2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 19:14:01 +08:00
linux-next/security/keys/key.c
Serge E. Hallyn 1d1e97562e keys: distinguish per-uid keys in different namespaces
per-uid keys were looked by uid only.  Use the user namespace
to distinguish the same uid in different namespaces.

This does not address key_permission.  So a task can for instance
try to join a keyring owned by the same uid in another namespace.
That will be handled by a separate patch.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-02-27 12:35:06 +11:00

1015 lines
24 KiB
C

/* Basic authentication token and access key management
*
* Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/poison.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/workqueue.h>
#include <linux/random.h>
#include <linux/err.h>
#include <linux/user_namespace.h>
#include "internal.h"
static struct kmem_cache *key_jar;
struct rb_root key_serial_tree; /* tree of keys indexed by serial */
DEFINE_SPINLOCK(key_serial_lock);
struct rb_root key_user_tree; /* tree of quota records indexed by UID */
DEFINE_SPINLOCK(key_user_lock);
unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
unsigned int key_quota_maxkeys = 200; /* general key count quota */
unsigned int key_quota_maxbytes = 20000; /* general key space quota */
static LIST_HEAD(key_types_list);
static DECLARE_RWSEM(key_types_sem);
static void key_cleanup(struct work_struct *work);
static DECLARE_WORK(key_cleanup_task, key_cleanup);
/* we serialise key instantiation and link */
DEFINE_MUTEX(key_construction_mutex);
/* any key who's type gets unegistered will be re-typed to this */
static struct key_type key_type_dead = {
.name = "dead",
};
#ifdef KEY_DEBUGGING
void __key_check(const struct key *key)
{
printk("__key_check: key %p {%08x} should be {%08x}\n",
key, key->magic, KEY_DEBUG_MAGIC);
BUG();
}
#endif
/*****************************************************************************/
/*
* get the key quota record for a user, allocating a new record if one doesn't
* already exist
*/
struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
{
struct key_user *candidate = NULL, *user;
struct rb_node *parent = NULL;
struct rb_node **p;
try_again:
p = &key_user_tree.rb_node;
spin_lock(&key_user_lock);
/* search the tree for a user record with a matching UID */
while (*p) {
parent = *p;
user = rb_entry(parent, struct key_user, node);
if (uid < user->uid)
p = &(*p)->rb_left;
else if (uid > user->uid)
p = &(*p)->rb_right;
else if (user_ns < user->user_ns)
p = &(*p)->rb_left;
else if (user_ns > user->user_ns)
p = &(*p)->rb_right;
else
goto found;
}
/* if we get here, we failed to find a match in the tree */
if (!candidate) {
/* allocate a candidate user record if we don't already have
* one */
spin_unlock(&key_user_lock);
user = NULL;
candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
if (unlikely(!candidate))
goto out;
/* the allocation may have scheduled, so we need to repeat the
* search lest someone else added the record whilst we were
* asleep */
goto try_again;
}
/* if we get here, then the user record still hadn't appeared on the
* second pass - so we use the candidate record */
atomic_set(&candidate->usage, 1);
atomic_set(&candidate->nkeys, 0);
atomic_set(&candidate->nikeys, 0);
candidate->uid = uid;
candidate->user_ns = get_user_ns(user_ns);
candidate->qnkeys = 0;
candidate->qnbytes = 0;
spin_lock_init(&candidate->lock);
mutex_init(&candidate->cons_lock);
rb_link_node(&candidate->node, parent, p);
rb_insert_color(&candidate->node, &key_user_tree);
spin_unlock(&key_user_lock);
user = candidate;
goto out;
/* okay - we found a user record for this UID */
found:
atomic_inc(&user->usage);
spin_unlock(&key_user_lock);
kfree(candidate);
out:
return user;
} /* end key_user_lookup() */
/*****************************************************************************/
/*
* dispose of a user structure
*/
void key_user_put(struct key_user *user)
{
if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
rb_erase(&user->node, &key_user_tree);
spin_unlock(&key_user_lock);
put_user_ns(user->user_ns);
kfree(user);
}
} /* end key_user_put() */
/*****************************************************************************/
/*
* assign a key the next unique serial number
* - these are assigned randomly to avoid security issues through covert
* channel problems
*/
static inline void key_alloc_serial(struct key *key)
{
struct rb_node *parent, **p;
struct key *xkey;
/* propose a random serial number and look for a hole for it in the
* serial number tree */
do {
get_random_bytes(&key->serial, sizeof(key->serial));
