2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00
linux-next/drivers/spi/spi-bcm-qspi.c
Kamal Dasu 742d595806
spi: bcm-qspi: Drive MSPI peripheral SSb pin on cs_change
As per the spi core implementation for MSPI devices when the transfer is
the last one in the message, the chip may stay selected until the next
transfer. On multi-device SPI busses with nothing blocking messages going
to other devices, this is just a performance hint; starting a message to
another device deselects this one. But in other cases, this can be used
to ensure correctness. Some devices need protocol transactions to be built
from a series of spi_message submissions, where the content of one message
is determined by the results of previous messages and where the whole
transaction ends when the chipselect goes intactive.

On CS change after completing the last serial transfer, the MSPI driver
drives SSb pin CDRAM register correctly according comments in core spi.h
as shown below:

case 1) EOM =1, cs_change =0: SSb inactive
case 2) EOM =1, cs_change =1: SSb active
case 3) EOM =0, cs_change =0: SSb active
case 4) EOM =0, cs_change =1: SSb inactive

Signed-off-by: Kamal Dasu <kdasu.kdev@gmail.com>
Link: https://lore.kernel.org/r/20200420190853.45614-5-kdasu.kdev@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-04-21 16:05:54 +01:00

1448 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
*
* Copyright 2016 Broadcom
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include "spi-bcm-qspi.h"
#define DRIVER_NAME "bcm_qspi"
/* BSPI register offsets */
#define BSPI_REVISION_ID 0x000
#define BSPI_SCRATCH 0x004
#define BSPI_MAST_N_BOOT_CTRL 0x008
#define BSPI_BUSY_STATUS 0x00c
#define BSPI_INTR_STATUS 0x010
#define BSPI_B0_STATUS 0x014
#define BSPI_B0_CTRL 0x018
#define BSPI_B1_STATUS 0x01c
#define BSPI_B1_CTRL 0x020
#define BSPI_STRAP_OVERRIDE_CTRL 0x024
#define BSPI_FLEX_MODE_ENABLE 0x028
#define BSPI_BITS_PER_CYCLE 0x02c
#define BSPI_BITS_PER_PHASE 0x030
#define BSPI_CMD_AND_MODE_BYTE 0x034
#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
#define BSPI_BSPI_XOR_VALUE 0x03c
#define BSPI_BSPI_XOR_ENABLE 0x040
#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
#define BSPI_BSPI_PIO_IODIR 0x048
#define BSPI_BSPI_PIO_DATA 0x04c
/* RAF register offsets */
#define BSPI_RAF_START_ADDR 0x100
#define BSPI_RAF_NUM_WORDS 0x104
#define BSPI_RAF_CTRL 0x108
#define BSPI_RAF_FULLNESS 0x10c
#define BSPI_RAF_WATERMARK 0x110
#define BSPI_RAF_STATUS 0x114
#define BSPI_RAF_READ_DATA 0x118
#define BSPI_RAF_WORD_CNT 0x11c
#define BSPI_RAF_CURR_ADDR 0x120
/* Override mode masks */
#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
#define BSPI_ADDRLEN_3BYTES 3
#define BSPI_ADDRLEN_4BYTES 4
#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
#define BSPI_RAF_CTRL_START_MASK BIT(0)
#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
#define BSPI_READ_LENGTH 256
/* MSPI register offsets */
#define MSPI_SPCR0_LSB 0x000
#define MSPI_SPCR0_MSB 0x004
#define MSPI_SPCR1_LSB 0x008
#define MSPI_SPCR1_MSB 0x00c
#define MSPI_NEWQP 0x010
#define MSPI_ENDQP 0x014
#define MSPI_SPCR2 0x018
#define MSPI_MSPI_STATUS 0x020
#define MSPI_CPTQP 0x024
#define MSPI_SPCR3 0x028
#define MSPI_TXRAM 0x040
#define MSPI_RXRAM 0x0c0
#define MSPI_CDRAM 0x140
#define MSPI_WRITE_LOCK 0x180
#define MSPI_MASTER_BIT BIT(7)
#define MSPI_NUM_CDRAM 16
#define MSPI_CDRAM_CONT_BIT BIT(7)
#define MSPI_CDRAM_BITSE_BIT BIT(6)
#define MSPI_CDRAM_PCS 0xf
#define MSPI_SPCR2_SPE BIT(6)
#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
#define MSPI_MSPI_STATUS_SPIF BIT(0)
#define INTR_BASE_BIT_SHIFT 0x02
#define INTR_COUNT 0x07
#define NUM_CHIPSELECT 4
#define QSPI_SPBR_MIN 8U
#define QSPI_SPBR_MAX 255U
