2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00
linux-next/net/sched/sch_taprio.c
Vinicius Costa Gomes b09fe70ef5 taprio: Fix sending packets without dequeueing them
There was a bug that was causing packets to be sent to the driver
without first calling dequeue() on the "child" qdisc. And the KASAN
report below shows that sending a packet without calling dequeue()
leads to bad results.

The problem is that when checking the last qdisc "child" we do not set
the returned skb to NULL, which can cause it to be sent to the driver,
and so after the skb is sent, it may be freed, and in some situations a
reference to it may still be in the child qdisc, because it was never
dequeued.

The crash log looks like this:

[   19.937538] ==================================================================
[   19.938300] BUG: KASAN: use-after-free in taprio_dequeue_soft+0x620/0x780
[   19.938968] Read of size 4 at addr ffff8881128628cc by task swapper/1/0
[   19.939612]
[   19.939772] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc3+ #97
[   19.940397] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qe4
[   19.941523] Call Trace:
[   19.941774]  <IRQ>
[   19.941985]  dump_stack+0x97/0xe0
[   19.942323]  print_address_description.constprop.0+0x3b/0x60
[   19.942884]  ? taprio_dequeue_soft+0x620/0x780
[   19.943325]  ? taprio_dequeue_soft+0x620/0x780
[   19.943767]  __kasan_report.cold+0x1a/0x32
[   19.944173]  ? taprio_dequeue_soft+0x620/0x780
[   19.944612]  kasan_report+0xe/0x20
[   19.944954]  taprio_dequeue_soft+0x620/0x780
[   19.945380]  __qdisc_run+0x164/0x18d0
[   19.945749]  net_tx_action+0x2c4/0x730
[   19.946124]  __do_softirq+0x268/0x7bc
[   19.946491]  irq_exit+0x17d/0x1b0
[   19.946824]  smp_apic_timer_interrupt+0xeb/0x380
[   19.947280]  apic_timer_interrupt+0xf/0x20
[   19.947687]  </IRQ>
[   19.947912] RIP: 0010:default_idle+0x2d/0x2d0
[   19.948345] Code: 00 00 41 56 41 55 65 44 8b 2d 3f 8d 7c 7c 41 54 55 53 0f 1f 44 00 00 e8 b1 b2 c5 fd e9 07 00 3
[   19.950166] RSP: 0018:ffff88811a3efda0 EFLAGS: 00000282 ORIG_RAX: ffffffffffffff13
[   19.950909] RAX: 0000000080000000 RBX: ffff88811a3a9600 RCX: ffffffff8385327e
[   19.951608] RDX: 1ffff110234752c0 RSI: 0000000000000000 RDI: ffffffff8385262f
[   19.952309] RBP: ffffed10234752c0 R08: 0000000000000001 R09: ffffed10234752c1
[   19.953009] R10: ffffed10234752c0 R11: ffff88811a3a9607 R12: 0000000000000001
[   19.953709] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000000
[   19.954408]  ? default_idle_call+0x2e/0x70
[   19.954816]  ? default_idle+0x1f/0x2d0
[   19.955192]  default_idle_call+0x5e/0x70
[   19.955584]  do_idle+0x3d4/0x500
[   19.955909]  ? arch_cpu_idle_exit+0x40/0x40
[   19.956325]  ? _raw_spin_unlock_irqrestore+0x23/0x30
[   19.956829]  ? trace_hardirqs_on+0x30/0x160
[   19.957242]  cpu_startup_entry+0x19/0x20
[   19.957633]  start_secondary+0x2a6/0x380
[   19.958026]  ? set_cpu_sibling_map+0x18b0/0x18b0
[   19.958486]  secondary_startup_64+0xa4/0xb0
[   19.958921]
[   19.959078] Allocated by task 33:
[   19.959412]  save_stack+0x1b/0x80
[   19.959747]  __kasan_kmalloc.constprop.0+0xc2/0xd0
[   19.960222]  kmem_cache_alloc+0xe4/0x230
[   19.960617]  __alloc_skb+0x91/0x510
[   19.960967]  ndisc_alloc_skb+0x133/0x330
[   19.961358]  ndisc_send_ns+0x134/0x810
[   19.961735]  addrconf_dad_work+0xad5/0xf80
[   19.962144]  process_one_work+0x78e/0x13a0
[   19.962551]  worker_thread+0x8f/0xfa0
[   19.962919]  kthread+0x2ba/0x3b0
[   19.963242]  ret_from_fork+0x3a/0x50
[   19.963596]
[   19.963753] Freed by task 33:
[   19.964055]  save_stack+0x1b/0x80
[   19.964386]  __kasan_slab_free+0x12f/0x180
[   19.964830]  kmem_cache_free+0x80/0x290
[   19.965231]  ip6_mc_input+0x38a/0x4d0
[   19.965617]  ipv6_rcv+0x1a4/0x1d0
[   19.965948]  __netif_receive_skb_one_core+0xf2/0x180
[   19.966437]  netif_receive_skb+0x8c/0x3c0
[   19.966846]  br_handle_frame_finish+0x779/0x1310
[   19.967302]  br_handle_frame+0x42a/0x830
[   19.967694]  __netif_receive_skb_core+0xf0e/0x2a90
[   19.968167]  __netif_receive_skb_one_core+0x96/0x180
[   19.968658]  process_backlog+0x198/0x650
[   19.969047]  net_rx_action+0x2fa/0xaa0
[   19.969420]  __do_softirq+0x268/0x7bc
[   19.969785]
[   19.969940] The buggy address belongs to the object at ffff888112862840
[   19.969940]  which belongs to the cache skbuff_head_cache of size 224
[   19.971202] The buggy address is located 140 bytes inside of
[   19.971202]  224-byte region [ffff888112862840, ffff888112862920)
[   19.972344] The buggy address belongs to the page:
[   19.972820] page:ffffea00044a1800 refcount:1 mapcount:0 mapping:ffff88811a2bd1c0 index:0xffff8881128625c0 compo0
[   19.973930] flags: 0x8000000000010200(slab|head)
[   19.974388] raw: 8000000000010200 ffff88811a2ed650 ffff88811a2ed650 ffff88811a2bd1c0
[   19.975151] raw: ffff8881128625c0 0000000000190013 00000001ffffffff 0000000000000000
[   19.975915] page dumped because: kasan: bad access detected
[   19.976461] page_owner tracks the page as allocated
[   19.976946] page last allocated via order 2, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NO)
[   19.978332]  prep_new_page+0x24b/0x330
[   19.978707]  get_page_from_freelist+0x2057/0x2c90
[   19.979170]  __alloc_pages_nodemask+0x218/0x590
[   19.979619]  new_slab+0x9d/0x300
[   19.979948]  ___slab_alloc.constprop.0+0x2f9/0x6f0
[   19.980421]  __slab_alloc.constprop.0+0x30/0x60
[   19.980870]  kmem_cache_alloc+0x201/0x230
[   19.981269]  __alloc_skb+0x91/0x510
[   19.981620]  alloc_skb_with_frags+0x78/0x4a0
