2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 23:23:52 +08:00
linux-next/include/linux/compiler.h
Will Deacon 76ebbe78f7 locking/barriers: Add implicit smp_read_barrier_depends() to READ_ONCE()
In preparation for the removal of lockless_dereference(), which is the
same as READ_ONCE() on all architectures other than Alpha, add an
implicit smp_read_barrier_depends() to READ_ONCE() so that it can be
used to head dependency chains on all architectures.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-3-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 13:17:32 +02:00

370 lines
12 KiB
C

#ifndef __LINUX_COMPILER_H
#define __LINUX_COMPILER_H
#include <linux/compiler_types.h>
#ifndef __ASSEMBLY__
#ifdef __KERNEL__
/*
* Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
* to disable branch tracing on a per file basis.
*/
#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
&& !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
void ftrace_likely_update(struct ftrace_likely_data *f, int val,
int expect, int is_constant);
#define likely_notrace(x) __builtin_expect(!!(x), 1)
#define unlikely_notrace(x) __builtin_expect(!!(x), 0)
#define __branch_check__(x, expect, is_constant) ({ \
int ______r; \
static struct ftrace_likely_data \
__attribute__((__aligned__(4))) \
__attribute__((section("_ftrace_annotated_branch"))) \
______f = { \
.data.func = __func__, \
.data.file = __FILE__, \
.data.line = __LINE__, \
}; \
______r = __builtin_expect(!!(x), expect); \
ftrace_likely_update(&______f, ______r, \
expect, is_constant); \
______r; \
})
/*
* Using __builtin_constant_p(x) to ignore cases where the return
* value is always the same. This idea is taken from a similar patch
* written by Daniel Walker.
*/
# ifndef likely
# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
# endif
# ifndef unlikely
# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
# endif
#ifdef CONFIG_PROFILE_ALL_BRANCHES
/*
* "Define 'is'", Bill Clinton
* "Define 'if'", Steven Rostedt
*/
#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
#define __trace_if(cond) \
if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
({ \
int ______r; \
static struct ftrace_branch_data \
__attribute__((__aligned__(4))) \
__attribute__((section("_ftrace_branch"))) \
______f = { \
.func = __func__, \
.file = __FILE__, \
.line = __LINE__, \
}; \
______r = !!(cond); \
______f.miss_hit[______r]++; \
______r; \
}))
#endif /* CONFIG_PROFILE_ALL_BRANCHES */
#else
# define likely(x) __builtin_expect(!!(x), 1)
# define unlikely(x) __builtin_expect(!!(x), 0)
#endif
/* Optimization barrier */
#ifndef barrier
# define barrier() __memory_barrier()
#endif
#ifndef barrier_data
# define barrier_data(ptr) barrier()
#endif
/* Unreachable code */
#ifdef CONFIG_STACK_VALIDATION
#define annotate_reachable() ({ \
asm("%c0:\n\t" \
".pushsection .discard.reachable\n\t" \
".long %c0b - .\n\t" \
".popsection\n\t" : : "i" (__LINE__)); \
})
#define annotate_unreachable() ({ \
asm("%c0:\n\t" \
".pushsection .discard.unreachable\n\t" \
".long %c0b - .\n\t" \
".popsection\n\t" : : "i" (__LINE__)); \
})
#define ASM_UNREACHABLE \
"999:\n\t" \
".pushsection .discard.unreachable\n\t" \
".long 999b - .\n\t" \
".popsection\n\t"
#else
#define annotate_reachable()
#define annotate_unreachable()
#endif
#ifndef ASM_UNREACHABLE
# define ASM_UNREACHABLE
#endif
#ifndef unreachable
# define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
#endif
/*
* KENTRY - kernel entry point
* This can be used to annotate symbols (functions or data) that are used
* without their linker symbol being referenced explicitly. For example,
* interrupt vector handlers, or functions in the kernel image that are found
* programatically.
*
* Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
* are handled in their own way (with KEEP() in linker scripts).
*
* KENTRY can be avoided if the symbols in question are marked as KEEP() in the
* linker script. For example an architecture could KEEP() its entire
* boot/exception vector code rather than annotate each function and data.
*/
#ifndef KENTRY
# define KENTRY(sym) \
extern typeof(sym) sym; \
static const unsigned long __kentry_##sym \
__used \
__attribute__((section("___kentry" "+" #sym ), used)) \
= (unsigned long)&sym;
#endif
#ifndef RELOC_HIDE
# define RELOC_HIDE(ptr, off) \
({ unsigned long __ptr; \
__ptr = (unsigned long) (ptr); \
(typeof(ptr)) (__ptr + (off)); })
#endif
#ifndef OPTIMIZER_HIDE_VAR
#define OPTIMIZER_HIDE_VAR(var) barrier()
#endif
/* Not-quite-unique ID. */
#ifndef __UNIQUE_ID
# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
#endif
#include <uapi/linux/types.h>
#define __READ_ONCE_SIZE \
({ \
switch (size) { \
case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
default: \
barrier(); \
__builtin_memcpy((void *)res, (const void *)p, size); \
barrier(); \
} \
})
static __always_inline
void __read_once_size(const volatile void *p, void *res, int size)
{
__READ_ONCE_SIZE;
}
#ifdef CONFIG_KASAN
/*
* This function is not 'inline' because __no_sanitize_address confilcts
* with inlining. Attempt to inline it may cause a build failure.
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
* '__maybe_unused' allows us to avoid defined-but-not-used warnings.
