2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-14 00:24:15 +08:00
linux-next/drivers/pci/host/pcie-iproc.h
Ray Jui 3bc2b23488 PCI: iproc: Add iProc PCIe MSI support
Add PCIe MSI support for both PAXB and PAXC interfaces on all iProc-based
platforms.

The iProc PCIe MSI support deploys an event queue-based implementation.
Each event queue is serviced by a GIC interrupt and can support up to 64
MSI vectors.  Host memory is allocated for the event queues, and each event
queue consists of 64 word-sized entries.  MSI data is written to the lower
16-bit of each entry, whereas the upper 16-bit of the entry is reserved for
the controller for internal processing.

Each event queue is tracked by a head pointer and tail pointer.  Head
pointer indicates the next entry in the event queue to be processed by
the driver and is updated by the driver after processing is done.
The controller uses the tail pointer as the next MSI data insertion
point.  The controller ensures MSI data is flushed to host memory before
updating the tail pointer and then triggering the interrupt.

MSI IRQ affinity is supported by evenly distributing the interrupts to each
CPU core.  MSI vector is moved from one GIC interrupt to another in order
to steer to the target CPU.

Therefore, the actual number of supported MSI vectors is:

  M * 64 / N

where M denotes the number of GIC interrupts (event queues), and N denotes
the number of CPU cores.

This iProc event queue-based MSI support should not be used with newer
platforms with integrated MSI support in the GIC (e.g., giv2m or
gicv3-its).

[bhelgaas: fold in Kconfig fixes from Arnd Bergmann <arnd@arndb.de>]
Signed-off-by: Ray Jui <rjui@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Anup Patel <anup.patel@broadcom.com>
Reviewed-by: Vikram Prakash <vikramp@broadcom.com>
Reviewed-by: Scott Branden <sbranden@broadcom.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2016-01-06 18:04:35 -06:00

97 lines
2.6 KiB
C

/*
* Copyright (C) 2014-2015 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _PCIE_IPROC_H
#define _PCIE_IPROC_H
/**
* iProc PCIe interface type
*
* PAXB is the wrapper used in root complex that can be connected to an
* external endpoint device.
*
* PAXC is the wrapper used in root complex dedicated for internal emulated
* endpoint devices.
*/
enum iproc_pcie_type {
IPROC_PCIE_PAXB = 0,
IPROC_PCIE_PAXC,
};
/**
* iProc PCIe outbound mapping
* @set_oarr_size: indicates the OARR size bit needs to be set
* @axi_offset: offset from the AXI address to the internal address used by
* the iProc PCIe core
* @window_size: outbound window size
*/
struct iproc_pcie_ob {
bool set_oarr_size;
resource_size_t axi_offset;
resource_size_t window_size;
};
struct iproc_msi;
/**
* iProc PCIe device
*
* @dev: pointer to device data structure
* @type: iProc PCIe interface type
* @reg_offsets: register offsets
* @base: PCIe host controller I/O register base
* @base_addr: PCIe host controller register base physical address
* @sysdata: Per PCI controller data (ARM-specific)
* @root_bus: pointer to root bus
* @phy: optional PHY device that controls the Serdes
* @map_irq: function callback to map interrupts
* @need_ob_cfg: indicates SW needs to configure the outbound mapping window
* @ob: outbound mapping parameters
* @msi: MSI data
*/
struct iproc_pcie {
struct device *dev;
enum iproc_pcie_type type;
const u16 *reg_offsets;
void __iomem *base;
phys_addr_t base_addr;
#ifdef CONFIG_ARM
struct pci_sys_data sysdata;
#endif
struct pci_bus *root_bus;
struct phy *phy;
int (*map_irq)(const struct pci_dev *, u8, u8);
bool need_ob_cfg;
struct iproc_pcie_ob ob;
struct iproc_msi *msi;
};
int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res);
int iproc_pcie_remove(struct iproc_pcie *pcie);
#ifdef CONFIG_PCIE_IPROC_MSI
int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node);
void iproc_msi_exit(struct iproc_pcie *pcie);
#else
static inline int iproc_msi_init(struct iproc_pcie *pcie,
struct device_node *node)
{
return -ENODEV;
}
static inline void iproc_msi_exit(struct iproc_pcie *pcie)
{
}
#endif
#endif /* _PCIE_IPROC_H */