#define OPCODE_DIOR 0xBB
#define OPCODE_QIOR 0xEB
#define OPCODE_DIOR_4B 0xBC
#define OPCODE_QIOR_4B 0xEC
#define MAX_CMD_SIZE 6
#define ADDR_4MB_MASK GENMASK(22, 0)
/* stop at end of transfer, no other reason */
#define TRANS_STATUS_BREAK_NONE 0
/* stop at end of spi_message */
#define TRANS_STATUS_BREAK_EOM 1
/* stop at end of spi_transfer if delay */
#define TRANS_STATUS_BREAK_DELAY 2
/* stop at end of spi_transfer if cs_change */
#define TRANS_STATUS_BREAK_CS_CHANGE 4
/* stop if we run out of bytes */
#define TRANS_STATUS_BREAK_NO_BYTES 8
/* events that make us stop filling TX slots */
#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_DELAY | \
TRANS_STATUS_BREAK_CS_CHANGE)
/* events that make us deassert CS */
#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_CS_CHANGE)
struct bcm_qspi_parms {
u32 speed_hz;
u8 mode;
u8 bits_per_word;
};
struct bcm_xfer_mode {
bool flex_mode;
unsigned int width;
unsigned int addrlen;
unsigned int hp;
};
enum base_type {
MSPI,
BSPI,
CHIP_SELECT,
BASEMAX,
};
enum irq_source {
SINGLE_L2,
MUXED_L1,
};
struct bcm_qspi_irq {
const char *irq_name;
const irq_handler_t irq_handler;
int irq_source;
u32 mask;
};
struct bcm_qspi_dev_id {
const struct bcm_qspi_irq *irqp;
void *dev;
};
struct qspi_trans {
struct spi_transfer *trans;
int byte;
bool mspi_last_trans;
};
struct bcm_qspi {
struct platform_device *pdev;
struct spi_master *master;
struct clk *clk;
u32 base_clk;
u32 max_speed_hz;
void __iomem *base[BASEMAX];
/* Some SoCs provide custom interrupt status register(s) */
struct bcm_qspi_soc_intc *soc_intc;
struct bcm_qspi_parms last_parms;
struct qspi_trans trans_pos;
int curr_cs;
int bspi_maj_rev;
int bspi_min_rev;
int bspi_enabled;
const struct spi_mem_op *bspi_rf_op;
u32 bspi_rf_op_idx;
u32 bspi_rf_op_len;
u32 bspi_rf_op_status;
struct bcm_xfer_mode xfer_mode;
u32 s3_strap_override_ctrl;
bool bspi_mode;
bool big_endian;
int num_irqs;
struct bcm_qspi_dev_id *dev_ids;
struct completion mspi_done;
struct completion bspi_done;
};
static inline bool has_bspi(struct bcm_qspi *qspi)
{
return qspi->bspi_mode;
}
/* Read qspi controller register*/
static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset)
{
return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
}
/* Write qspi controller register*/
static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset, unsigned int data)
{
bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
}
/* BSPI helpers */
static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
{
int i;
/* this should normally finish within 10us */
for (i = 0; i < 1000; i++) {
if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
return 0;
udelay(1);
}
dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
return -EIO;
}
static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
{
if (qspi->bspi_maj_rev < 4)
return true;
return false;
}
static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
/* Force rising edge for the b0/b1 'flush' field */
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
{
return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
}
static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
{
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
/* BSPI v3 LR is LE only, convert data to host endianness */
if (bcm_qspi_bspi_ver_three(qspi))
data = le32_to_cpu(data);
return data;
}
static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_START_MASK);
}
static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
{
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_CLEAR_MASK);
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
{
u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
u32 data = 0;
dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
data = bcm_qspi_bspi_lr_read_fifo(qspi);
if (likely(qspi->bspi_rf_op_len >= 4) &&
IS_ALIGNED((uintptr_t)buf, 4)) {
buf[qspi->bspi_rf_op_idx++] = data;
qspi->bspi_rf_op_len -= 4;
} else {
/* Read out remaining bytes, make sure*/
u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
data = cpu_to_le32(data);
while (qspi->bspi_rf_op_len) {
*cbuf++ = (u8)data;
data >>= 8;
qspi->bspi_rf_op_len--;
}
}
}
}
static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
int bpp, int bpc, int flex_mode)
{
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
}
static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int bpc = 0, bpp = 0;
u8 command = op->cmd.opcode;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
int flex_mode = 1;
dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
if (addrlen == BSPI_ADDRLEN_4BYTES)
bpp = BSPI_BPP_ADDR_SELECT_MASK;
bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
switch (width) {
case SPI_NBITS_SINGLE:
if (addrlen == BSPI_ADDRLEN_3BYTES)
/* default mode, does not need flex_cmd */
flex_mode = 0;
break;
case SPI_NBITS_DUAL:
bpc = 0x00000001;
if (hp) {
bpc |= 0x00010100; /* address and mode are 2-bit */
bpp = BSPI_BPP_MODE_SELECT_MASK;
}
break;
case SPI_NBITS_QUAD:
bpc = 0x00000002;
if (hp) {
bpc |= 0x00020200; /* address and mode are 4-bit */
bpp |= BSPI_BPP_MODE_SELECT_MASK;
}
break;
default:
return -EINVAL;
}
bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
return 0;
}
static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
switch (width) {
case SPI_NBITS_SINGLE:
/* clear quad/dual mode */
data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
break;
case SPI_NBITS_QUAD:
/* clear dual mode and set quad mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
break;
case SPI_NBITS_DUAL:
/* clear quad mode set dual mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
break;
default:
return -EINVAL;
}
if (addrlen == BSPI_ADDRLEN_4BYTES)
/* set 4byte mode*/
data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
else
/* clear 4 byte mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
/* set the override mode */
data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
return 0;
}
static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int error = 0;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
/* default mode */
qspi->xfer_mode.flex_mode = true;
if (!bcm_qspi_bspi_ver_three(qspi)) {
u32 val, mask;
val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
if (val & mask || qspi->s3_strap_override_ctrl & mask) {
qspi->xfer_mode.flex_mode = false;
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
error = bcm_qspi_bspi_set_override(qspi, op, hp);
}
}
if (qspi->xfer_mode.flex_mode)
error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
if (error) {
dev_warn(&qspi->pdev->dev,
"INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
width, addrlen, hp);
} else if (qspi->xfer_mode.width != width ||
qspi->xfer_mode.addrlen != addrlen ||
qspi->xfer_mode.hp != hp) {
qspi->xfer_mode.width = width;
qspi->xfer_mode.addrlen = addrlen;
qspi->xfer_mode.hp = hp;
dev_dbg(&qspi->pdev->dev,
"cs:%d %d-lane output, %d-byte address%s\n",
qspi->curr_cs,
qspi->xfer_mode.width,
qspi->xfer_mode.addrlen,
qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
}
return error;
}
static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 1;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
return;
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
udelay(1);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
udelay(1);
}
static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 0;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
return;