key->serial >>= 1; /* negative numbers are not permitted */
} while (key->serial < 3);
spin_lock(&key_serial_lock);
attempt_insertion:
parent = NULL;
p = &key_serial_tree.rb_node;
while (*p) {
parent = *p;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
p = &(*p)->rb_left;
else if (key->serial > xkey->serial)
p = &(*p)->rb_right;
else
goto serial_exists;
}
/* we've found a suitable hole - arrange for this key to occupy it */
rb_link_node(&key->serial_node, parent, p);
rb_insert_color(&key->serial_node, &key_serial_tree);
spin_unlock(&key_serial_lock);
return;
/* we found a key with the proposed serial number - walk the tree from
* that point looking for the next unused serial number */
serial_exists:
for (;;) {
key->serial++;
if (key->serial < 3) {
key->serial = 3;
goto attempt_insertion;
}
parent = rb_next(parent);
if (!parent)
goto attempt_insertion;
xkey = rb_entry(parent, struct key, serial_node);
if (key->serial < xkey->serial)
goto attempt_insertion;
}
} /* end key_alloc_serial() */
/*****************************************************************************/
/*
* allocate a key of the specified type
* - update the user's quota to reflect the existence of the key
* - called from a key-type operation with key_types_sem read-locked by
* key_create_or_update()
* - this prevents unregistration of the key type
* - upon return the key is as yet uninstantiated; the caller needs to either
* instantiate the key or discard it before returning
*/
struct key *key_alloc(struct key_type *type, const char *desc,
uid_t uid, gid_t gid, const struct cred *cred,
key_perm_t perm, unsigned long flags)
{
struct key_user *user = NULL;
struct key *key;
size_t desclen, quotalen;
int ret;
key = ERR_PTR(-EINVAL);
if (!desc || !*desc)
goto error;
desclen = strlen(desc) + 1;
quotalen = desclen + type->def_datalen;
/* get hold of the key tracking for this user */
user = key_user_lookup(uid, cred->user->user_ns);
if (!user)
goto no_memory_1;
/* check that the user's quota permits allocation of another key and
* its description */
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
unsigned maxkeys = (uid == 0) ?
key_quota_root_maxkeys : key_quota_maxkeys;
unsigned maxbytes = (uid == 0) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&user->lock);
if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
if (user->qnkeys + 1 >= maxkeys ||
user->qnbytes + quotalen >= maxbytes ||
user->qnbytes + quotalen < user->qnbytes)
goto no_quota;
}
user->qnkeys++;
user->qnbytes += quotalen;
spin_unlock(&user->lock);
}
/* allocate and initialise the key and its description */
key = kmem_cache_alloc(key_jar, GFP_KERNEL);
if (!key)
goto no_memory_2;
if (desc) {
key->description = kmemdup(desc, desclen, GFP_KERNEL);
if (!key->description)
goto no_memory_3;
}
atomic_set(&key->usage, 1);
init_rwsem(&key->sem);
key->type = type;
key->user = user;
key->quotalen = quotalen;
key->datalen = type->def_datalen;
key->uid = uid;
key->gid = gid;
key->perm = perm;
key->flags = 0;
key->expiry = 0;
key->payload.data = NULL;
key->security = NULL;
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
key->flags |= 1 << KEY_FLAG_IN_QUOTA;
memset(&key->type_data, 0, sizeof(key->type_data));
#ifdef KEY_DEBUGGING
key->magic = KEY_DEBUG_MAGIC;
#endif
/* let the security module know about the key */
ret = security_key_alloc(key, cred, flags);
if (ret < 0)
goto security_error;
/* publish the key by giving it a serial number */
atomic_inc(&user->nkeys);
key_alloc_serial(key);
error:
return key;
security_error:
kfree(key->description);
kmem_cache_free(key_jar, key);
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
key = ERR_PTR(ret);
goto error;
no_memory_3:
kmem_cache_free(key_jar, key);
no_memory_2:
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
spin_lock(&user->lock);
user->qnkeys--;
user->qnbytes -= quotalen;
spin_unlock(&user->lock);
}
key_user_put(user);
no_memory_1:
key = ERR_PTR(-ENOMEM);
goto error;
no_quota:
spin_unlock(&user->lock);
key_user_put(user);
key = ERR_PTR(-EDQUOT);
goto error;
} /* end key_alloc() */
EXPORT_SYMBOL(key_alloc);
/*****************************************************************************/
/*
* reserve an amount of quota for the key's payload
*/
int key_payload_reserve(struct key *key, size_t datalen)
{
int delta = (int) datalen - key->datalen;
int ret = 0;
key_check(key);
/* contemplate the quota adjustment */
if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
unsigned maxbytes = (key->user->uid == 0) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&key->user->lock);