[   19.982043]  sock_alloc_send_pskb+0x5eb/0x750
[   19.982476]  unix_stream_sendmsg+0x399/0x7f0
[   19.982904]  sock_sendmsg+0xe2/0x110
[   19.983262]  ____sys_sendmsg+0x4de/0x6d0
[   19.983660]  ___sys_sendmsg+0xe4/0x160
[   19.984032]  __sys_sendmsg+0xab/0x130
[   19.984396]  do_syscall_64+0xe7/0xae0
[   19.984761] page last free stack trace:
[   19.985142]  __free_pages_ok+0x432/0xbc0
[   19.985533]  qlist_free_all+0x56/0xc0
[   19.985907]  quarantine_reduce+0x149/0x170
[   19.986315]  __kasan_kmalloc.constprop.0+0x9e/0xd0
[   19.986791]  kmem_cache_alloc+0xe4/0x230
[   19.987182]  prepare_creds+0x24/0x440
[   19.987548]  do_faccessat+0x80/0x590
[   19.987906]  do_syscall_64+0xe7/0xae0
[   19.988276]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   19.988775]
[   19.988930] Memory state around the buggy address:
[   19.989402]  ffff888112862780: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   19.990111]  ffff888112862800: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
[   19.990822] >ffff888112862880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[   19.991529]                                               ^
[   19.992081]  ffff888112862900: fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc
[   19.992796]  ffff888112862980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fixes: 5a781ccbd1 ("tc: Add support for configuring the taprio scheduler")
Reported-by: Michael Schmidt <michael.schmidt@eti.uni-siegen.de>
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Acked-by: Andre Guedes <andre.guedes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-12 11:25:08 -07:00

1963 lines
49 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* net/sched/sch_taprio.c Time Aware Priority Scheduler
*
* Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
*
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/sch_generic.h>
#include <net/sock.h>
#include <net/tcp.h>
static LIST_HEAD(taprio_list);
static DEFINE_SPINLOCK(taprio_list_lock);
#define TAPRIO_ALL_GATES_OPEN -1
#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
#define TAPRIO_FLAGS_INVALID U32_MAX
struct sched_entry {
struct list_head list;
/* The instant that this entry "closes" and the next one
* should open, the qdisc will make some effort so that no
* packet leaves after this time.
*/
ktime_t close_time;
ktime_t next_txtime;
atomic_t budget;
int index;
u32 gate_mask;
u32 interval;
u8 command;
};
struct sched_gate_list {
struct rcu_head rcu;
struct list_head entries;
size_t num_entries;
ktime_t cycle_close_time;
s64 cycle_time;
s64 cycle_time_extension;
s64 base_time;
};
struct taprio_sched {
struct Qdisc **qdiscs;
struct Qdisc *root;
u32 flags;
enum tk_offsets tk_offset;
int clockid;
atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
* speeds it's sub-nanoseconds per byte
*/
/* Protects the update side of the RCU protected current_entry */
spinlock_t current_entry_lock;
struct sched_entry __rcu *current_entry;
struct sched_gate_list __rcu *oper_sched;
struct sched_gate_list __rcu *admin_sched;
struct hrtimer advance_timer;
struct list_head taprio_list;
struct sk_buff *(*dequeue)(struct Qdisc *sch);
struct sk_buff *(*peek)(struct Qdisc *sch);
u32 txtime_delay;
};
struct __tc_taprio_qopt_offload {
refcount_t users;
struct tc_taprio_qopt_offload offload;
};
static ktime_t sched_base_time(const struct sched_gate_list *sched)
{
if (!sched)
return KTIME_MAX;
return ns_to_ktime(sched->base_time);
}
static ktime_t taprio_get_time(struct taprio_sched *q)
{
ktime_t mono = ktime_get();
switch (q->tk_offset) {
case TK_OFFS_MAX:
return mono;
default:
return ktime_mono_to_any(mono, q->tk_offset);
}
return KTIME_MAX;
}
static void taprio_free_sched_cb(struct rcu_head *head)
{
struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
struct sched_entry *entry, *n;
if (!sched)
return;
list_for_each_entry_safe(entry, n, &sched->entries, list) {
list_del(&entry->list);
kfree(entry);
}
kfree(sched);
}
static void switch_schedules(struct taprio_sched *q,
struct sched_gate_list **admin,
struct sched_gate_list **oper)
{
rcu_assign_pointer(q->oper_sched, *admin);
rcu_assign_pointer(q->admin_sched, NULL);
if (*oper)
call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
*oper = *admin;
*admin = NULL;
}
/* Get how much time has been already elapsed in the current cycle. */
static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
{
ktime_t time_since_sched_start;
s32 time_elapsed;
time_since_sched_start = ktime_sub(time, sched->base_time);
div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
return time_elapsed;
}
static ktime_t get_interval_end_time(struct sched_gate_list *sched,
struct sched_gate_list *admin,
struct sched_entry *entry,
ktime_t intv_start)
{
s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
ktime_t intv_end, cycle_ext_end, cycle_end;
cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
intv_end = ktime_add_ns(intv_start, entry->interval);
cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
if (ktime_before(intv_end, cycle_end))
return intv_end;
else if (admin && admin != sched &&
ktime_after(admin->base_time, cycle_end) &&
ktime_before(admin->base_time, cycle_ext_end))
return admin->base_time;
else
return cycle_end;
}
static int length_to_duration(struct taprio_sched *q, int len)
{
return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
}
/* Returns the entry corresponding to next available interval. If
* validate_interval is set, it only validates whether the timestamp occurs
* when the gate corresponding to the skb's traffic class is open.