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
udelay(1);
}
static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
{
u32 rd = 0;
u32 wr = 0;
if (qspi->base[CHIP_SELECT]) {
rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
wr = (rd & ~0xff) | (1 << cs);
if (rd == wr)
return;
bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
usleep_range(10, 20);
}
dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
qspi->curr_cs = cs;
}
/* MSPI helpers */
static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
const struct bcm_qspi_parms *xp)
{
u32 spcr, spbr = 0;
if (xp->speed_hz)
spbr = qspi->base_clk / (2 * xp->speed_hz);
spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
spcr = MSPI_MASTER_BIT;
/* for 16 bit the data should be zero */
if (xp->bits_per_word != 16)
spcr |= xp->bits_per_word << 2;
spcr |= xp->mode & 3;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
qspi->last_parms = *xp;
}
static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi_parms xp;
xp.speed_hz = trans->speed_hz;
xp.bits_per_word = trans->bits_per_word;
xp.mode = spi->mode;
bcm_qspi_hw_set_parms(qspi, &xp);
}
static int bcm_qspi_setup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp;
if (spi->bits_per_word > 16)
return -EINVAL;
xp = spi_get_ctldata(spi);
if (!xp) {
xp = kzalloc(sizeof(*xp), GFP_KERNEL);
if (!xp)
return -ENOMEM;
spi_set_ctldata(spi, xp);
}
xp->speed_hz = spi->max_speed_hz;
xp->mode = spi->mode;
if (spi->bits_per_word)
xp->bits_per_word = spi->bits_per_word;
else
xp->bits_per_word = 8;
return 0;
}
static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
struct qspi_trans *qt)
{
if (qt->mspi_last_trans &&
spi_transfer_is_last(qspi->master, qt->trans))
return true;
else
return false;
}
static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
struct qspi_trans *qt, int flags)
{
int ret = TRANS_STATUS_BREAK_NONE;
/* count the last transferred bytes */
if (qt->trans->bits_per_word <= 8)
qt->byte++;
else
qt->byte += 2;
if (qt->byte >= qt->trans->len) {
/* we're at the end of the spi_transfer */
/* in TX mode, need to pause for a delay or CS change */
if (qt->trans->delay_usecs &&
(flags & TRANS_STATUS_BREAK_DELAY))
ret |= TRANS_STATUS_BREAK_DELAY;
if (qt->trans->cs_change &&
(flags & TRANS_STATUS_BREAK_CS_CHANGE))
ret |= TRANS_STATUS_BREAK_CS_CHANGE;
if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
ret |= TRANS_STATUS_BREAK_EOM;
else
ret |= TRANS_STATUS_BREAK_NO_BYTES;
qt->trans = NULL;
}
dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
return ret;
}
static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
{
u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
/* mask out reserved bits */
return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
}
static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb_offset = reg_offset + (slot << 3);
return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
}
static void read_from_hw(struct bcm_qspi *qspi, int slots)
{
struct qspi_trans tp;
int slot;
bcm_qspi_disable_bspi(qspi);
if (slots > MSPI_NUM_CDRAM) {
/* should never happen */
dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
return;
}
tp = qspi->trans_pos;
for (slot = 0; slot < slots; slot++) {
if (tp.trans->bits_per_word <= 8) {
u8 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
dev_dbg(&qspi->pdev->dev, "RD %02x\n",
buf ? buf[tp.byte] : 0xff);
} else {
u16 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %04x\n",
buf ? buf[tp.byte] : 0xffff);
}
update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_NONE);
}
qspi->trans_pos = tp;
}
static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
u8 val)
{
u32 reg_offset = MSPI_TXRAM + (slot << 3);
/* mask out reserved bits */
