2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/lib/Kconfig.kfence
Marco Elver 407f1d8c1b kfence: await for allocation using wait_event
Patch series "kfence: optimize timer scheduling", v2.

We have observed that mostly-idle systems with KFENCE enabled wake up
otherwise idle CPUs, preventing such to enter a lower power state.
Debugging revealed that KFENCE spends too much active time in
toggle_allocation_gate().

While the first version of KFENCE was using all the right bits to be
scheduling optimal, and thus power efficient, by simply using wait_event()
+ wake_up(), that code was unfortunately removed.

As KFENCE was exposed to various different configs and tests, the
scheduling optimal code slowly disappeared.  First because of hung task
warnings, and finally because of deadlocks when an allocation is made by
timer code with debug objects enabled.  Clearly, the "fixes" were not too
friendly for devices that want to be power efficient.

Therefore, let's try a little harder to fix the hung task and deadlock
problems that we have with wait_event() + wake_up(), while remaining as
scheduling friendly and power efficient as possible.

Crucially, we need to defer the wake_up() to an irq_work, avoiding any
potential for deadlock.

The result with this series is that on the devices where we observed a
power regression, power usage returns back to baseline levels.

This patch (of 3):

On mostly-idle systems, we have observed that toggle_allocation_gate() is
a cause of frequent wake-ups, preventing an otherwise idle CPU to go into
a lower power state.

A late change in KFENCE's development, due to a potential deadlock [1],
required changing the scheduling-friendly wait_event_timeout() and
wake_up() to an open-coded wait-loop using schedule_timeout().  [1]
https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com

To avoid unnecessary wake-ups, switch to using wait_event_timeout().

Unfortunately, we still cannot use a version with direct wake_up() in
__kfence_alloc() due to the same potential for deadlock as in [1].
Instead, add a level of indirection via an irq_work that is scheduled if
we determine that the kfence_timer requires a wake_up().

Link: https://lkml.kernel.org/r/20210421105132.3965998-1-elver@google.com
Link: https://lkml.kernel.org/r/20210421105132.3965998-2-elver@google.com
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:27 -07:00

84 lines
3.0 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0-only
config HAVE_ARCH_KFENCE
bool
menuconfig KFENCE
bool "KFENCE: low-overhead sampling-based memory safety error detector"
depends on HAVE_ARCH_KFENCE && (SLAB || SLUB)
select STACKTRACE
select IRQ_WORK
help
KFENCE is a low-overhead sampling-based detector of heap out-of-bounds
access, use-after-free, and invalid-free errors. KFENCE is designed
to have negligible cost to permit enabling it in production
environments.
See <file:Documentation/dev-tools/kfence.rst> for more details.
Note that, KFENCE is not a substitute for explicit testing with tools
such as KASAN. KFENCE can detect a subset of bugs that KASAN can
detect, albeit at very different performance profiles. If you can
afford to use KASAN, continue using KASAN, for example in test
environments. If your kernel targets production use, and cannot
enable KASAN due to its cost, consider using KFENCE.
if KFENCE
config KFENCE_STATIC_KEYS
bool "Use static keys to set up allocations"
default y
depends on JUMP_LABEL # To ensure performance, require jump labels
help
Use static keys (static branches) to set up KFENCE allocations. Using
static keys is normally recommended, because it avoids a dynamic
branch in the allocator's fast path. However, with very low sample
intervals, or on systems that do not support jump labels, a dynamic
branch may still be an acceptable performance trade-off.
config KFENCE_SAMPLE_INTERVAL
int "Default sample interval in milliseconds"
default 100
help
The KFENCE sample interval determines the frequency with which heap
allocations will be guarded by KFENCE. May be overridden via boot
parameter "kfence.sample_interval".
Set this to 0 to disable KFENCE by default, in which case only
setting "kfence.sample_interval" to a non-zero value enables KFENCE.
config KFENCE_NUM_OBJECTS
int "Number of guarded objects available"
range 1 65535
default 255
help
The number of guarded objects available. For each KFENCE object, 2
pages are required; with one containing the object and two adjacent
ones used as guard pages.
config KFENCE_STRESS_TEST_FAULTS
int "Stress testing of fault handling and error reporting" if EXPERT
default 0
help
The inverse probability with which to randomly protect KFENCE object
pages, resulting in spurious use-after-frees. The main purpose of
this option is to stress test KFENCE with concurrent error reports
and allocations/frees. A value of 0 disables stress testing logic.
Only for KFENCE testing; set to 0 if you are not a KFENCE developer.
config KFENCE_KUNIT_TEST
tristate "KFENCE integration test suite" if !KUNIT_ALL_TESTS
default KUNIT_ALL_TESTS
depends on TRACEPOINTS && KUNIT
help
Test suite for KFENCE, testing various error detection scenarios with
various allocation types, and checking that reports are correctly
output to console.
Say Y here if you want the test to be built into the kernel and run
during boot; say M if you want the test to build as a module; say N
if you are unsure.
endif # KFENCE