*/
static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
struct Qdisc *sch,
struct sched_gate_list *sched,
struct sched_gate_list *admin,
ktime_t time,
ktime_t *interval_start,
ktime_t *interval_end,
bool validate_interval)
{
ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
struct sched_entry *entry = NULL, *entry_found = NULL;
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
bool entry_available = false;
s32 cycle_elapsed;
int tc, n;
tc = netdev_get_prio_tc_map(dev, skb->priority);
packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
*interval_start = 0;
*interval_end = 0;
if (!sched)
return NULL;
cycle = sched->cycle_time;
cycle_elapsed = get_cycle_time_elapsed(sched, time);
curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
cycle_end = ktime_add_ns(curr_intv_end, cycle);
list_for_each_entry(entry, &sched->entries, list) {
curr_intv_start = curr_intv_end;
curr_intv_end = get_interval_end_time(sched, admin, entry,
curr_intv_start);
if (ktime_after(curr_intv_start, cycle_end))
break;
if (!(entry->gate_mask & BIT(tc)) ||
packet_transmit_time > entry->interval)
continue;
txtime = entry->next_txtime;
if (ktime_before(txtime, time) || validate_interval) {
transmit_end_time = ktime_add_ns(time, packet_transmit_time);
if ((ktime_before(curr_intv_start, time) &&
ktime_before(transmit_end_time, curr_intv_end)) ||
(ktime_after(curr_intv_start, time) && !validate_interval)) {
entry_found = entry;
*interval_start = curr_intv_start;
*interval_end = curr_intv_end;
break;
} else if (!entry_available && !validate_interval) {
/* Here, we are just trying to find out the
* first available interval in the next cycle.
*/
entry_available = 1;
entry_found = entry;
*interval_start = ktime_add_ns(curr_intv_start, cycle);
*interval_end = ktime_add_ns(curr_intv_end, cycle);
}
} else if (ktime_before(txtime, earliest_txtime) &&
!entry_available) {
earliest_txtime = txtime;
entry_found = entry;
n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
*interval_start = ktime_add(curr_intv_start, n * cycle);
*interval_end = ktime_add(curr_intv_end, n * cycle);
}
}
return entry_found;
}
static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct sched_gate_list *sched, *admin;
ktime_t interval_start, interval_end;
struct sched_entry *entry;
rcu_read_lock();
sched = rcu_dereference(q->oper_sched);
admin = rcu_dereference(q->admin_sched);
entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
&interval_start, &interval_end, true);
rcu_read_unlock();
return entry;
}
static bool taprio_flags_valid(u32 flags)
{
/* Make sure no other flag bits are set. */
if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
return false;
/* txtime-assist and full offload are mutually exclusive */
if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
(flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
return false;
return true;
}
/* This returns the tstamp value set by TCP in terms of the set clock. */
static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
{
unsigned int offset = skb_network_offset(skb);
const struct ipv6hdr *ipv6h;
const struct iphdr *iph;
struct ipv6hdr _ipv6h;
ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
if (!ipv6h)
return 0;
if (ipv6h->version == 4) {
iph = (struct iphdr *)ipv6h;
offset += iph->ihl * 4;
/* special-case 6in4 tunnelling, as that is a common way to get
* v6 connectivity in the home
*/
if (iph->protocol == IPPROTO_IPV6) {
ipv6h = skb_header_pointer(skb, offset,
sizeof(_ipv6h), &_ipv6h);
if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
return 0;
} else if (iph->protocol != IPPROTO_TCP) {
return 0;
}
} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
return 0;
}
return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
}
/* There are a few scenarios where we will have to modify the txtime from
* what is read from next_txtime in sched_entry. They are:
* 1. If txtime is in the past,
* a. The gate for the traffic class is currently open and packet can be
* transmitted before it closes, schedule the packet right away.
* b. If the gate corresponding to the traffic class is going to open later
* in the cycle, set the txtime of packet to the interval start.
* 2. If txtime is in the future, there are packets corresponding to the
* current traffic class waiting to be transmitted. So, the following
* possibilities exist:
* a. We can transmit the packet before the window containing the txtime
* closes.
* b. The window might close before the transmission can be completed
* successfully. So, schedule the packet in the next open window.
*/
static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
{
ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
struct taprio_sched *q = qdisc_priv(sch);
struct sched_gate_list *sched, *admin;
ktime_t minimum_time, now, txtime;
int len, packet_transmit_time;
struct sched_entry *entry;
bool sched_changed;
now = taprio_get_time(q);
minimum_time = ktime_add_ns(now, q->txtime_delay);
tcp_tstamp = get_tcp_tstamp(q, skb);
minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
rcu_read_lock();
admin = rcu_dereference(q->admin_sched);
sched = rcu_dereference(q->oper_sched);
if (admin && ktime_after(minimum_time, admin->base_time))
switch_schedules(q, &admin, &sched);
/* Until the schedule starts, all the queues are open */
if (!sched || ktime_before(minimum_time, sched->base_time)) {
txtime = minimum_time;
goto done;
}
len = qdisc_pkt_len(skb);
packet_transmit_time = length_to_duration(q, len);
do {
sched_changed = 0;
entry = find_entry_to_transmit(skb, sch, sched, admin,
minimum_time,
&interval_start, &interval_end,
false);
if (!entry) {
txtime = 0;
goto done;
}
txtime = entry->next_txtime;
txtime = max_t(ktime_t, txtime, minimum_time);
txtime = max_t(ktime_t, txtime, interval_start);
if (admin && admin != sched &&
ktime_after(txtime, admin->base_time)) {
sched = admin;
sched_changed = 1;
continue;
}
transmit_end_time = ktime_add(txtime, packet_transmit_time);
minimum_time = transmit_end_time;
/* Update the txtime of current entry to the next time it's
* interval starts.