*/
static __no_sanitize_address __maybe_unused
void __read_once_size_nocheck(const volatile void *p, void *res, int size)
{
__READ_ONCE_SIZE;
}
#else
static __always_inline
void __read_once_size_nocheck(const volatile void *p, void *res, int size)
{
__READ_ONCE_SIZE;
}
#endif
static __always_inline void __write_once_size(volatile void *p, void *res, int size)
{
switch (size) {
case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
default:
barrier();
__builtin_memcpy((void *)p, (const void *)res, size);
barrier();
}
}
/*
* Prevent the compiler from merging or refetching reads or writes. The
* compiler is also forbidden from reordering successive instances of
* READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
* compiler is aware of some particular ordering. One way to make the
* compiler aware of ordering is to put the two invocations of READ_ONCE,
* WRITE_ONCE or ACCESS_ONCE() in different C statements.
*
* In contrast to ACCESS_ONCE these two macros will also work on aggregate
* data types like structs or unions. If the size of the accessed data
* type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
* READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
* least two memcpy()s: one for the __builtin_memcpy() and then one for
* the macro doing the copy of variable - '__u' allocated on the stack.
*
* Their two major use cases are: (1) Mediating communication between
* process-level code and irq/NMI handlers, all running on the same CPU,
* and (2) Ensuring that the compiler does not fold, spindle, or otherwise
* mutilate accesses that either do not require ordering or that interact
* with an explicit memory barrier or atomic instruction that provides the
* required ordering.
*/
#include <asm/barrier.h>
#define __READ_ONCE(x, check) \
({ \
union { typeof(x) __val; char __c[1]; } __u; \
if (check) \
__read_once_size(&(x), __u.__c, sizeof(x)); \
else \
__read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
__u.__val; \
})
#define READ_ONCE(x) __READ_ONCE(x, 1)
/*
* Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
* to hide memory access from KASAN.
*/
#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
#define WRITE_ONCE(x, val) \
({ \
union { typeof(x) __val; char __c[1]; } __u = \
{ .__val = (__force typeof(x)) (val) }; \
__write_once_size(&(x), __u.__c, sizeof(x)); \
__u.__val; \
})
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
/* Compile time object size, -1 for unknown */
#ifndef __compiletime_object_size
# define __compiletime_object_size(obj) -1
#endif
#ifndef __compiletime_warning
# define __compiletime_warning(message)
#endif
#ifndef __compiletime_error
# define __compiletime_error(message)
/*
* Sparse complains of variable sized arrays due to the temporary variable in
* __compiletime_assert. Unfortunately we can't just expand it out to make
* sparse see a constant array size without breaking compiletime_assert on old
* versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
*/
# ifndef __CHECKER__
# define __compiletime_error_fallback(condition) \
do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
# endif
#endif
#ifndef __compiletime_error_fallback
# define __compiletime_error_fallback(condition) do { } while (0)
#endif
#ifdef __OPTIMIZE__
# define __compiletime_assert(condition, msg, prefix, suffix) \
do { \
bool __cond = !(condition); \
extern void prefix ## suffix(void) __compiletime_error(msg); \
if (__cond) \
prefix ## suffix(); \
__compiletime_error_fallback(__cond); \
} while (0)
#else
# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
#endif
#define _compiletime_assert(condition, msg, prefix, suffix) \
__compiletime_assert(condition, msg, prefix, suffix)
/**
* compiletime_assert - break build and emit msg if condition is false
* @condition: a compile-time constant condition to check
* @msg: a message to emit if condition is false
*
* In tradition of POSIX assert, this macro will break the build if the
* supplied condition is *false*, emitting the supplied error message if the
* compiler has support to do so.
*/
#define compiletime_assert(condition, msg) \
_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
#define compiletime_assert_atomic_type(t) \
compiletime_assert(__native_word(t), \
"Need native word sized stores/loads for atomicity.")
/*
* Prevent the compiler from merging or refetching accesses. The compiler
* is also forbidden from reordering successive instances of ACCESS_ONCE(),
* but only when the compiler is aware of some particular ordering. One way
* to make the compiler aware of ordering is to put the two invocations of
* ACCESS_ONCE() in different C statements.
*
* ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
* on a union member will work as long as the size of the member matches the
* size of the union and the size is smaller than word size.
*
* The major use cases of ACCESS_ONCE used to be (1) Mediating communication
* between process-level code and irq/NMI handlers, all running on the same CPU,
* and (2) Ensuring that the compiler does not fold, spindle, or otherwise
* mutilate accesses that either do not require ordering or that interact
* with an explicit memory barrier or atomic instruction that provides the
* required ordering.
*
* If possible use READ_ONCE()/WRITE_ONCE() instead.
*/
#define __ACCESS_ONCE(x) ({ \
__maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
(volatile typeof(x) *)&(x); })
#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
/**
* lockless_dereference() - safely load a pointer for later dereference
* @p: The pointer to load
*
* Similar to rcu_dereference(), but for situations where the pointed-to
* object's lifetime is managed by something other than RCU. That
* "something other" might be reference counting or simple immortality.
*
* The seemingly unused variable ___typecheck_p validates that @p is
* indeed a pointer type by using a pointer to typeof(*p) as the type.
* Taking a pointer to typeof(*p) again is needed in case p is void *.
*/
#define lockless_dereference(p) \
({ \
typeof(p) _________p1 = READ_ONCE(p); \
typeof(*(p)) *___typecheck_p __maybe_unused; \
smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
(_________p1); \
})
#endif /* __LINUX_COMPILER_H */