mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 01:24:08 +08:00
580c079b57
At btrfs_find_all_roots_safe() we allocate a ulist and set the **roots
argument to point to it. However if later we fail due to an error returned
by find_parent_nodes(), we free that ulist but leave a dangling pointer in
the **roots argument. Upon receiving the error, a caller of this function
can attempt to free the same ulist again, resulting in an invalid memory
access.
One such scenario is during qgroup accounting:
btrfs_qgroup_account_extents()
--> calls btrfs_find_all_roots() passes &new_roots (a stack allocated
pointer) to btrfs_find_all_roots()
--> btrfs_find_all_roots() just calls btrfs_find_all_roots_safe()
passing &new_roots to it
--> allocates ulist and assigns its address to **roots (which
points to new_roots from btrfs_qgroup_account_extents())
--> find_parent_nodes() returns an error, so we free the ulist
and leave **roots pointing to it after returning
--> btrfs_qgroup_account_extents() sees btrfs_find_all_roots() returned
an error and jumps to the label 'cleanup', which just tries to
free again the same ulist
Stack trace example:
------------[ cut here ]------------
BTRFS: tree first key check failed
WARNING: CPU: 1 PID: 1763215 at fs/btrfs/disk-io.c:422 btrfs_verify_level_key+0xe0/0x180 [btrfs]
Modules linked in: dm_snapshot dm_thin_pool (...)
CPU: 1 PID: 1763215 Comm: fsstress Tainted: G W 5.8.0-rc3-btrfs-next-64 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_verify_level_key+0xe0/0x180 [btrfs]
Code: 28 5b 5d (...)
RSP: 0018:ffffb89b473779a0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff90397759bf08 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000027 RDI: 00000000ffffffff
RBP: ffff9039a419c000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: ffffb89b43301000 R12: 000000000000005e
R13: ffffb89b47377a2e R14: ffffb89b473779af R15: 0000000000000000
FS: 00007fc47e1e1000(0000) GS:ffff9039ac200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc47e1df000 CR3: 00000003d9e4e001 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
read_block_for_search+0xf6/0x350 [btrfs]
btrfs_next_old_leaf+0x242/0x650 [btrfs]
resolve_indirect_refs+0x7cf/0x9e0 [btrfs]
find_parent_nodes+0x4ea/0x12c0 [btrfs]
btrfs_find_all_roots_safe+0xbf/0x130 [btrfs]
btrfs_qgroup_account_extents+0x9d/0x390 [btrfs]
btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
btrfs_sync_file+0x3d4/0x4d0 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fdatasync+0x13/0x20
do_syscall_64+0x5c/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fc47e2d72e3
Code: Bad RIP value.
RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
softirqs last enabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace 8639237550317b48 ]---
BTRFS error (device sdc): tree first key mismatch detected, bytenr=62324736 parent_transid=94 key expected=(262,108,1351680) has=(259,108,1921024)
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 1763215 Comm: fsstress Tainted: G W 5.8.0-rc3-btrfs-next-64 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:ulist_release+0x14/0x60 [btrfs]
Code: c7 07 00 (...)
RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
FS: 00007fc47e1e1000(0000) GS:ffff9039ac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8c1c0a51c8 CR3: 00000003d9e4e004 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
ulist_free+0x13/0x20 [btrfs]
btrfs_qgroup_account_extents+0xf3/0x390 [btrfs]
btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
btrfs_sync_file+0x3d4/0x4d0 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fdatasync+0x13/0x20
do_syscall_64+0x5c/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fc47e2d72e3
Code: Bad RIP value.
RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
Modules linked in: dm_snapshot dm_thin_pool (...)
---[ end trace 8639237550317b49 ]---
RIP: 0010:ulist_release+0x14/0x60 [btrfs]
Code: c7 07 00 (...)
RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
FS: 00007fc47e1e1000(0000) GS:ffff9039ad200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6a776f7d40 CR3: 00000003d9e4e002 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Fix this by making btrfs_find_all_roots_safe() set *roots to NULL after
it frees the ulist.
