds a new sev_setup_arch() function which is invoked from setup_arch()
and it calls into a new swiotlb generic code function swiotlb_adjust_size()
to do the SWIOTLB buffer adjustment.

v5 fixed build errors and warnings as
Reported-by: kbuild test robot <lkp@intel.com>

Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2020-12-11 15:43:41 -05:00

485 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Memory Encryption Support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*/
#define DISABLE_BRANCH_PROFILING
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/swiotlb.h>
#include <linux/mem_encrypt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <asm/tlbflush.h>
#include <asm/fixmap.h>
#include <asm/setup.h>
#include <asm/bootparam.h>
#include <asm/set_memory.h>
#include <asm/cacheflush.h>
#include <asm/processor-flags.h>
#include <asm/msr.h>
#include <asm/cmdline.h>
#include "mm_internal.h"
/*
* Since SME related variables are set early in the boot process they must
* reside in the .data section so as not to be zeroed out when the .bss
* section is later cleared.
*/
u64 sme_me_mask __section(".data") = 0;
u64 sev_status __section(".data") = 0;
u64 sev_check_data __section(".data") = 0;
EXPORT_SYMBOL(sme_me_mask);
DEFINE_STATIC_KEY_FALSE(sev_enable_key);
EXPORT_SYMBOL_GPL(sev_enable_key);
bool sev_enabled __section(".data");
/* Buffer used for early in-place encryption by BSP, no locking needed */
static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
/*
* This routine does not change the underlying encryption setting of the
* page(s) that map this memory. It assumes that eventually the memory is
* meant to be accessed as either encrypted or decrypted but the contents
* are currently not in the desired state.
*
* This routine follows the steps outlined in the AMD64 Architecture
* Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
*/
static void __init __sme_early_enc_dec(resource_size_t paddr,
unsigned long size, bool enc)
{
void *src, *dst;
size_t len;
if (!sme_me_mask)
return;
wbinvd();
/*
* There are limited number of early mapping slots, so map (at most)
* one page at time.
*/
while (size) {
len = min_t(size_t, sizeof(sme_early_buffer), size);
/*
* Create mappings for the current and desired format of
* the memory. Use a write-protected mapping for the source.
*/
src = enc ? early_memremap_decrypted_wp(paddr, len) :
early_memremap_encrypted_wp(paddr, len);
dst = enc ? early_memremap_encrypted(paddr, len) :
early_memremap_decrypted(paddr, len);
/*
* If a mapping can't be obtained to perform the operation,
* then eventual access of that area in the desired mode
* will cause a crash.
*/
BUG_ON(!src || !dst);
/*
* Use a temporary buffer, of cache-line multiple size, to
* avoid data corruption as documented in the APM.
*/
memcpy(sme_early_buffer, src, len);
memcpy(dst, sme_early_buffer, len);
early_memunmap(dst, len);
early_memunmap(src, len);
paddr += len;
size -= len;
}
}
void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
{
__sme_early_enc_dec(paddr, size, true);
}
void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
{
__sme_early_enc_dec(paddr, size, false);
}
static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
bool map)
{
unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
pmdval_t pmd_flags, pmd;
/* Use early_pmd_flags but remove the encryption mask */
pmd_flags = __sme_clr(early_pmd_flags);
do {
pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
__early_make_pgtable((unsigned long)vaddr, pmd);
vaddr += PMD_SIZE;
paddr += PMD_SIZE;
size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
} while (size);
flush_tlb_local();
}
void __init sme_unmap_bootdata(char *real_mode_data)
{
struct boot_params *boot_data;
unsigned long cmdline_paddr;
if (!sme_active())
return;
/* Get the command line address before unmapping the real_mode_data */
boot_data = (struct boot_params *)real_mode_data;
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
if (!cmdline_paddr)
return;
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
}
void __init sme_map_bootdata(char *real_mode_data)
{
struct boot_params *boot_data;
unsigned long cmdline_paddr;
if (!sme_active())
return;
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
/* Get the command line address after mapping the real_mode_data */
boot_data = (struct boot_params *)real_mode_data;
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
if (!cmdline_paddr)
return;
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
}
void __init sme_early_init(void)
{
unsigned int i;
if (!sme_me_mask)
return;
early_pmd_flags = __sme_set(early_pmd_flags);
__supported_pte_mask = __sme_set(__supported_pte_mask);
/* Update the protection map with memory encryption mask */
for (i = 0; i < ARRAY_SIZE(protection_map); i++)
protection_map[i] = pgprot_encrypted(protection_map[i]);
if (sev_active())
swiotlb_force = SWIOTLB_FORCE;
}
void __init sev_setup_arch(void)
{
phys_addr_t total_mem = memblock_phys_mem_size();
unsigned long size;
if (!sev_active())
return;
/*
* For SEV, all DMA has to occur via shared/unencrypted pages.