if (delta > 0 &&
(key->user->qnbytes + delta >= maxbytes ||
key->user->qnbytes + delta < key->user->qnbytes)) {
ret = -EDQUOT;
}
else {
key->user->qnbytes += delta;
key->quotalen += delta;
}
spin_unlock(&key->user->lock);
}
/* change the recorded data length if that didn't generate an error */
if (ret == 0)
key->datalen = datalen;
return ret;
} /* end key_payload_reserve() */
EXPORT_SYMBOL(key_payload_reserve);
/*****************************************************************************/
/*
* instantiate a key and link it into the target keyring atomically
* - called with the target keyring's semaphore writelocked
*/
static int __key_instantiate_and_link(struct key *key,
const void *data,
size_t datalen,
struct key *keyring,
struct key *authkey)
{
int ret, awaken;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
/* instantiate the key */
ret = key->type->instantiate(key, data, datalen);
if (ret == 0) {
/* mark the key as being instantiated */
atomic_inc(&key->user->nikeys);
set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
/* and link it into the destination keyring */
if (keyring)
ret = __key_link(keyring, key);
/* disable the authorisation key */
if (authkey)
key_revoke(authkey);
}
}
mutex_unlock(&key_construction_mutex);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret;
} /* end __key_instantiate_and_link() */
/*****************************************************************************/
/*
* instantiate a key and link it into the target keyring atomically
*/
int key_instantiate_and_link(struct key *key,
const void *data,
size_t datalen,
struct key *keyring,
struct key *authkey)
{
int ret;
if (keyring)
down_write(&keyring->sem);
ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey);
if (keyring)
up_write(&keyring->sem);
return ret;
} /* end key_instantiate_and_link() */
EXPORT_SYMBOL(key_instantiate_and_link);
/*****************************************************************************/
/*
* negatively instantiate a key and link it into the target keyring atomically
*/
int key_negate_and_link(struct key *key,
unsigned timeout,
struct key *keyring,
struct key *authkey)
{
struct timespec now;
int ret, awaken;
key_check(key);
key_check(keyring);
awaken = 0;
ret = -EBUSY;
if (keyring)
down_write(&keyring->sem);
mutex_lock(&key_construction_mutex);
/* can't instantiate twice */
if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
/* mark the key as being negatively instantiated */
atomic_inc(&key->user->nikeys);
set_bit(KEY_FLAG_NEGATIVE, &key->flags);
set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
now = current_kernel_time();
key->expiry = now.tv_sec + timeout;
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
awaken = 1;
ret = 0;
/* and link it into the destination keyring */
if (keyring)
ret = __key_link(keyring, key);
/* disable the authorisation key */
if (authkey)
key_revoke(authkey);
}
mutex_unlock(&key_construction_mutex);
if (keyring)
up_write(&keyring->sem);
/* wake up anyone waiting for a key to be constructed */
if (awaken)
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
return ret;
} /* end key_negate_and_link() */
EXPORT_SYMBOL(key_negate_and_link);
/*****************************************************************************/
/*
* do cleaning up in process context so that we don't have to disable
* interrupts all over the place
*/
static void key_cleanup(struct work_struct *work)
{
struct rb_node *_n;
struct key *key;
go_again:
/* look for a dead key in the tree */
spin_lock(&key_serial_lock);
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
key = rb_entry(_n, struct key, serial_node);
if (atomic_read(&key->usage) == 0)
goto found_dead_key;
}
spin_unlock(&key_serial_lock);
return;
found_dead_key:
/* we found a dead key - once we've removed it from the tree, we can
* drop the lock */
rb_erase(&key->serial_node, &key_serial_tree);
spin_unlock(&key_serial_lock);
key_check(key);
security_key_free(key);
/* deal with the user's key tracking and quota */
if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
spin_lock(&key->user->lock);
key->user->qnkeys--;
key->user->qnbytes -= key->quotalen;
spin_unlock(&key->user->lock);
}
atomic_dec(&key->user->nkeys);
if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
atomic_dec(&key->user->nikeys);
key_user_put(key->user);
/* now throw away the key memory */
if (key->type->destroy)
key->type->destroy(key);
kfree(key->description);
#ifdef KEY_DEBUGGING
key->magic = KEY_DEBUG_MAGIC_X;
#endif
kmem_cache_free(key_jar, key);
/* there may, of course, be more than one key to destroy */