*/
if (ktime_after(transmit_end_time, interval_end))
entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
} while (sched_changed || ktime_after(transmit_end_time, interval_end));
entry->next_txtime = transmit_end_time;
done:
rcu_read_unlock();
return txtime;
}
static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct taprio_sched *q = qdisc_priv(sch);
struct Qdisc *child;
int queue;
queue = skb_get_queue_mapping(skb);
child = q->qdiscs[queue];
if (unlikely(!child))
return qdisc_drop(skb, sch, to_free);
if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
if (!is_valid_interval(skb, sch))
return qdisc_drop(skb, sch, to_free);
} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
skb->tstamp = get_packet_txtime(skb, sch);
if (!skb->tstamp)
return qdisc_drop(skb, sch, to_free);
}
qdisc_qstats_backlog_inc(sch, skb);
sch->q.qlen++;
return qdisc_enqueue(skb, child, to_free);
}
static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sched_entry *entry;
struct sk_buff *skb;
u32 gate_mask;
int i;
rcu_read_lock();
entry = rcu_dereference(q->current_entry);
gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
rcu_read_unlock();
if (!gate_mask)
return NULL;
for (i = 0; i < dev->num_tx_queues; i++) {
struct Qdisc *child = q->qdiscs[i];
int prio;
u8 tc;
if (unlikely(!child))
continue;
skb = child->ops->peek(child);
if (!skb)
continue;
if (TXTIME_ASSIST_IS_ENABLED(q->flags))
return skb;
prio = skb->priority;
tc = netdev_get_prio_tc_map(dev, prio);
if (!(gate_mask & BIT(tc)))
continue;
return skb;
}
return NULL;
}
static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sk_buff *skb;
int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct Qdisc *child = q->qdiscs[i];
if (unlikely(!child))
continue;
skb = child->ops->peek(child);
if (!skb)
continue;
return skb;
}
return NULL;
}
static struct sk_buff *taprio_peek(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
return q->peek(sch);
}
static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
{
atomic_set(&entry->budget,
div64_u64((u64)entry->interval * 1000,
atomic64_read(&q->picos_per_byte)));
}
static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sk_buff *skb = NULL;
struct sched_entry *entry;
u32 gate_mask;
int i;
rcu_read_lock();
entry = rcu_dereference(q->current_entry);
/* if there's no entry, it means that the schedule didn't
* start yet, so force all gates to be open, this is in
* accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
* "AdminGateSates"
*/
gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
if (!gate_mask)
goto done;
for (i = 0; i < dev->num_tx_queues; i++) {
struct Qdisc *child = q->qdiscs[i];
ktime_t guard;
int prio;
int len;
u8 tc;
if (unlikely(!child))
continue;
if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
skb = child->ops->dequeue(child);
if (!skb)
continue;
goto skb_found;
}
skb = child->ops->peek(child);
if (!skb)
continue;
prio = skb->priority;
tc = netdev_get_prio_tc_map(dev, prio);
if (!(gate_mask & BIT(tc))) {
skb = NULL;
continue;
}
len = qdisc_pkt_len(skb);
guard = ktime_add_ns(taprio_get_time(q),
length_to_duration(q, len));
/* In the case that there's no gate entry, there's no
* guard band ...
*/
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
ktime_after(guard, entry->close_time)) {
skb = NULL;
continue;
}
/* ... and no budget. */
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
atomic_sub_return(len, &entry->budget) < 0) {
skb = NULL;
continue;
}
skb = child->ops->dequeue(child);
if (unlikely(!skb))
goto done;
skb_found:
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
goto done;
}
done:
rcu_read_unlock();
return skb;
}
static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sk_buff *skb;
int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct Qdisc *child = q->qdiscs[i];
if (unlikely(!child))
continue;
skb = child->ops->dequeue(child);
if (unlikely(!skb))
continue;
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
return NULL;
}
static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
return q->dequeue(sch);
}
static bool should_restart_cycle(const struct sched_gate_list *oper,
const struct sched_entry *entry)
{
if (list_is_last(&entry->list, &oper->entries))
return true;
if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
return true;
return false;
}
static bool should_change_schedules(const struct sched_gate_list *admin,
const struct sched_gate_list *oper,
ktime_t close_time)
{
ktime_t next_base_time, extension_time;
if (!admin)
return false;
next_base_time = sched_base_time(admin);
/* This is the simple case, the close_time would fall after
* the next schedule base_time.
*/
if (ktime_compare(next_base_time, close_time) <= 0)
return true;
/* This is the cycle_time_extension case, if the close_time
* plus the amount that can be extended would fall after the
* next schedule base_time, we can extend the current schedule
* for that amount.
*/
extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
* how precisely the extension should be made. So after
* conformance testing, this logic may change.
*/
if (ktime_compare(next_base_time, extension_time) <= 0)
return true;
return false;
}
static enum hrtimer_restart advance_sched(struct hrtimer *timer)
{
struct taprio_sched *q = container_of(timer, struct taprio_sched,
advance_timer);
struct sched_gate_list *oper, *admin;
struct sched_entry *entry, *next;
struct Qdisc *sch = q->root;
ktime_t close_time;
spin_lock(&q->current_entry_lock);
entry = rcu_dereference_protected(q->current_entry,
lockdep_is_held(&q->current_entry_lock));
oper = rcu_dereference_protected(q->oper_sched,
lockdep_is_held(&q->current_entry_lock));
admin = rcu_dereference_protected(q->admin_sched,
lockdep_is_held(&q->current_entry_lock));
if (!oper)
switch_schedules(q, &admin, &oper);
/* This can happen in two cases: 1. this is the very first run
* of this function (i.e. we weren't running any schedule
* previously); 2. The previous schedule just ended. The first
* entry of all schedules are pre-calculated during the
* schedule initialization.
*/
if (unlikely(!entry || entry->close_time == oper->base_time)) {
next = list_first_entry(&oper->entries, struct sched_entry,
list);
close_time = next->close_time;
goto first_run;
}
if (should_restart_cycle(oper, entry)) {
next = list_first_entry(&oper->entries, struct sched_entry,
list);
oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
oper->cycle_time);
} else {
next = list_next_entry(entry, list);
}
close_time = ktime_add_ns(entry->close_time, next->interval);
close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
if (should_change_schedules(admin, oper, close_time)) {
/* Set things so the next time this runs, the new
* schedule runs.