Fixes: 8da6d5815c
("Btrfs: added btrfs_find_all_roots()")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
3124 lines
82 KiB
C
3124 lines
82 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2011 STRATO. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/rbtree.h>
|
|
#include <trace/events/btrfs.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "backref.h"
|
|
#include "ulist.h"
|
|
#include "transaction.h"
|
|
#include "delayed-ref.h"
|
|
#include "locking.h"
|
|
#include "misc.h"
|
|
|
|
/* Just an arbitrary number so we can be sure this happened */
|
|
#define BACKREF_FOUND_SHARED 6
|
|
|
|
struct extent_inode_elem {
|
|
u64 inum;
|
|
u64 offset;
|
|
struct extent_inode_elem *next;
|
|
};
|
|
|
|
static int check_extent_in_eb(const struct btrfs_key *key,
|
|
const struct extent_buffer *eb,
|
|
const struct btrfs_file_extent_item *fi,
|
|
u64 extent_item_pos,
|
|
struct extent_inode_elem **eie,
|
|
bool ignore_offset)
|
|
{
|
|
u64 offset = 0;
|
|
struct extent_inode_elem *e;
|
|
|
|
if (!ignore_offset &&
|
|
!btrfs_file_extent_compression(eb, fi) &&
|
|
!btrfs_file_extent_encryption(eb, fi) &&
|
|
!btrfs_file_extent_other_encoding(eb, fi)) {
|
|
u64 data_offset;
|
|
u64 data_len;
|
|
|
|
data_offset = btrfs_file_extent_offset(eb, fi);
|
|
data_len = btrfs_file_extent_num_bytes(eb, fi);
|
|
|
|
if (extent_item_pos < data_offset ||
|
|
extent_item_pos >= data_offset + data_len)
|
|
return 1;
|
|
offset = extent_item_pos - data_offset;
|
|
}
|
|
|
|
e = kmalloc(sizeof(*e), GFP_NOFS);
|
|
if (!e)
|
|
return -ENOMEM;
|
|
|
|
e->next = *eie;
|
|
e->inum = key->objectid;
|
|
e->offset = key->offset + offset;
|
|
*eie = e;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_inode_elem_list(struct extent_inode_elem *eie)
|
|
{
|
|
struct extent_inode_elem *eie_next;
|
|
|
|
for (; eie; eie = eie_next) {
|
|
eie_next = eie->next;
|
|
kfree(eie);
|
|
}
|
|
}
|
|
|
|
static int find_extent_in_eb(const struct extent_buffer *eb,
|
|
u64 wanted_disk_byte, u64 extent_item_pos,
|
|
struct extent_inode_elem **eie,
|
|
bool ignore_offset)
|
|
{
|
|
u64 disk_byte;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int slot;
|
|
int nritems;
|
|
int extent_type;
|
|
int ret;
|
|
|
|
/*
|
|
* from the shared data ref, we only have the leaf but we need
|
|
* the key. thus, we must look into all items and see that we
|
|
* find one (some) with a reference to our extent item.
|
|
*/
|
|
nritems = btrfs_header_nritems(eb);
|
|
for (slot = 0; slot < nritems; ++slot) {
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(eb, fi);
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (disk_byte != wanted_disk_byte)
|
|
continue;
|
|
|
|
ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct preftree {
|
|
struct rb_root_cached root;
|
|
unsigned int count;
|
|
};
|
|
|
|
#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
|
|
|
|
struct preftrees {
|
|
struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
|
|
struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
|
|
struct preftree indirect_missing_keys;
|
|
};
|
|
|
|
/*
|
|
* Checks for a shared extent during backref search.
|
|
*
|
|
* The share_count tracks prelim_refs (direct and indirect) having a
|
|
* ref->count >0:
|
|
* - incremented when a ref->count transitions to >0
|
|
* - decremented when a ref->count transitions to <1
|
|
*/
|
|
struct share_check {
|
|
u64 root_objectid;
|
|
u64 inum;
|
|
int share_count;
|
|
};
|
|
|
|
static inline int extent_is_shared(struct share_check *sc)
|
|
{
|
|
return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
|
|
}
|
|
|
|
static struct kmem_cache *btrfs_prelim_ref_cache;
|
|
|
|
int __init btrfs_prelim_ref_init(void)
|
|
{
|
|
btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
|
|
sizeof(struct prelim_ref),
|
|
0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_prelim_ref_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __cold btrfs_prelim_ref_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_prelim_ref_cache);
|
|
}
|
|
|
|
static void free_pref(struct prelim_ref *ref)
|
|
{
|
|
kmem_cache_free(btrfs_prelim_ref_cache, ref);
|
|
}
|
|
|
|
/*
|
|
* Return 0 when both refs are for the same block (and can be merged).
|
|
* A -1 return indicates ref1 is a 'lower' block than ref2, while 1
|
|
* indicates a 'higher' block.