* SEV uses SWIOTLB to make this happen without changing device
* drivers. However, depending on the workload being run, the
* default 64MB of SWIOTLB may not be enough and SWIOTLB may
* run out of buffers for DMA, resulting in I/O errors and/or
* performance degradation especially with high I/O workloads.
*
* Adjust the default size of SWIOTLB for SEV guests using
* a percentage of guest memory for SWIOTLB buffers.
* Also, as the SWIOTLB bounce buffer memory is allocated
* from low memory, ensure that the adjusted size is within
* the limits of low available memory.
*
* The percentage of guest memory used here for SWIOTLB buffers
* is more of an approximation of the static adjustment which
* 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
*/
size = total_mem * 6 / 100;
size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
swiotlb_adjust_size(size);
}
static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
{
pgprot_t old_prot, new_prot;
unsigned long pfn, pa, size;
pte_t new_pte;
switch (level) {
case PG_LEVEL_4K:
pfn = pte_pfn(*kpte);
old_prot = pte_pgprot(*kpte);
break;
case PG_LEVEL_2M:
pfn = pmd_pfn(*(pmd_t *)kpte);
old_prot = pmd_pgprot(*(pmd_t *)kpte);
break;
case PG_LEVEL_1G:
pfn = pud_pfn(*(pud_t *)kpte);
old_prot = pud_pgprot(*(pud_t *)kpte);
break;
default:
return;
}
new_prot = old_prot;
if (enc)
pgprot_val(new_prot) |= _PAGE_ENC;
else
pgprot_val(new_prot) &= ~_PAGE_ENC;
/* If prot is same then do nothing. */
if (pgprot_val(old_prot) == pgprot_val(new_prot))
return;
pa = pfn << page_level_shift(level);
size = page_level_size(level);
/*
* We are going to perform in-place en-/decryption and change the
* physical page attribute from C=1 to C=0 or vice versa. Flush the
* caches to ensure that data gets accessed with the correct C-bit.
*/
clflush_cache_range(__va(pa), size);
/* Encrypt/decrypt the contents in-place */
if (enc)
sme_early_encrypt(pa, size);
else
sme_early_decrypt(pa, size);
/* Change the page encryption mask. */
new_pte = pfn_pte(pfn, new_prot);
set_pte_atomic(kpte, new_pte);
}
static int __init early_set_memory_enc_dec(unsigned long vaddr,
unsigned long size, bool enc)
{
unsigned long vaddr_end, vaddr_next;
unsigned long psize, pmask;
int split_page_size_mask;
int level, ret;
pte_t *kpte;
vaddr_next = vaddr;
vaddr_end = vaddr + size;
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
kpte = lookup_address(vaddr, &level);
if (!kpte || pte_none(*kpte)) {
ret = 1;
goto out;
}
if (level == PG_LEVEL_4K) {
__set_clr_pte_enc(kpte, level, enc);
vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
continue;
}
psize = page_level_size(level);
pmask = page_level_mask(level);
/*
* Check whether we can change the large page in one go.
* We request a split when the address is not aligned and
* the number of pages to set/clear encryption bit is smaller
* than the number of pages in the large page.
