2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
linux-next/mm/percpu-stats.c
Kees Cook 42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

237 lines
5.7 KiB
C

/*
* mm/percpu-debug.c
*
* Copyright (C) 2017 Facebook Inc.
* Copyright (C) 2017 Dennis Zhou <dennisz@fb.com>
*
* This file is released under the GPLv2.
*
* Prints statistics about the percpu allocator and backing chunks.
*/
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/percpu.h>
#include <linux/seq_file.h>
#include <linux/sort.h>
#include <linux/vmalloc.h>
#include "percpu-internal.h"
#define P(X, Y) \
seq_printf(m, " %-20s: %12lld\n", X, (long long int)Y)
struct percpu_stats pcpu_stats;
struct pcpu_alloc_info pcpu_stats_ai;
static int cmpint(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
/*
* Iterates over all chunks to find the max nr_alloc entries.
*/
static int find_max_nr_alloc(void)
{
struct pcpu_chunk *chunk;
int slot, max_nr_alloc;
max_nr_alloc = 0;
for (slot = 0; slot < pcpu_nr_slots; slot++)
list_for_each_entry(chunk, &pcpu_slot[slot], list)
max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc);
return max_nr_alloc;
}
/*
* Prints out chunk state. Fragmentation is considered between
* the beginning of the chunk to the last allocation.
*
* All statistics are in bytes unless stated otherwise.
*/
static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
int *buffer)
{
int i, last_alloc, as_len, start, end;
int *alloc_sizes, *p;
/* statistics */
int sum_frag = 0, max_frag = 0;
int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
alloc_sizes = buffer;
/*
* find_last_bit returns the start value if nothing found.
* Therefore, we must determine if it is a failure of find_last_bit
* and set the appropriate value.
*/
last_alloc = find_last_bit(chunk->alloc_map,
pcpu_chunk_map_bits(chunk) -
chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
last_alloc + 1 : 0;
as_len = 0;
start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
/*
* If a bit is set in the allocation map, the bound_map identifies
* where the allocation ends. If the allocation is not set, the
* bound_map does not identify free areas as it is only kept accurate
* on allocation, not free.
*
* Positive values are allocations and negative values are free
* fragments.
*/
while (start < last_alloc) {
if (test_bit(start, chunk->alloc_map)) {
end = find_next_bit(chunk->bound_map, last_alloc,
start + 1);
alloc_sizes[as_len] = 1;
} else {
end = find_next_bit(chunk->alloc_map, last_alloc,
start + 1);
alloc_sizes[as_len] = -1;
}
alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
start = end;
}
/*
* The negative values are free fragments and thus sorting gives the
* free fragments at the beginning in largest first order.
*/
if (as_len > 0) {
sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
/* iterate through the unallocated fragments */
for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
sum_frag -= *p;
max_frag = max(max_frag, -1 * (*p));
}
cur_min_alloc = alloc_sizes[i];
cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
cur_max_alloc = alloc_sizes[as_len - 1];
}
P("nr_alloc", chunk->nr_alloc);
P("max_alloc_size", chunk->max_alloc_size);
P("empty_pop_pages", chunk->nr_empty_pop_pages);
P("first_bit", chunk->first_bit);
P("free_bytes", chunk->free_bytes);
P("contig_bytes", chunk->contig_bits * PCPU_MIN_ALLOC_SIZE);
P("sum_frag", sum_frag);
P("max_frag", max_frag);
P("cur_min_alloc", cur_min_alloc);
P("cur_med_alloc", cur_med_alloc);
P("cur_max_alloc", cur_max_alloc);
seq_putc(m, '\n');
}
static int percpu_stats_show(struct seq_file *m, void *v)
{
struct pcpu_chunk *chunk;
int slot, max_nr_alloc;
int *buffer;
alloc_buffer:
spin_lock_irq(&pcpu_lock);
max_nr_alloc = find_max_nr_alloc();
spin_unlock_irq(&pcpu_lock);
/* there can be at most this many free and allocated fragments */
buffer = vmalloc(array_size(sizeof(int), (2 * max_nr_alloc + 1)));
if (!buffer)
return -ENOMEM;
spin_lock_irq(&pcpu_lock);
/* if the buffer allocated earlier is too small */
if (max_nr_alloc < find_max_nr_alloc()) {
spin_unlock_irq(&pcpu_lock);
vfree(buffer);
goto alloc_buffer;
}
#define PL(X) \
seq_printf(m, " %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
seq_printf(m,
"Percpu Memory Statistics\n"
"Allocation Info:\n"
"----------------------------------------\n");
PL(unit_size);
PL(static_size);
PL(reserved_size);
PL(dyn_size);
PL(atom_size);
PL(alloc_size);
seq_putc(m, '\n');
#undef PL
#define PU(X) \
seq_printf(m, " %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
seq_printf(m,
"Global Stats:\n"
"----------------------------------------\n");
PU(nr_alloc);
PU(nr_dealloc);
PU(nr_cur_alloc);
PU(nr_max_alloc);
PU(nr_chunks);
PU(nr_max_chunks);
PU(min_alloc_size);
PU(max_alloc_size);
P("empty_pop_pages", pcpu_nr_empty_pop_pages);
seq_putc(m, '\n');
#undef PU
seq_printf(m,
"Per Chunk Stats:\n"
"----------------------------------------\n");
if (pcpu_reserved_chunk) {
seq_puts(m, "Chunk: <- Reserved Chunk\n");
chunk_map_stats(m, pcpu_reserved_chunk, buffer);
}
for (slot = 0; slot < pcpu_nr_slots; slot++) {
list_for_each_entry(chunk, &pcpu_slot[slot], list) {
if (chunk == pcpu_first_chunk) {
seq_puts(m, "Chunk: <- First Chunk\n");
chunk_map_stats(m, chunk, buffer);
} else {
seq_puts(m, "Chunk:\n");
chunk_map_stats(m, chunk, buffer);
}
}
}
spin_unlock_irq(&pcpu_lock);
vfree(buffer);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(percpu_stats);
static int __init init_percpu_stats_debugfs(void)
{
debugfs_create_file("percpu_stats", 0444, NULL, NULL,
&percpu_stats_fops);
return 0;
}
late_initcall(init_percpu_stats_debugfs);