*/
close_time = sched_base_time(admin);
switch_schedules(q, &admin, &oper);
}
next->close_time = close_time;
taprio_set_budget(q, next);
first_run:
rcu_assign_pointer(q->current_entry, next);
spin_unlock(&q->current_entry_lock);
hrtimer_set_expires(&q->advance_timer, close_time);
rcu_read_lock();
__netif_schedule(sch);
rcu_read_unlock();
return HRTIMER_RESTART;
}
static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
[TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
[TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
[TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
};
static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
[TCA_TAPRIO_ATTR_PRIOMAP] = {
.len = sizeof(struct tc_mqprio_qopt)
},
[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
[TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
[TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
[TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
[TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
};
static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
struct netlink_ext_ack *extack)
{
u32 interval = 0;
if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
entry->command = nla_get_u8(
tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
entry->gate_mask = nla_get_u32(
tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
interval = nla_get_u32(
tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
if (interval == 0) {
NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
return -EINVAL;
}
entry->interval = interval;
return 0;
}
static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
int index, struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
int err;
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
entry_policy, NULL);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Could not parse nested entry");
return -EINVAL;
}
entry->index = index;
return fill_sched_entry(tb, entry, extack);
}
static int parse_sched_list(struct nlattr *list,
struct sched_gate_list *sched,
struct netlink_ext_ack *extack)
{
struct nlattr *n;
int err, rem;
int i = 0;
if (!list)
return -EINVAL;
nla_for_each_nested(n, list, rem) {
struct sched_entry *entry;
if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
continue;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
NL_SET_ERR_MSG(extack, "Not enough memory for entry");
return -ENOMEM;
}
err = parse_sched_entry(n, entry, i, extack);
if (err < 0) {
kfree(entry);
return err;
}
list_add_tail(&entry->list, &sched->entries);
i++;
}
sched->num_entries = i;
return i;
}
static int parse_taprio_schedule(struct nlattr **tb,
struct sched_gate_list *new,
struct netlink_ext_ack *extack)
{
int err = 0;
if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
return -ENOTSUPP;
}
if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
err = parse_sched_list(
tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
if (err < 0)
return err;
if (!new->cycle_time) {
struct sched_entry *entry;
ktime_t cycle = 0;
list_for_each_entry(entry, &new->entries, list)
cycle = ktime_add_ns(cycle, entry->interval);
new->cycle_time = cycle;
}
return 0;
}
static int taprio_parse_mqprio_opt(struct net_device *dev,
struct tc_mqprio_qopt *qopt,
struct netlink_ext_ack *extack,
u32 taprio_flags)
{
int i, j;
if (!qopt && !dev->num_tc) {
NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
return -EINVAL;
}
/* If num_tc is already set, it means that the user already
* configured the mqprio part
*/
if (dev->num_tc)
return 0;
/* Verify num_tc is not out of max range */
if (qopt->num_tc > TC_MAX_QUEUE) {
NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
return -EINVAL;
}
/* taprio imposes that traffic classes map 1:n to tx queues */
if (qopt->num_tc > dev->num_tx_queues) {
NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
return -EINVAL;
}
/* Verify priority mapping uses valid tcs */
for (i = 0; i <= TC_BITMASK; i++) {
if (qopt->prio_tc_map[i] >= qopt->num_tc) {
NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
return -EINVAL;
}
}
for (i = 0; i < qopt->num_tc; i++) {
unsigned int last = qopt->offset[i] + qopt->count[i];
/* Verify the queue count is in tx range being equal to the
* real_num_tx_queues indicates the last queue is in use.
*/
if (qopt->offset[i] >= dev->num_tx_queues ||
!qopt->count[i] ||
last > dev->real_num_tx_queues) {
NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
return -EINVAL;
}
if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
continue;
/* Verify that the offset and counts do not overlap */
for (j = i + 1; j < qopt->num_tc; j++) {
if (last > qopt->offset[j]) {
NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
return -EINVAL;
}
}
}
return 0;
}
static int taprio_get_start_time(struct Qdisc *sch,
struct sched_gate_list *sched,
ktime_t *start)
{
struct taprio_sched *q = qdisc_priv(sch);
ktime_t now, base, cycle;
s64 n;
base = sched_base_time(sched);
now = taprio_get_time(q);
if (ktime_after(base, now)) {
*start = base;
return 0;
}
cycle = sched->cycle_time;
/* The qdisc is expected to have at least one sched_entry. Moreover,
* any entry must have 'interval' > 0. Thus if the cycle time is zero,
* something went really wrong. In that case, we should warn about this
* inconsistent state and return error.
*/
if (WARN_ON(!cycle))
return -EFAULT;
/* Schedule the start time for the beginning of the next
* cycle.
*/
n = div64_s64(ktime_sub_ns(now, base), cycle);
*start = ktime_add_ns(base, (n + 1) * cycle);
return 0;
}
static void setup_first_close_time(struct taprio_sched *q,
struct sched_gate_list *sched, ktime_t base)
{
struct sched_entry *first;
ktime_t cycle;
first = list_first_entry(&sched->entries,
struct sched_entry, list);
cycle = sched->cycle_time;
/* FIXME: find a better place to do this */
sched->cycle_close_time = ktime_add_ns(base, cycle);
first->close_time = ktime_add_ns(base, first->interval);
taprio_set_budget(q, first);
rcu_assign_pointer(q->current_entry, NULL);
}
static void taprio_start_sched(struct Qdisc *sch,
ktime_t start, struct sched_gate_list *new)
{
struct taprio_sched *q = qdisc_priv(sch);
ktime_t expires;
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
return;
expires = hrtimer_get_expires(&q->advance_timer);
if (expires == 0)
expires = KTIME_MAX;
/* If the new schedule starts before the next expiration, we
* reprogram it to the earliest one, so we change the admin
* schedule to the operational one at the right time.