goto go_again;
} /* end key_cleanup() */
/*****************************************************************************/
/*
* dispose of a reference to a key
* - when all the references are gone, we schedule the cleanup task to come and
* pull it out of the tree in definite process context
*/
void key_put(struct key *key)
{
if (key) {
key_check(key);
if (atomic_dec_and_test(&key->usage))
schedule_work(&key_cleanup_task);
}
} /* end key_put() */
EXPORT_SYMBOL(key_put);
/*****************************************************************************/
/*
* find a key by its serial number
*/
struct key *key_lookup(key_serial_t id)
{
struct rb_node *n;
struct key *key;
spin_lock(&key_serial_lock);
/* search the tree for the specified key */
n = key_serial_tree.rb_node;
while (n) {
key = rb_entry(n, struct key, serial_node);
if (id < key->serial)
n = n->rb_left;
else if (id > key->serial)
n = n->rb_right;
else
goto found;
}
not_found:
key = ERR_PTR(-ENOKEY);
goto error;
found:
/* pretend it doesn't exist if it's dead */
if (atomic_read(&key->usage) == 0 ||
test_bit(KEY_FLAG_DEAD, &key->flags) ||
key->type == &key_type_dead)
goto not_found;
/* this races with key_put(), but that doesn't matter since key_put()
* doesn't actually change the key
*/
atomic_inc(&key->usage);
error:
spin_unlock(&key_serial_lock);
return key;
} /* end key_lookup() */
/*****************************************************************************/
/*
* find and lock the specified key type against removal
* - we return with the sem readlocked
*/
struct key_type *key_type_lookup(const char *type)
{
struct key_type *ktype;
down_read(&key_types_sem);
/* look up the key type to see if it's one of the registered kernel
* types */
list_for_each_entry(ktype, &key_types_list, link) {
if (strcmp(ktype->name, type) == 0)
goto found_kernel_type;
}
up_read(&key_types_sem);
ktype = ERR_PTR(-ENOKEY);
found_kernel_type:
return ktype;
} /* end key_type_lookup() */
/*****************************************************************************/
/*
* unlock a key type
*/
void key_type_put(struct key_type *ktype)
{
up_read(&key_types_sem);
} /* end key_type_put() */
/*****************************************************************************/
/*
* attempt to update an existing key
* - the key has an incremented refcount
* - we need to put the key if we get an error
*/
static inline key_ref_t __key_update(key_ref_t key_ref,
const void *payload, size_t plen)
{
struct key *key = key_ref_to_ptr(key_ref);
int ret;
/* need write permission on the key to update it */
ret = key_permission(key_ref, KEY_WRITE);
if (ret < 0)
goto error;
ret = -EEXIST;
if (!key->type->update)
goto error;
down_write(&key->sem);
ret = key->type->update(key, payload, plen);
if (ret == 0)
/* updating a negative key instantiates it */
clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
up_write(&key->sem);
if (ret < 0)
goto error;
out:
return key_ref;
error:
key_put(key);
key_ref = ERR_PTR(ret);
goto out;
} /* end __key_update() */
/*****************************************************************************/
/*
* search the specified keyring for a key of the same description; if one is
* found, update it, otherwise add a new one
*/
key_ref_t key_create_or_update(key_ref_t keyring_ref,
const char *type,
const char *description,
const void *payload,
size_t plen,
key_perm_t perm,
unsigned long flags)
{
const struct cred *cred = current_cred();
struct key_type *ktype;
struct key *keyring, *key = NULL;
key_ref_t key_ref;
int ret;
/* look up the key type to see if it's one of the registered kernel
* types */
ktype = key_type_lookup(type);
if (IS_ERR(ktype)) {
key_ref = ERR_PTR(-ENODEV);
goto error;
}
key_ref = ERR_PTR(-EINVAL);
if (!ktype->match || !ktype->instantiate)
goto error_2;
keyring = key_ref_to_ptr(keyring_ref);
key_check(keyring);
key_ref = ERR_PTR(-ENOTDIR);
if (keyring->type != &key_type_keyring)
goto error_2;
down_write(&keyring->sem);
/* if we're going to allocate a new key, we're going to have
* to modify the keyring */
ret = key_permission(keyring_ref, KEY_WRITE);
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error_3;
}
/* if it's possible to update this type of key, search for an existing
* key of the same type and description in the destination keyring and
* update that instead if possible
*/
if (ktype->update) {
key_ref = __keyring_search_one(keyring_ref, ktype, description,
0);
if (!IS_ERR(key_ref))
goto found_matching_key;
}
/* if the client doesn't provide, decide on the permissions we want */
if (perm == KEY_PERM_UNDEF) {
perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
if (ktype->read)
perm |= KEY_POS_READ | KEY_USR_READ;
if (ktype == &key_type_keyring || ktype->update)
perm |= KEY_USR_WRITE;
}
/* allocate a new key */
key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
perm, flags);
if (IS_ERR(key)) {
key_ref = ERR_CAST(key);
goto error_3;
}
/* instantiate it and link it into the target keyring */
ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
if (ret < 0) {
key_put(key);
key_ref = ERR_PTR(ret);
goto error_3;
}
key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
error_3:
up_write(&keyring->sem);
error_2:
key_type_put(ktype);
error:
return key_ref;
found_matching_key:
/* we found a matching key, so we're going to try to update it
* - we can drop the locks first as we have the key pinned
*/
up_write(&keyring->sem);
key_type_put(ktype);
key_ref = __key_update(key_ref, payload, plen);
goto error;
} /* end key_create_or_update() */
EXPORT_SYMBOL(key_create_or_update);
/*****************************************************************************/
/*
* update a key
*/
int key_update(key_ref_t key_ref, const void *payload, size_t plen)
{
struct key *key = key_ref_to_ptr(key_ref);
int ret;
key_check(key);
/* the key must be writable */
ret = key_permission(key_ref, KEY_WRITE);
if (ret < 0)
goto error;
/* attempt to update it if supported */
ret = -EOPNOTSUPP;
if (key->type->update) {
down_write(&key->sem);
ret = key->type->update(key, payload, plen);
if (ret == 0)
/* updating a negative key instantiates it */
clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
up_write(&key->sem);
}
error:
return ret;
} /* end key_update() */
EXPORT_SYMBOL(key_update);
/*****************************************************************************/
/*
* revoke a key
*/
void key_revoke(struct key *key)
{
key_check(key);
/* make sure no one's trying to change or use the key when we mark it
* - we tell lockdep that we might nest because we might be revoking an
* authorisation key whilst holding the sem on a key we've just
* instantiated
*/
down_write_nested(&key->sem, 1);
if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
key->type->revoke)
key->type->revoke(key);
up_write(&key->sem);
} /* end key_revoke() */
EXPORT_SYMBOL(key_revoke);
/*****************************************************************************/
/*
* register a type of key
*/
int register_key_type(struct key_type *ktype)
{
struct key_type *p;
int ret;
ret = -EEXIST;
down_write(&key_types_sem);
/* disallow key types with the same name */
list_for_each_entry(p, &key_types_list, link) {
if (strcmp(p->name, ktype->name) == 0)
goto out;
}
/* store the type */
list_add(&ktype->link, &key_types_list);
ret = 0;
out:
up_write(&key_types_sem);
return ret;
} /* end register_key_type() */
EXPORT_SYMBOL(register_key_type);
/*****************************************************************************/
/*
* unregister a type of key
*/
void unregister_key_type(struct key_type *ktype)
{
struct rb_node *_n;
struct key *key;
down_write(&key_types_sem);
/* withdraw the key type */
list_del_init(&ktype->link);
/* mark all the keys of this type dead */
spin_lock(&key_serial_lock);
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
key = rb_entry(_n, struct key, serial_node);
if (key->type == ktype)
key->type = &key_type_dead;
}
spin_unlock(&key_serial_lock);
/* make sure everyone revalidates their keys */
synchronize_rcu();
/* we should now be able to destroy the payloads of all the keys of
* this type with impunity */
spin_lock(&key_serial_lock);
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
key = rb_entry(_n, struct key, serial_node);
if (key->type == ktype) {
if (ktype->destroy)
ktype->destroy(key);
memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
}
}
spin_unlock(&key_serial_lock);
up_write(&key_types_sem);
} /* end unregister_key_type() */
EXPORT_SYMBOL(unregister_key_type);
/*****************************************************************************/
/*
* initialise the key management stuff
*/
void __init key_init(void)
{
/* allocate a slab in which we can store keys */
key_jar = kmem_cache_create("key_jar", sizeof(struct key),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
/* add the special key types */
list_add_tail(&key_type_keyring.link, &key_types_list);
list_add_tail(&key_type_dead.link, &key_types_list);
list_add_tail(&key_type_user.link, &key_types_list);
/* record the root user tracking */
rb_link_node(&root_key_user.node,
NULL,
&key_user_tree.rb_node);
rb_insert_color(&root_key_user.node,
&key_user_tree);
} /* end key_init() */