bcm_qspi_write(qspi, MSPI, reg_offset, val);
}
static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
u16 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
}
static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
{
return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
}
static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
{
bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
}
/* Return number of slots written */
static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
{
struct qspi_trans tp;
int slot = 0, tstatus = 0;
u32 mspi_cdram = 0;
bcm_qspi_disable_bspi(qspi);
tp = qspi->trans_pos;
bcm_qspi_update_parms(qspi, spi, tp.trans);
/* Run until end of transfer or reached the max data */
while (!tstatus && slot < MSPI_NUM_CDRAM) {
if (tp.trans->bits_per_word <= 8) {
const u8 *buf = tp.trans->tx_buf;
u8 val = buf ? buf[tp.byte] : 0xff;
write_txram_slot_u8(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
} else {
const u16 *buf = tp.trans->tx_buf;
u16 val = buf ? buf[tp.byte / 2] : 0xffff;
write_txram_slot_u16(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
}
mspi_cdram = MSPI_CDRAM_CONT_BIT;
if (has_bspi(qspi))
mspi_cdram &= ~1;
else
mspi_cdram |= (~(1 << spi->chip_select) &
MSPI_CDRAM_PCS);
mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
MSPI_CDRAM_BITSE_BIT);
write_cdram_slot(qspi, slot, mspi_cdram);
tstatus = update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_TX);
slot++;
}
if (!slot) {
dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
goto done;
}
dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
/*
* case 1) EOM =1, cs_change =0: SSb inactive
* case 2) EOM =1, cs_change =1: SSb stay active
* case 3) EOM =0, cs_change =0: SSb stay active
* case 4) EOM =0, cs_change =1: SSb inactive
*/
if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_CS_CHANGE) ||
((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_EOM)) {
mspi_cdram = read_cdram_slot(qspi, slot - 1) &
~MSPI_CDRAM_CONT_BIT;
write_cdram_slot(qspi, slot - 1, mspi_cdram);
}
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
/* Must flush previous writes before starting MSPI operation */
mb();
/* Set cont | spe | spifie */
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
done:
return slot;
}
static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
u32 addr = 0, len, rdlen, len_words, from = 0;
int ret = 0;
unsigned long timeo = msecs_to_jiffies(100);
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
if (bcm_qspi_bspi_ver_three(qspi))
if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
return -EIO;
from = op->addr.val;
if (!spi->cs_gpiod)
bcm_qspi_chip_select(qspi, spi->chip_select);
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/*
* when using flex mode we need to send
* the upper address byte to bspi
*/
if (bcm_qspi_bspi_ver_three(qspi) == false) {
addr = from & 0xff000000;
bcm_qspi_write(qspi, BSPI,
BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
}
if (!qspi->xfer_mode.flex_mode)
addr = from;
else
addr = from & 0x00ffffff;
if (bcm_qspi_bspi_ver_three(qspi) == true)
addr = (addr + 0xc00000) & 0xffffff;
/*
* read into the entire buffer by breaking the reads
* into RAF buffer read lengths
*/
len = op->data.nbytes;
qspi->bspi_rf_op_idx = 0;
do {
if (len > BSPI_READ_LENGTH)
rdlen = BSPI_READ_LENGTH;
else
rdlen = len;
reinit_completion(&qspi->bspi_done);
bcm_qspi_enable_bspi(qspi);
len_words = (rdlen + 3) >> 2;
qspi->bspi_rf_op = op;
qspi->bspi_rf_op_status = 0;
qspi->bspi_rf_op_len = rdlen;
dev_dbg(&qspi->pdev->dev,
"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
if (qspi->soc_intc) {
/*
* clear soc MSPI and BSPI interrupts and enable
* BSPI interrupts.