*/
start = min_t(ktime_t, start, expires);
hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
}
static void taprio_set_picos_per_byte(struct net_device *dev,
struct taprio_sched *q)
{
struct ethtool_link_ksettings ecmd;
int speed = SPEED_10;
int picos_per_byte;
int err;
err = __ethtool_get_link_ksettings(dev, &ecmd);
if (err < 0)
goto skip;
if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
speed = ecmd.base.speed;
skip:
picos_per_byte = (USEC_PER_SEC * 8) / speed;
atomic64_set(&q->picos_per_byte, picos_per_byte);
netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
dev->name, (long long)atomic64_read(&q->picos_per_byte),
ecmd.base.speed);
}
static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net_device *qdev;
struct taprio_sched *q;
bool found = false;
ASSERT_RTNL();
if (event != NETDEV_UP && event != NETDEV_CHANGE)
return NOTIFY_DONE;
spin_lock(&taprio_list_lock);
list_for_each_entry(q, &taprio_list, taprio_list) {
qdev = qdisc_dev(q->root);
if (qdev == dev) {
found = true;
break;
}
}
spin_unlock(&taprio_list_lock);
if (found)
taprio_set_picos_per_byte(dev, q);
return NOTIFY_DONE;
}
static void setup_txtime(struct taprio_sched *q,
struct sched_gate_list *sched, ktime_t base)
{
struct sched_entry *entry;
u32 interval = 0;
list_for_each_entry(entry, &sched->entries, list) {
entry->next_txtime = ktime_add_ns(base, interval);
interval += entry->interval;
}
}
static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
{
size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
sizeof(struct __tc_taprio_qopt_offload);
struct __tc_taprio_qopt_offload *__offload;
__offload = kzalloc(size, GFP_KERNEL);
if (!__offload)
return NULL;
refcount_set(&__offload->users, 1);
return &__offload->offload;
}
struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
*offload)
{
struct __tc_taprio_qopt_offload *__offload;
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
offload);
refcount_inc(&__offload->users);
return offload;
}
EXPORT_SYMBOL_GPL(taprio_offload_get);
void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
{
struct __tc_taprio_qopt_offload *__offload;
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
offload);
if (!refcount_dec_and_test(&__offload->users))
return;
kfree(__offload);
}
EXPORT_SYMBOL_GPL(taprio_offload_free);
/* The function will only serve to keep the pointers to the "oper" and "admin"
* schedules valid in relation to their base times, so when calling dump() the
* users looks at the right schedules.
* When using full offload, the admin configuration is promoted to oper at the
* base_time in the PHC time domain. But because the system time is not
* necessarily in sync with that, we can't just trigger a hrtimer to call
* switch_schedules at the right hardware time.
* At the moment we call this by hand right away from taprio, but in the future
* it will be useful to create a mechanism for drivers to notify taprio of the
* offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
* This is left as TODO.
*/
static void taprio_offload_config_changed(struct taprio_sched *q)
{
struct sched_gate_list *oper, *admin;
spin_lock(&q->current_entry_lock);
oper = rcu_dereference_protected(q->oper_sched,
lockdep_is_held(&q->current_entry_lock));
admin = rcu_dereference_protected(q->admin_sched,
lockdep_is_held(&q->current_entry_lock));
switch_schedules(q, &admin, &oper);
spin_unlock(&q->current_entry_lock);
}
static void taprio_sched_to_offload(struct taprio_sched *q,
struct sched_gate_list *sched,
const struct tc_mqprio_qopt *mqprio,
struct tc_taprio_qopt_offload *offload)
{
struct sched_entry *entry;
int i = 0;
offload->base_time = sched->base_time;
offload->cycle_time = sched->cycle_time;
offload->cycle_time_extension = sched->cycle_time_extension;
list_for_each_entry(entry, &sched->entries, list) {
struct tc_taprio_sched_entry *e = &offload->entries[i];
e->command = entry->command;
e->interval = entry->interval;
e->gate_mask = entry->gate_mask;
i++;
}
offload->num_entries = i;
}
static int taprio_enable_offload(struct net_device *dev,
struct tc_mqprio_qopt *mqprio,
struct taprio_sched *q,
struct sched_gate_list *sched,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_taprio_qopt_offload *offload;
int err = 0;
if (!ops->ndo_setup_tc) {
NL_SET_ERR_MSG(extack,
"Device does not support taprio offload");
return -EOPNOTSUPP;
}
offload = taprio_offload_alloc(sched->num_entries);
if (!offload) {
NL_SET_ERR_MSG(extack,
"Not enough memory for enabling offload mode");
return -ENOMEM;
}
offload->enable = 1;
taprio_sched_to_offload(q, sched, mqprio, offload);
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
if (err < 0) {
NL_SET_ERR_MSG(extack,
"Device failed to setup taprio offload");
goto done;
}
done:
taprio_offload_free(offload);
return err;
}
static int taprio_disable_offload(struct net_device *dev,
struct taprio_sched *q,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_taprio_qopt_offload *offload;
int err;
if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
return 0;
if (!ops->ndo_setup_tc)
return -EOPNOTSUPP;
offload = taprio_offload_alloc(0);
if (!offload) {
NL_SET_ERR_MSG(extack,
"Not enough memory to disable offload mode");
return -ENOMEM;
}
offload->enable = 0;
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
if (err < 0) {
NL_SET_ERR_MSG(extack,
"Device failed to disable offload");
goto out;
}
out:
taprio_offload_free(offload);
return err;
}
/* If full offload is enabled, the only possible clockid is the net device's
* PHC. For that reason, specifying a clockid through netlink is incorrect.
* For txtime-assist, it is implicitly assumed that the device's PHC is kept
* in sync with the specified clockid via a user space daemon such as phc2sys.
* For both software taprio and txtime-assist, the clockid is used for the
* hrtimer that advances the schedule and hence mandatory.
*/
static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
int err = -EINVAL;
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
const struct ethtool_ops *ops = dev->ethtool_ops;
struct ethtool_ts_info info = {
.cmd = ETHTOOL_GET_TS_INFO,
.phc_index = -1,
};
if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
NL_SET_ERR_MSG(extack,
"The 'clockid' cannot be specified for full offload");
goto out;
}
if (ops && ops->get_ts_info)
err = ops->get_ts_info(dev, &info);
if (err || info.phc_index < 0) {
NL_SET_ERR_MSG(extack,
"Device does not have a PTP clock");
err = -ENOTSUPP;
goto out;
}
} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
/* We only support static clockids and we don't allow
* for it to be modified after the first init.
