2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/kernel/scs.c
Sami Tolvanen a2abe7cbd8 scs: switch to vmapped shadow stacks
The kernel currently uses kmem_cache to allocate shadow call stacks,
which means an overflows may not be immediately detected and can
potentially result in another task's shadow stack to be overwritten.

This change switches SCS to use virtually mapped shadow stacks for
tasks, which increases shadow stack size to a full page and provides
more robust overflow detection, similarly to VMAP_STACK.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130233442.2562064-2-samitolvanen@google.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-12-01 10:30:28 +00:00

154 lines
2.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Shadow Call Stack support.
*
* Copyright (C) 2019 Google LLC
*/
#include <linux/cpuhotplug.h>
#include <linux/kasan.h>
#include <linux/mm.h>
#include <linux/scs.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
static void __scs_account(void *s, int account)
{
struct page *scs_page = vmalloc_to_page(s);
mod_node_page_state(page_pgdat(scs_page), NR_KERNEL_SCS_KB,
account * (SCS_SIZE / SZ_1K));
}
/* Matches NR_CACHED_STACKS for VMAP_STACK */
#define NR_CACHED_SCS 2
static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]);
static void *__scs_alloc(int node)
{
int i;
void *s;
for (i = 0; i < NR_CACHED_SCS; i++) {
s = this_cpu_xchg(scs_cache[i], NULL);
if (s) {
kasan_unpoison_vmalloc(s, SCS_SIZE);
memset(s, 0, SCS_SIZE);
return s;
}
}
return __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
GFP_SCS, PAGE_KERNEL, 0, node,
__builtin_return_address(0));
}
void *scs_alloc(int node)
{
void *s;
s = __scs_alloc(node);
if (!s)
return NULL;
*__scs_magic(s) = SCS_END_MAGIC;
/*
* Poison the allocation to catch unintentional accesses to
* the shadow stack when KASAN is enabled.
*/
kasan_poison_vmalloc(s, SCS_SIZE);
__scs_account(s, 1);
return s;
}
void scs_free(void *s)
{
int i;
__scs_account(s, -1);
/*
* We cannot sleep as this can be called in interrupt context,
* so use this_cpu_cmpxchg to update the cache, and vfree_atomic
* to free the stack.
*/
for (i = 0; i < NR_CACHED_SCS; i++)
if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL)
return;
vfree_atomic(s);
}
static int scs_cleanup(unsigned int cpu)
{
int i;
void **cache = per_cpu_ptr(scs_cache, cpu);
for (i = 0; i < NR_CACHED_SCS; i++) {
vfree(cache[i]);
cache[i] = NULL;
}
return 0;
}
void __init scs_init(void)
{
cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL,
scs_cleanup);
}
int scs_prepare(struct task_struct *tsk, int node)
{
void *s = scs_alloc(node);
if (!s)
return -ENOMEM;
task_scs(tsk) = task_scs_sp(tsk) = s;
return 0;
}
static void scs_check_usage(struct task_struct *tsk)
{
static unsigned long highest;
unsigned long *p, prev, curr = highest, used = 0;
if (!IS_ENABLED(CONFIG_DEBUG_STACK_USAGE))
return;
for (p = task_scs(tsk); p < __scs_magic(tsk); ++p) {
if (!READ_ONCE_NOCHECK(*p))
break;
used += sizeof(*p);
}
while (used > curr) {
prev = cmpxchg_relaxed(&highest, curr, used);
if (prev == curr) {
pr_info("%s (%d): highest shadow stack usage: %lu bytes\n",
tsk->comm, task_pid_nr(tsk), used);
break;
}
curr = prev;
}
}
void scs_release(struct task_struct *tsk)
{
void *s = task_scs(tsk);
if (!s)
return;
WARN(task_scs_end_corrupted(tsk),
"corrupted shadow stack detected when freeing task\n");
scs_check_usage(tsk);
scs_free(s);
}