*/
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
}
/* Must flush previous writes before starting BSPI operation */
mb();
bcm_qspi_bspi_lr_start(qspi);
if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
ret = -ETIMEDOUT;
break;
}
/* set msg return length */
addr += rdlen;
len -= rdlen;
} while (len);
return ret;
}
static int bcm_qspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi *qspi = spi_master_get_devdata(master);
int slots;
unsigned long timeo = msecs_to_jiffies(100);
if (!spi->cs_gpiod)
bcm_qspi_chip_select(qspi, spi->chip_select);
qspi->trans_pos.trans = trans;
qspi->trans_pos.byte = 0;
while (qspi->trans_pos.byte < trans->len) {
reinit_completion(&qspi->mspi_done);
slots = write_to_hw(qspi, spi);
if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
return -ETIMEDOUT;
}
read_from_hw(qspi, slots);
}
bcm_qspi_enable_bspi(qspi);
return 0;
}
static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct spi_master *master = spi->master;
struct bcm_qspi *qspi = spi_master_get_devdata(master);
struct spi_transfer t[2];
u8 cmd[6] = { };
int ret, i;
memset(cmd, 0, sizeof(cmd));
memset(t, 0, sizeof(t));
/* tx */
/* opcode is in cmd[0] */
cmd[0] = op->cmd.opcode;
for (i = 0; i < op->addr.nbytes; i++)
cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
t[0].tx_buf = cmd;
t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
t[0].bits_per_word = spi->bits_per_word;
t[0].tx_nbits = op->cmd.buswidth;
/* lets mspi know that this is not last transfer */
qspi->trans_pos.mspi_last_trans = false;
ret = bcm_qspi_transfer_one(master, spi, &t[0]);
/* rx */
qspi->trans_pos.mspi_last_trans = true;
if (!ret) {
/* rx */
t[1].rx_buf = op->data.buf.in;
t[1].len = op->data.nbytes;
t[1].rx_nbits = op->data.buswidth;
t[1].bits_per_word = spi->bits_per_word;
ret = bcm_qspi_transfer_one(master, spi, &t[1]);
}
return ret;
}
static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
int ret = 0;
bool mspi_read = false;
u32 addr = 0, len;
u_char *buf;
if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
op->data.dir != SPI_MEM_DATA_IN)
return -ENOTSUPP;
buf = op->data.buf.in;
addr = op->addr.val;
len = op->data.nbytes;
if (bcm_qspi_bspi_ver_three(qspi) == true) {
/*
* The address coming into this function is a raw flash offset.
* But for BSPI <= V3, we need to convert it to a remapped BSPI
* address. If it crosses a 4MB boundary, just revert back to
* using MSPI.
*/
addr = (addr + 0xc00000) & 0xffffff;
if ((~ADDR_4MB_MASK & addr) ^
(~ADDR_4MB_MASK & (addr + len - 1)))
mspi_read = true;
}
/* non-aligned and very short transfers are handled by MSPI */
if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
len < 4)
mspi_read = true;
if (mspi_read)
return bcm_qspi_mspi_exec_mem_op(spi, op);
ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
if (!ret)
ret = bcm_qspi_bspi_exec_mem_op(spi, op);
return ret;
}
static void bcm_qspi_cleanup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
kfree(xp);
}
static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
if (status & MSPI_MSPI_STATUS_SPIF) {
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
/* clear interrupt */
status &= ~MSPI_MSPI_STATUS_SPIF;
bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
if (qspi->soc_intc)
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
complete(&qspi->mspi_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
u32 status = qspi_dev_id->irqp->mask;
if (qspi->bspi_enabled && qspi->bspi_rf_op) {
bcm_qspi_bspi_lr_data_read(qspi);
if (qspi->bspi_rf_op_len == 0) {
qspi->bspi_rf_op = NULL;
if (qspi->soc_intc) {
/* disable soc BSPI interrupt */
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
false);
/* indicate done */
status = INTR_BSPI_LR_SESSION_DONE_MASK;
}
if (qspi->bspi_rf_op_status)
bcm_qspi_bspi_lr_clear(qspi);
else
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
if (qspi->soc_intc)
/* clear soc BSPI interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
}
status &= INTR_BSPI_LR_SESSION_DONE_MASK;
if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