*/
if (clockid < 0 ||
(q->clockid != -1 && q->clockid != clockid)) {
NL_SET_ERR_MSG(extack,
"Changing the 'clockid' of a running schedule is not supported");
err = -ENOTSUPP;
goto out;
}
switch (clockid) {
case CLOCK_REALTIME:
q->tk_offset = TK_OFFS_REAL;
break;
case CLOCK_MONOTONIC:
q->tk_offset = TK_OFFS_MAX;
break;
case CLOCK_BOOTTIME:
q->tk_offset = TK_OFFS_BOOT;
break;
case CLOCK_TAI:
q->tk_offset = TK_OFFS_TAI;
break;
default:
NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
err = -EINVAL;
goto out;
}
q->clockid = clockid;
} else {
NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
goto out;
}
/* Everything went ok, return success. */
err = 0;
out:
return err;
}
static int taprio_mqprio_cmp(const struct net_device *dev,
const struct tc_mqprio_qopt *mqprio)
{
int i;
if (!mqprio || mqprio->num_tc != dev->num_tc)
return -1;
for (i = 0; i < mqprio->num_tc; i++)
if (dev->tc_to_txq[i].count != mqprio->count[i] ||
dev->tc_to_txq[i].offset != mqprio->offset[i])
return -1;
for (i = 0; i <= TC_BITMASK; i++)
if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
return -1;
return 0;
}
/* The semantics of the 'flags' argument in relation to 'change()'
* requests, are interpreted following two rules (which are applied in
* this order): (1) an omitted 'flags' argument is interpreted as
* zero; (2) the 'flags' of a "running" taprio instance cannot be
* changed.
*/
static int taprio_new_flags(const struct nlattr *attr, u32 old,
struct netlink_ext_ack *extack)
{
u32 new = 0;
if (attr)
new = nla_get_u32(attr);
if (old != TAPRIO_FLAGS_INVALID && old != new) {
NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
return -EOPNOTSUPP;
}
if (!taprio_flags_valid(new)) {
NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
return -EINVAL;
}
return new;
}
static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
struct sched_gate_list *oper, *admin, *new_admin;
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_mqprio_qopt *mqprio = NULL;
unsigned long flags;
ktime_t start;
int i, err;
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
taprio_policy, extack);
if (err < 0)
return err;
if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
q->flags, extack);
if (err < 0)
return err;
q->flags = err;
err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
if (err < 0)
return err;
new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
if (!new_admin) {
NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
return -ENOMEM;
}
INIT_LIST_HEAD(&new_admin->entries);
rcu_read_lock();
oper = rcu_dereference(q->oper_sched);
admin = rcu_dereference(q->admin_sched);
rcu_read_unlock();
/* no changes - no new mqprio settings */
if (!taprio_mqprio_cmp(dev, mqprio))
mqprio = NULL;
if (mqprio && (oper || admin)) {
NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
err = -ENOTSUPP;
goto free_sched;
}
err = parse_taprio_schedule(tb, new_admin, extack);
if (err < 0)
goto free_sched;
if (new_admin->num_entries == 0) {
NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
err = -EINVAL;
goto free_sched;
}
err = taprio_parse_clockid(sch, tb, extack);
if (err < 0)
goto free_sched;
taprio_set_picos_per_byte(dev, q);
if (mqprio) {
netdev_set_num_tc(dev, mqprio->num_tc);
for (i = 0; i < mqprio->num_tc; i++)
netdev_set_tc_queue(dev, i,
mqprio->count[i],
mqprio->offset[i]);
/* Always use supplied priority mappings */
for (i = 0; i <= TC_BITMASK; i++)
netdev_set_prio_tc_map(dev, i,
mqprio->prio_tc_map[i]);
}
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
else
err = taprio_disable_offload(dev, q, extack);
if (err)
goto free_sched;
/* Protects against enqueue()/dequeue() */
spin_lock_bh(qdisc_lock(sch));
if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
err = -EINVAL;
goto unlock;
}
q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
}
if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
!hrtimer_active(&q->advance_timer)) {
hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
q->advance_timer.function = advance_sched;
}
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
q->dequeue = taprio_dequeue_offload;
q->peek = taprio_peek_offload;
} else {
/* Be sure to always keep the function pointers
* in a consistent state.
*/
q->dequeue = taprio_dequeue_soft;
q->peek = taprio_peek_soft;
}
err = taprio_get_start_time(sch, new_admin, &start);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
goto unlock;
}
setup_txtime(q, new_admin, start);
if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
if (!oper) {
rcu_assign_pointer(q->oper_sched, new_admin);
err = 0;
new_admin = NULL;
goto unlock;
}
rcu_assign_pointer(q->admin_sched, new_admin);
if (admin)
call_rcu(&admin->rcu, taprio_free_sched_cb);
} else {
setup_first_close_time(q, new_admin, start);
/* Protects against advance_sched() */
spin_lock_irqsave(&q->current_entry_lock, flags);
taprio_start_sched(sch, start, new_admin);
rcu_assign_pointer(q->admin_sched, new_admin);
if (admin)
call_rcu(&admin->rcu, taprio_free_sched_cb);
spin_unlock_irqrestore(&q->current_entry_lock, flags);
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
taprio_offload_config_changed(q);
}
new_admin = NULL;
err = 0;
unlock:
spin_unlock_bh(qdisc_lock(sch));
free_sched:
if (new_admin)
call_rcu(&new_admin->rcu, taprio_free_sched_cb);
return err;
}
static void taprio_destroy(struct Qdisc *sch)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
unsigned int i;
spin_lock(&taprio_list_lock);
list_del(&q->taprio_list);
spin_unlock(&taprio_list_lock);
hrtimer_cancel(&q->advance_timer);
taprio_disable_offload(dev, q, NULL);
if (q->qdiscs) {
for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
qdisc_put(q->qdiscs[i]);
kfree(q->qdiscs);
}
q->qdiscs = NULL;
netdev_reset_tc(dev);
if (q->oper_sched)
call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
if (q->admin_sched)
call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
}
static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
int i;
spin_lock_init(&q->current_entry_lock);
hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
q->advance_timer.function = advance_sched;
q->dequeue = taprio_dequeue_soft;
q->peek = taprio_peek_soft;
q->root = sch;
/* We only support static clockids. Use an invalid value as default
* and get the valid one on taprio_change().
