2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-17 01:34:00 +08:00
linux-next/kernel/futex/syscalls.c
Arnd Bergmann 3297481d68 futex: Remove futex_cmpxchg detection
Now that all architectures have a working futex implementation in any
configuration, remove the runtime detection code.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Vineet Gupta <vgupta@kernel.org>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Link: https://lore.kernel.org/r/20211026100432.1730393-2-arnd@kernel.org
2021-11-25 00:02:28 +01:00

377 lines
9.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/compat.h>
#include <linux/syscalls.h>
#include <linux/time_namespace.h>
#include "futex.h"
/*
* Support for robust futexes: the kernel cleans up held futexes at
* thread exit time.
*
* Implementation: user-space maintains a per-thread list of locks it
* is holding. Upon do_exit(), the kernel carefully walks this list,
* and marks all locks that are owned by this thread with the
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
* always manipulated with the lock held, so the list is private and
* per-thread. Userspace also maintains a per-thread 'list_op_pending'
* field, to allow the kernel to clean up if the thread dies after
* acquiring the lock, but just before it could have added itself to
* the list. There can only be one such pending lock.
*/
/**
* sys_set_robust_list() - Set the robust-futex list head of a task
* @head: pointer to the list-head
* @len: length of the list-head, as userspace expects
*/
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
size_t, len)
{
/*
* The kernel knows only one size for now:
*/
if (unlikely(len != sizeof(*head)))
return -EINVAL;
current->robust_list = head;
return 0;
}
/**
* sys_get_robust_list() - Get the robust-futex list head of a task
* @pid: pid of the process [zero for current task]
* @head_ptr: pointer to a list-head pointer, the kernel fills it in
* @len_ptr: pointer to a length field, the kernel fills in the header size
*/
SYSCALL_DEFINE3(get_robust_list, int, pid,
struct robust_list_head __user * __user *, head_ptr,
size_t __user *, len_ptr)
{
struct robust_list_head __user *head;
unsigned long ret;
struct task_struct *p;
rcu_read_lock();
ret = -ESRCH;
if (!pid)
p = current;
else {
p = find_task_by_vpid(pid);
if (!p)
goto err_unlock;
}
ret = -EPERM;
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
goto err_unlock;
head = p->robust_list;
rcu_read_unlock();
if (put_user(sizeof(*head), len_ptr))
return -EFAULT;
return put_user(head, head_ptr);
err_unlock:
rcu_read_unlock();
return ret;
}
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
int cmd = op & FUTEX_CMD_MASK;
unsigned int flags = 0;
if (!(op & FUTEX_PRIVATE_FLAG))
flags |= FLAGS_SHARED;
if (op & FUTEX_CLOCK_REALTIME) {
flags |= FLAGS_CLOCKRT;
if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
cmd != FUTEX_LOCK_PI2)
return -ENOSYS;
}
switch (cmd) {
case FUTEX_WAIT:
val3 = FUTEX_BITSET_MATCH_ANY;
fallthrough;
case FUTEX_WAIT_BITSET:
return futex_wait(uaddr, flags, val, timeout, val3);
case FUTEX_WAKE:
val3 = FUTEX_BITSET_MATCH_ANY;
fallthrough;
case FUTEX_WAKE_BITSET:
return futex_wake(uaddr, flags, val, val3);
case FUTEX_REQUEUE:
return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
case FUTEX_CMP_REQUEUE:
return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
case FUTEX_WAKE_OP:
return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
case FUTEX_LOCK_PI:
flags |= FLAGS_CLOCKRT;
fallthrough;
case FUTEX_LOCK_PI2:
return futex_lock_pi(uaddr, flags, timeout, 0);
case FUTEX_UNLOCK_PI:
return futex_unlock_pi(uaddr, flags);
case FUTEX_TRYLOCK_PI:
return futex_lock_pi(uaddr, flags, NULL, 1);
case FUTEX_WAIT_REQUEUE_PI:
val3 = FUTEX_BITSET_MATCH_ANY;
return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
uaddr2);
case FUTEX_CMP_REQUEUE_PI:
return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
}
return -ENOSYS;
}
static __always_inline bool futex_cmd_has_timeout(u32 cmd)
{
switch (cmd) {
case FUTEX_WAIT:
case FUTEX_LOCK_PI:
case FUTEX_LOCK_PI2:
case FUTEX_WAIT_BITSET:
case FUTEX_WAIT_REQUEUE_PI:
return true;
}
return false;
}
static __always_inline int
futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
{
if (!timespec64_valid(ts))
return -EINVAL;
*t = timespec64_to_ktime(*ts);
if (cmd == FUTEX_WAIT)
*t = ktime_add_safe(ktime_get(), *t);
else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
*t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
return 0;
}
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
const struct __kernel_timespec __user *, utime,
u32 __user *, uaddr2, u32, val3)
{
int ret, cmd = op & FUTEX_CMD_MASK;
ktime_t t, *tp = NULL;
struct timespec64 ts;
if (utime && futex_cmd_has_timeout(cmd)) {
if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
return -EFAULT;
if (get_timespec64(&ts, utime))
return -EFAULT;
ret = futex_init_timeout(cmd, op, &ts, &t);
if (ret)
return ret;
tp = &t;
}
return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
}
/* Mask of available flags for each futex in futex_waitv list */
#define FUTEXV_WAITER_MASK (FUTEX_32 | FUTEX_PRIVATE_FLAG)
/**
* futex_parse_waitv - Parse a waitv array from userspace
* @futexv: Kernel side list of waiters to be filled
* @uwaitv: Userspace list to be parsed
* @nr_futexes: Length of futexv
*
* Return: Error code on failure, 0 on success
*/
static int futex_parse_waitv(struct futex_vector *futexv,
struct futex_waitv __user *uwaitv,
unsigned int nr_futexes)
{
struct futex_waitv aux;
unsigned int i;
for (i = 0; i < nr_futexes; i++) {
if (copy_from_user(&aux, &uwaitv[i], sizeof(aux)))
return -EFAULT;
if ((aux.flags & ~FUTEXV_WAITER_MASK) || aux.__reserved)
return -EINVAL;
if (!(aux.flags & FUTEX_32))
return -EINVAL;
futexv[i].w.flags = aux.flags;
futexv[i].w.val = aux.val;
futexv[i].w.uaddr = aux.uaddr;
futexv[i].q = futex_q_init;
}
return 0;
}
/**
* sys_futex_waitv - Wait on a list of futexes
* @waiters: List of futexes to wait on
* @nr_futexes: Length of futexv
* @flags: Flag for timeout (monotonic/realtime)
* @timeout: Optional absolute timeout.