dev_err(&qspi->pdev->dev, "BSPI INT error\n");
qspi->bspi_rf_op_status = -EIO;
if (qspi->soc_intc)
/* clear soc interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
irqreturn_t ret = IRQ_NONE;
if (soc_intc) {
u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
if (status & MSPI_DONE)
ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
else if (status & BSPI_DONE)
ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
else if (status & BSPI_ERR)
ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
}
return ret;
}
static const struct bcm_qspi_irq qspi_irq_tab[] = {
{
.irq_name = "spi_lr_fullness_reached",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
},
{
.irq_name = "spi_lr_session_aborted",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
},
{
.irq_name = "spi_lr_impatient",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_IMPATIENT_MASK,
},
{
.irq_name = "spi_lr_session_done",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
},
#ifdef QSPI_INT_DEBUG
/* this interrupt is for debug purposes only, dont request irq */
{
.irq_name = "spi_lr_overread",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_OVERREAD_MASK,
},
#endif
{
.irq_name = "mspi_done",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_DONE_MASK,
},
{
.irq_name = "mspi_halted",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_HALTED_MASK,
},
{
/* single muxed L1 interrupt source */
.irq_name = "spi_l1_intr",
.irq_handler = bcm_qspi_l1_isr,
.irq_source = MUXED_L1,
.mask = QSPI_INTERRUPTS_ALL,
},
};
static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
{
u32 val = 0;
val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
qspi->bspi_maj_rev = (val >> 8) & 0xff;
qspi->bspi_min_rev = val & 0xff;
if (!(bcm_qspi_bspi_ver_three(qspi))) {
/* Force mapping of BSPI address -> flash offset */
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
}
qspi->bspi_enabled = 1;
bcm_qspi_disable_bspi(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
{
struct bcm_qspi_parms parms;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
parms.mode = SPI_MODE_3;
parms.bits_per_word = 8;
parms.speed_hz = qspi->max_speed_hz;
bcm_qspi_hw_set_parms(qspi, &parms);
if (has_bspi(qspi))
bcm_qspi_bspi_init(qspi);
}
static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
{
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
}
static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
.exec_op = bcm_qspi_exec_mem_op,
};
static const struct of_device_id bcm_qspi_of_match[] = {
{ .compatible = "brcm,spi-bcm-qspi" },
{},
};
MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
int bcm_qspi_probe(struct platform_device *pdev,
struct bcm_qspi_soc_intc *soc_intc)
{
struct device *dev = &pdev->dev;
struct bcm_qspi *qspi;
struct spi_master *master;
struct resource *res;
int irq, ret = 0, num_ints = 0;
u32 val;
const char *name = NULL;
int num_irqs = ARRAY_SIZE(qspi_irq_tab);
/* We only support device-tree instantiation */
if (!dev->of_node)
return -ENODEV;
if (!of_match_node(bcm_qspi_of_match, dev->of_node))
return -ENODEV;
master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
if (!master) {
dev_err(dev, "error allocating spi_master\n");
return -ENOMEM;
}
qspi = spi_master_get_devdata(master);
qspi->pdev = pdev;
qspi->trans_pos.trans = NULL;
qspi->trans_pos.byte = 0;
qspi->trans_pos.mspi_last_trans = true;
qspi->master = master;
master->bus_num = -1;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
master->setup = bcm_qspi_setup;
master->transfer_one = bcm_qspi_transfer_one;
master->mem_ops = &bcm_qspi_mem_ops;
master->cleanup = bcm_qspi_cleanup;
master->dev.of_node = dev->of_node;
master->num_chipselect = NUM_CHIPSELECT;
master->use_gpio_descriptors = true;
qspi->big_endian = of_device_is_big_endian(dev->of_node);
if (!of_property_read_u32(dev->of_node, "num-cs", &val))
master->num_chipselect = val;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
if (!res)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"mspi");
if (res) {
qspi->base[MSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[MSPI])) {