*/
q->clockid = -1;
q->flags = TAPRIO_FLAGS_INVALID;
spin_lock(&taprio_list_lock);
list_add(&q->taprio_list, &taprio_list);
spin_unlock(&taprio_list_lock);
if (sch->parent != TC_H_ROOT)
return -EOPNOTSUPP;
if (!netif_is_multiqueue(dev))
return -EOPNOTSUPP;
/* pre-allocate qdisc, attachment can't fail */
q->qdiscs = kcalloc(dev->num_tx_queues,
sizeof(q->qdiscs[0]),
GFP_KERNEL);
if (!q->qdiscs)
return -ENOMEM;
if (!opt)
return -EINVAL;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *dev_queue;
struct Qdisc *qdisc;
dev_queue = netdev_get_tx_queue(dev, i);
qdisc = qdisc_create_dflt(dev_queue,
&pfifo_qdisc_ops,
TC_H_MAKE(TC_H_MAJ(sch->handle),
TC_H_MIN(i + 1)),
extack);
if (!qdisc)
return -ENOMEM;
if (i < dev->real_num_tx_queues)
qdisc_hash_add(qdisc, false);
q->qdiscs[i] = qdisc;
}
return taprio_change(sch, opt, extack);
}
static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
unsigned long cl)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx = cl - 1;
if (ntx >= dev->num_tx_queues)
return NULL;
return netdev_get_tx_queue(dev, ntx);
}
static int taprio_graft(struct Qdisc *sch, unsigned long cl,
struct Qdisc *new, struct Qdisc **old,
struct netlink_ext_ack *extack)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
if (!dev_queue)
return -EINVAL;
if (dev->flags & IFF_UP)
dev_deactivate(dev);
*old = q->qdiscs[cl - 1];
q->qdiscs[cl - 1] = new;
if (new)
new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
if (dev->flags & IFF_UP)
dev_activate(dev);
return 0;
}
static int dump_entry(struct sk_buff *msg,
const struct sched_entry *entry)
{
struct nlattr *item;
item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
if (!item)
return -ENOSPC;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
goto nla_put_failure;
if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
goto nla_put_failure;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
entry->gate_mask))
goto nla_put_failure;
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
entry->interval))
goto nla_put_failure;
return nla_nest_end(msg, item);
nla_put_failure:
nla_nest_cancel(msg, item);
return -1;
}
static int dump_schedule(struct sk_buff *msg,
const struct sched_gate_list *root)
{
struct nlattr *entry_list;
struct sched_entry *entry;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
root->base_time, TCA_TAPRIO_PAD))
return -1;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
root->cycle_time, TCA_TAPRIO_PAD))
return -1;
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
root->cycle_time_extension, TCA_TAPRIO_PAD))
return -1;
entry_list = nla_nest_start_noflag(msg,
TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
if (!entry_list)
goto error_nest;
list_for_each_entry(entry, &root->entries, list) {
if (dump_entry(msg, entry) < 0)
goto error_nest;
}
nla_nest_end(msg, entry_list);
return 0;
error_nest:
nla_nest_cancel(msg, entry_list);
return -1;
}
static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct taprio_sched *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct sched_gate_list *oper, *admin;
struct tc_mqprio_qopt opt = { 0 };
struct nlattr *nest, *sched_nest;
unsigned int i;
rcu_read_lock();
oper = rcu_dereference(q->oper_sched);
admin = rcu_dereference(q->admin_sched);
opt.num_tc = netdev_get_num_tc(dev);
memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
for (i = 0; i < netdev_get_num_tc(dev); i++) {
opt.count[i] = dev->tc_to_txq[i].count;
opt.offset[i] = dev->tc_to_txq[i].offset;
}
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto start_error;
if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
goto options_error;
if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
goto options_error;
if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
goto options_error;
if (q->txtime_delay &&
nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
goto options_error;
if (oper && dump_schedule(skb, oper))
goto options_error;
if (!admin)
goto done;
sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
if (!sched_nest)
goto options_error;
if (dump_schedule(skb, admin))
goto admin_error;
nla_nest_end(skb, sched_nest);
done:
rcu_read_unlock();
return nla_nest_end(skb, nest);
admin_error:
nla_nest_cancel(skb, sched_nest);
options_error:
nla_nest_cancel(skb, nest);
start_error:
rcu_read_unlock();
return -ENOSPC;
}
static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
{
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
if (!dev_queue)
return NULL;
return dev_queue->qdisc_sleeping;
}
static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
{
unsigned int ntx = TC_H_MIN(classid);
if (!taprio_queue_get(sch, ntx))
return 0;
return ntx;
}
static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_handle |= TC_H_MIN(cl);
tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
return 0;
}
static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
__releases(d->lock)
__acquires(d->lock)
{
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
sch = dev_queue->qdisc_sleeping;
if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
qdisc_qstats_copy(d, sch) < 0)
return -1;
return 0;
}
static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx;
if (arg->stop)
return;
arg->count = arg->skip;
for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
if (arg->fn(sch, ntx + 1, arg) < 0) {
arg->stop = 1;
break;
}
arg->count++;
}
}
static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
struct tcmsg *tcm)
{
return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
}
static const struct Qdisc_class_ops taprio_class_ops = {
.graft = taprio_graft,
.leaf = taprio_leaf,
.find = taprio_find,
.walk = taprio_walk,
.dump = taprio_dump_class,
.dump_stats = taprio_dump_class_stats,
.select_queue = taprio_select_queue,
};
static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
.cl_ops = &taprio_class_ops,
.id = "taprio",
.priv_size = sizeof(struct taprio_sched),
.init = taprio_init,
.change = taprio_change,
.destroy = taprio_destroy,
.peek = taprio_peek,
.dequeue = taprio_dequeue,
.enqueue = taprio_enqueue,
.dump = taprio_dump,
.owner = THIS_MODULE,
};
static struct notifier_block taprio_device_notifier = {
.notifier_call = taprio_dev_notifier,
};
static int __init taprio_module_init(void)
{
int err = register_netdevice_notifier(&taprio_device_notifier);
if (err)
return err;
return register_qdisc(&taprio_qdisc_ops);
}
static void __exit taprio_module_exit(void)
{
unregister_qdisc(&taprio_qdisc_ops);
unregister_netdevice_notifier(&taprio_device_notifier);
}
module_init(taprio_module_init);
module_exit(taprio_module_exit);
MODULE_LICENSE("GPL");