* @clockid: Clock to be used for the timeout, realtime or monotonic.
*
* Given an array of `struct futex_waitv`, wait on each uaddr. The thread wakes
* if a futex_wake() is performed at any uaddr. The syscall returns immediately
* if any waiter has *uaddr != val. *timeout is an optional timeout value for
* the operation. Each waiter has individual flags. The `flags` argument for
* the syscall should be used solely for specifying the timeout as realtime, if
* needed. Flags for private futexes, sizes, etc. should be used on the
* individual flags of each waiter.
*
* Returns the array index of one of the woken futexes. No further information
* is provided: any number of other futexes may also have been woken by the
* same event, and if more than one futex was woken, the retrned index may
* refer to any one of them. (It is not necessaryily the futex with the
* smallest index, nor the one most recently woken, nor...)
*/
SYSCALL_DEFINE5(futex_waitv, struct futex_waitv __user *, waiters,
unsigned int, nr_futexes, unsigned int, flags,
struct __kernel_timespec __user *, timeout, clockid_t, clockid)
{
struct hrtimer_sleeper to;
struct futex_vector *futexv;
struct timespec64 ts;
ktime_t time;
int ret;
/* This syscall supports no flags for now */
if (flags)
return -EINVAL;
if (!nr_futexes || nr_futexes > FUTEX_WAITV_MAX || !waiters)
return -EINVAL;
if (timeout) {
int flag_clkid = 0, flag_init = 0;
if (clockid == CLOCK_REALTIME) {
flag_clkid = FLAGS_CLOCKRT;
flag_init = FUTEX_CLOCK_REALTIME;
}
if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
return -EINVAL;
if (get_timespec64(&ts, timeout))
return -EFAULT;
/*
* Since there's no opcode for futex_waitv, use
* FUTEX_WAIT_BITSET that uses absolute timeout as well
*/
ret = futex_init_timeout(FUTEX_WAIT_BITSET, flag_init, &ts, &time);
if (ret)
return ret;
futex_setup_timer(&time, &to, flag_clkid, 0);
}
futexv = kcalloc(nr_futexes, sizeof(*futexv), GFP_KERNEL);
if (!futexv)
return -ENOMEM;
ret = futex_parse_waitv(futexv, waiters, nr_futexes);
if (!ret)
ret = futex_wait_multiple(futexv, nr_futexes, timeout ? &to : NULL);
if (timeout) {
hrtimer_cancel(&to.timer);
destroy_hrtimer_on_stack(&to.timer);
}
kfree(futexv);
return ret;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(set_robust_list,
struct compat_robust_list_head __user *, head,
compat_size_t, len)
{
if (unlikely(len != sizeof(*head)))
return -EINVAL;
current->compat_robust_list = head;
return 0;
}
COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
compat_uptr_t __user *, head_ptr,
compat_size_t __user *, len_ptr)
{
struct compat_robust_list_head __user *head;
unsigned long ret;
struct task_struct *p;
rcu_read_lock();
ret = -ESRCH;
if (!pid)
p = current;
else {
p = find_task_by_vpid(pid);
if (!p)
goto err_unlock;
}
ret = -EPERM;
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
goto err_unlock;
head = p->compat_robust_list;
rcu_read_unlock();
if (put_user(sizeof(*head), len_ptr))
return -EFAULT;
return put_user(ptr_to_compat(head), head_ptr);
err_unlock:
rcu_read_unlock();
return ret;
}
#endif /* CONFIG_COMPAT */
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
u32, val3)
{
int ret, cmd = op & FUTEX_CMD_MASK;
ktime_t t, *tp = NULL;
struct timespec64 ts;
if (utime && futex_cmd_has_timeout(cmd)) {
if (get_old_timespec32(&ts, utime))
return -EFAULT;
ret = futex_init_timeout(cmd, op, &ts, &t);
if (ret)
return ret;
tp = &t;
}
return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
}
#endif /* CONFIG_COMPAT_32BIT_TIME */