ret = PTR_ERR(qspi->base[MSPI]);
goto qspi_resource_err;
}
} else {
goto qspi_resource_err;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
if (res) {
qspi->base[BSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[BSPI])) {
ret = PTR_ERR(qspi->base[BSPI]);
goto qspi_resource_err;
}
qspi->bspi_mode = true;
} else {
qspi->bspi_mode = false;
}
dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
if (res) {
qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[CHIP_SELECT])) {
ret = PTR_ERR(qspi->base[CHIP_SELECT]);
goto qspi_resource_err;
}
}
qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
GFP_KERNEL);
if (!qspi->dev_ids) {
ret = -ENOMEM;
goto qspi_resource_err;
}
for (val = 0; val < num_irqs; val++) {
irq = -1;
name = qspi_irq_tab[val].irq_name;
if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
/* get the l2 interrupts */
irq = platform_get_irq_byname_optional(pdev, name);
} else if (!num_ints && soc_intc) {
/* all mspi, bspi intrs muxed to one L1 intr */
irq = platform_get_irq(pdev, 0);
}
if (irq >= 0) {
ret = devm_request_irq(&pdev->dev, irq,
qspi_irq_tab[val].irq_handler, 0,
name,
&qspi->dev_ids[val]);
if (ret < 0) {
dev_err(&pdev->dev, "IRQ %s not found\n", name);
goto qspi_probe_err;
}
qspi->dev_ids[val].dev = qspi;
qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
num_ints++;
dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
qspi_irq_tab[val].irq_name,
irq);
}
}
if (!num_ints) {
dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
ret = -EINVAL;
goto qspi_probe_err;
}
/*
* Some SoCs integrate spi controller (e.g., its interrupt bits)
* in specific ways
*/
if (soc_intc) {
qspi->soc_intc = soc_intc;
soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
} else {
qspi->soc_intc = NULL;
}
qspi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(qspi->clk)) {
dev_warn(dev, "unable to get clock\n");
ret = PTR_ERR(qspi->clk);
goto qspi_probe_err;
}
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
goto qspi_probe_err;
}
qspi->base_clk = clk_get_rate(qspi->clk);
qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
bcm_qspi_hw_init(qspi);
init_completion(&qspi->mspi_done);
init_completion(&qspi->bspi_done);
qspi->curr_cs = -1;
platform_set_drvdata(pdev, qspi);
qspi->xfer_mode.width = -1;
qspi->xfer_mode.addrlen = -1;
qspi->xfer_mode.hp = -1;
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(dev, "can't register master\n");
goto qspi_reg_err;
}
return 0;
qspi_reg_err:
bcm_qspi_hw_uninit(qspi);
clk_disable_unprepare(qspi->clk);
qspi_probe_err:
kfree(qspi->dev_ids);
qspi_resource_err:
spi_master_put(master);
return ret;
}
/* probe function to be called by SoC specific platform driver probe */
EXPORT_SYMBOL_GPL(bcm_qspi_probe);
int bcm_qspi_remove(struct platform_device *pdev)
{
struct bcm_qspi *qspi = platform_get_drvdata(pdev);
bcm_qspi_hw_uninit(qspi);
clk_disable_unprepare(qspi->clk);
kfree(qspi->dev_ids);
spi_unregister_master(qspi->master);
return 0;
}
/* function to be called by SoC specific platform driver remove() */
EXPORT_SYMBOL_GPL(bcm_qspi_remove);
static int __maybe_unused bcm_qspi_suspend(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
/* store the override strap value */
if (!bcm_qspi_bspi_ver_three(qspi))
qspi->s3_strap_override_ctrl =
bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
spi_master_suspend(qspi->master);
clk_disable(qspi->clk);
bcm_qspi_hw_uninit(qspi);
return 0;
};
static int __maybe_unused bcm_qspi_resume(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
int ret = 0;
bcm_qspi_hw_init(qspi);
bcm_qspi_chip_select(qspi, qspi->curr_cs);
if (qspi->soc_intc)
/* enable MSPI interrupt */
qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
true);
ret = clk_enable(qspi->clk);
if (!ret)
spi_master_resume(qspi->master);
return ret;
}
SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
/* pm_ops to be called by SoC specific platform driver */
EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
MODULE_AUTHOR("Kamal Dasu");
MODULE_DESCRIPTION("Broadcom QSPI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);