*/
if (vaddr == (vaddr & pmask) &&
((vaddr_end - vaddr) >= psize)) {
__set_clr_pte_enc(kpte, level, enc);
vaddr_next = (vaddr & pmask) + psize;
continue;
}
/*
* The virtual address is part of a larger page, create the next
* level page table mapping (4K or 2M). If it is part of a 2M
* page then we request a split of the large page into 4K
* chunks. A 1GB large page is split into 2M pages, resp.
*/
if (level == PG_LEVEL_2M)
split_page_size_mask = 0;
else
split_page_size_mask = 1 << PG_LEVEL_2M;
/*
* kernel_physical_mapping_change() does not flush the TLBs, so
* a TLB flush is required after we exit from the for loop.
*/
kernel_physical_mapping_change(__pa(vaddr & pmask),
__pa((vaddr_end & pmask) + psize),
split_page_size_mask);
}
ret = 0;
out:
__flush_tlb_all();
return ret;
}
int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
{
return early_set_memory_enc_dec(vaddr, size, false);
}
int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
{
return early_set_memory_enc_dec(vaddr, size, true);
}
/*
* SME and SEV are very similar but they are not the same, so there are
* times that the kernel will need to distinguish between SME and SEV. The
* sme_active() and sev_active() functions are used for this. When a
* distinction isn't needed, the mem_encrypt_active() function can be used.
*
* The trampoline code is a good example for this requirement. Before
* paging is activated, SME will access all memory as decrypted, but SEV
* will access all memory as encrypted. So, when APs are being brought
* up under SME the trampoline area cannot be encrypted, whereas under SEV
* the trampoline area must be encrypted.
*/
bool sme_active(void)
{
return sme_me_mask && !sev_enabled;
}
bool sev_active(void)
{
return sev_status & MSR_AMD64_SEV_ENABLED;
}
/* Needs to be called from non-instrumentable code */
bool noinstr sev_es_active(void)
{
return sev_status & MSR_AMD64_SEV_ES_ENABLED;
}
/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
bool force_dma_unencrypted(struct device *dev)
{
/*
* For SEV, all DMA must be to unencrypted addresses.
*/
if (sev_active())
return true;
/*
* For SME, all DMA must be to unencrypted addresses if the
* device does not support DMA to addresses that include the
* encryption mask.
*/
if (sme_active()) {
u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
dev->bus_dma_limit);
if (dma_dev_mask <= dma_enc_mask)
return true;
}
return false;
}
void __init mem_encrypt_free_decrypted_mem(void)
{
unsigned long vaddr, vaddr_end, npages;
int r;
vaddr = (unsigned long)__start_bss_decrypted_unused;
vaddr_end = (unsigned long)__end_bss_decrypted;
npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
/*
* The unused memory range was mapped decrypted, change the encryption
* attribute from decrypted to encrypted before freeing it.
*/
if (mem_encrypt_active()) {
r = set_memory_encrypted(vaddr, npages);
if (r) {
pr_warn("failed to free unused decrypted pages\n");
return;
}
}
free_init_pages("unused decrypted", vaddr, vaddr_end);
}
static void print_mem_encrypt_feature_info(void)
{
pr_info("AMD Memory Encryption Features active:");
/* Secure Memory Encryption */
if (sme_active()) {
/*
* SME is mutually exclusive with any of the SEV
* features below.
*/
pr_cont(" SME\n");
return;
}
/* Secure Encrypted Virtualization */
if (sev_active())
pr_cont(" SEV");
/* Encrypted Register State */
if (sev_es_active())
pr_cont(" SEV-ES");
pr_cont("\n");
}
/* Architecture __weak replacement functions */
void __init mem_encrypt_init(void)
{
if (!sme_me_mask)
return;
/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
swiotlb_update_mem_attributes();
/*
* With SEV, we need to unroll the rep string I/O instructions.
*/
if (sev_active())
static_branch_enable(&sev_enable_key);
print_mem_encrypt_feature_info();
}