2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/hwmon/emc1403.c
Stephen Kitt 6748703856 hwmon: use simple i2c probe function
Many hwmon drivers don't use the id information provided by the old
i2c probe function, and the remainder can easily be adapted to the new
form ("probe_new") by calling i2c_match_id explicitly.

This avoids scanning the identifier tables during probes.

Drivers which didn't use the id are converted as-is; drivers which did
are modified as follows:

* if the information in i2c_client is sufficient, that's used instead
  (client->name);
* anything else is handled by calling i2c_match_id() with the same
  level of error-handling (if any) as before.

A few drivers aren't included in this patch because they have a
different set of maintainers. They will be covered by other patches.

Signed-off-by: Stephen Kitt <steve@sk2.org>
Link: https://lore.kernel.org/r/20200813160222.1503401-1-steve@sk2.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-09-23 09:42:39 -07:00

467 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* emc1403.c - SMSC Thermal Driver
*
* Copyright (C) 2008 Intel Corp
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/sysfs.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#define THERMAL_PID_REG 0xfd
#define THERMAL_SMSC_ID_REG 0xfe
#define THERMAL_REVISION_REG 0xff
enum emc1403_chip { emc1402, emc1403, emc1404 };
struct thermal_data {
struct regmap *regmap;
struct mutex mutex;
const struct attribute_group *groups[4];
};
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned int val;
int retval;
retval = regmap_read(data->regmap, sda->index, &val);
if (retval < 0)
return retval;
return sprintf(buf, "%d000\n", val);
}
static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned int val;
int retval;
retval = regmap_read(data->regmap, sda->nr, &val);
if (retval < 0)
return retval;
return sprintf(buf, "%d\n", !!(val & sda->index));
}
static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned long val;
int retval;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
retval = regmap_write(data->regmap, sda->index,
DIV_ROUND_CLOSEST(val, 1000));
if (retval < 0)
return retval;
return count;
}
static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned long val;
int retval;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
val ? sda->index : 0);
if (retval < 0)
return retval;
return count;
}
static ssize_t show_hyst_common(struct device *dev,
struct device_attribute *attr, char *buf,
bool is_min)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
struct regmap *regmap = data->regmap;
unsigned int limit;
unsigned int hyst;
int retval;
retval = regmap_read(regmap, sda->index, &limit);
if (retval < 0)
return retval;
retval = regmap_read(regmap, 0x21, &hyst);
if (retval < 0)
return retval;
return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
}
static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return show_hyst_common(dev, attr, buf, false);
}
static ssize_t min_hyst_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return show_hyst_common(dev, attr, buf, true);
}
static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
struct regmap *regmap = data->regmap;
unsigned int limit;
int retval;
int hyst;
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->mutex);
retval = regmap_read(regmap, sda->index, &limit);
if (retval < 0)
goto fail;
hyst = limit * 1000 - val;
hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
retval = regmap_write(regmap, 0x21, hyst);
if (retval == 0)
retval = count;
fail:
mutex_unlock(&data->mutex);
return retval;
}
/*
* Sensors. We pass the actual i2c register to the methods.
*/
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
static struct attribute *emc1402_attrs[] = {
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_power_state.dev_attr.attr,
NULL
};
static const struct attribute_group emc1402_group = {
.attrs = emc1402_attrs,
};
static struct attribute *emc1403_attrs[] = {
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group emc1403_group = {
.attrs = emc1403_attrs,
};
static struct attribute *emc1404_attrs[] = {
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_crit.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_fault.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group emc1404_group = {
.attrs = emc1404_attrs,
};
/*
* EMC14x2 uses a different register and different bits to report alarm and
* fault status. For simplicity, provide a separate attribute group for this
* chip series.
* Since we can not re-use the same attribute names, create a separate attribute
* array.
*/
static struct sensor_device_attribute_2 emc1402_alarms[] = {
SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
};
static struct attribute *emc1402_alarm_attrs[] = {
&emc1402_alarms[0].dev_attr.attr,
&emc1402_alarms[1].dev_attr.attr,
&emc1402_alarms[2].dev_attr.attr,
&emc1402_alarms[3].dev_attr.attr,
&emc1402_alarms[4].dev_attr.attr,
&emc1402_alarms[5].dev_attr.attr,
&emc1402_alarms[6].dev_attr.attr,
NULL,
};
static const struct attribute_group emc1402_alarm_group = {
.attrs = emc1402_alarm_attrs,
};
static int emc1403_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int id;
/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
if (id != 0x5d)
return -ENODEV;
id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
switch (id) {
case 0x20:
strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
break;
case 0x21:
strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
break;
case 0x22:
strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
break;
case 0x23:
strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
break;
case 0x25:
strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
break;
case 0x27:
strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
break;
default:
return -ENODEV;
}
id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
if (id < 0x01 || id > 0x04)
return -ENODEV;
return 0;
}
static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case 0x00: /* internal diode high byte */
case 0x01: /* external diode 1 high byte */
case 0x02: /* status */
case 0x10: /* external diode 1 low byte */
case 0x1b: /* external diode fault */
case 0x23: /* external diode 2 high byte */
case 0x24: /* external diode 2 low byte */
case 0x29: /* internal diode low byte */
case 0x2a: /* externl diode 3 high byte */
case 0x2b: /* external diode 3 low byte */
case 0x35: /* high limit status */
case 0x36: /* low limit status */
case 0x37: /* therm limit status */
return true;
default:
return false;
}
}
static const struct regmap_config emc1403_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = emc1403_regmap_is_volatile,
};
static const struct i2c_device_id emc1403_idtable[];
static int emc1403_probe(struct i2c_client *client)
{
struct thermal_data *data;
struct device *hwmon_dev;
const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
mutex_init(&data->mutex);
switch (id->driver_data) {
case emc1404:
data->groups[2] = &emc1404_group;
fallthrough;
case emc1403:
data->groups[1] = &emc1403_group;
fallthrough;
case emc1402:
data->groups[0] = &emc1402_group;
}
if (id->driver_data == emc1402)
data->groups[1] = &emc1402_alarm_group;
hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
client->name, data,
data->groups);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
dev_info(&client->dev, "%s Thermal chip found\n", id->name);
return 0;
}
static const unsigned short emc1403_address_list[] = {
0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
};
/* Last digit of chip name indicates number of channels */
static const struct i2c_device_id emc1403_idtable[] = {
{ "emc1402", emc1402 },
{ "emc1403", emc1403 },
{ "emc1404", emc1404 },
{ "emc1412", emc1402 },
{ "emc1413", emc1403 },
{ "emc1414", emc1404 },
{ "emc1422", emc1402 },
{ "emc1423", emc1403 },
{ "emc1424", emc1404 },
{ }
};
MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
static struct i2c_driver sensor_emc1403 = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "emc1403",
},
.detect = emc1403_detect,
.probe_new = emc1403_probe,
.id_table = emc1403_idtable,
.address_list = emc1403_address_list,
};
module_i2c_driver(sensor_emc1403);
MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
MODULE_DESCRIPTION("emc1403 Thermal Driver");
MODULE_LICENSE("GPL v2");