|
|
*/
|
|
static int prelim_ref_compare(struct prelim_ref *ref1,
|
|
struct prelim_ref *ref2)
|
|
{
|
|
if (ref1->level < ref2->level)
|
|
return -1;
|
|
if (ref1->level > ref2->level)
|
|
return 1;
|
|
if (ref1->root_id < ref2->root_id)
|
|
return -1;
|
|
if (ref1->root_id > ref2->root_id)
|
|
return 1;
|
|
if (ref1->key_for_search.type < ref2->key_for_search.type)
|
|
return -1;
|
|
if (ref1->key_for_search.type > ref2->key_for_search.type)
|
|
return 1;
|
|
if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
|
|
return -1;
|
|
if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
|
|
return 1;
|
|
if (ref1->key_for_search.offset < ref2->key_for_search.offset)
|
|
return -1;
|
|
if (ref1->key_for_search.offset > ref2->key_for_search.offset)
|
|
return 1;
|
|
if (ref1->parent < ref2->parent)
|
|
return -1;
|
|
if (ref1->parent > ref2->parent)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_share_count(struct share_check *sc, int oldcount,
|
|
int newcount)
|
|
{
|
|
if ((!sc) || (oldcount == 0 && newcount < 1))
|
|
return;
|
|
|
|
if (oldcount > 0 && newcount < 1)
|
|
sc->share_count--;
|
|
else if (oldcount < 1 && newcount > 0)
|
|
sc->share_count++;
|
|
}
|
|
|
|
/*
|
|
* Add @newref to the @root rbtree, merging identical refs.
|
|
*
|
|
* Callers should assume that newref has been freed after calling.
|
|
*/
|
|
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
|
|
struct preftree *preftree,
|
|
struct prelim_ref *newref,
|
|
struct share_check *sc)
|
|
{
|
|
struct rb_root_cached *root;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct prelim_ref *ref;
|
|
int result;
|
|
bool leftmost = true;
|
|
|
|
root = &preftree->root;
|
|
p = &root->rb_root.rb_node;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
ref = rb_entry(parent, struct prelim_ref, rbnode);
|
|
result = prelim_ref_compare(ref, newref);
|
|
if (result < 0) {
|
|
p = &(*p)->rb_left;
|
|
} else if (result > 0) {
|
|
p = &(*p)->rb_right;
|
|
leftmost = false;
|
|
} else {
|
|
/* Identical refs, merge them and free @newref */
|
|
struct extent_inode_elem *eie = ref->inode_list;
|
|
|
|
while (eie && eie->next)
|
|
eie = eie->next;
|
|
|
|
if (!eie)
|
|
ref->inode_list = newref->inode_list;
|
|
else
|
|
eie->next = newref->inode_list;
|
|
trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
|
|
preftree->count);
|
|
/*
|
|
* A delayed ref can have newref->count < 0.
|
|
* The ref->count is updated to follow any
|
|
* BTRFS_[ADD|DROP]_DELAYED_REF actions.
|
|
*/
|
|
update_share_count(sc, ref->count,
|
|
ref->count + newref->count);
|
|
ref->count += newref->count;
|
|
free_pref(newref);
|
|
return;
|
|
}
|
|
}
|
|
|
|
update_share_count(sc, 0, newref->count);
|
|
preftree->count++;
|
|
trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
|
|
rb_link_node(&newref->rbnode, parent, p);
|
|
rb_insert_color_cached(&newref->rbnode, root, leftmost);
|
|
}
|
|
|
|
/*
|
|
* Release the entire tree. We don't care about internal consistency so
|
|
* just free everything and then reset the tree root.
|
|
*/
|
|
static void prelim_release(struct preftree *preftree)
|
|
{
|
|
struct prelim_ref *ref, *next_ref;
|
|
|
|
rbtree_postorder_for_each_entry_safe(ref, next_ref,
|
|
&preftree->root.rb_root, rbnode)
|
|
free_pref(ref);
|
|
|
|
preftree->root = RB_ROOT_CACHED;
|
|
preftree->count = 0;
|
|
}
|
|
|
|
/*
|
|
* the rules for all callers of this function are:
|
|
* - obtaining the parent is the goal
|
|
* - if you add a key, you must know that it is a correct key
|
|
* - if you cannot add the parent or a correct key, then we will look into the
|
|
* block later to set a correct key
|
|
*
|
|
* delayed refs
|
|
* ============
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | - | -
|
|
* key to resolve | - | y | y | y
|
|
* tree block logical | - | - | - | -
|
|
* root for resolving | y | y | y | y
|
|
*
|
|
* - column 1: we've the parent -> done
|
|
* - column 2, 3, 4: we use the key to find the parent
|
|
*
|
|
* on disk refs (inline or keyed)
|
|
* ==============================
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | y | -
|
|
* key to resolve | - | - | - | y
|
|
* tree block logical | y | y | y | y
|
|
* root for resolving | - | y | y | y
|
|
*
|
|
* - column 1, 3: we've the parent -> done
|
|
* - column 2: we take the first key from the block to find the parent
|
|
* (see add_missing_keys)
|
|
* - column 4: we use the key to find the parent
|
|
*
|
|
* additional information that's available but not required to find the parent
|
|
* block might help in merging entries to gain some speed.
|
|
*/
|
|
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
|
|
struct preftree *preftree, u64 root_id,
|
|
const struct btrfs_key *key, int level, u64 parent,
|
|
u64 wanted_disk_byte, int count,
|
|
struct share_check *sc, gfp_t gfp_mask)
|
|
{
|
|
struct prelim_ref *ref;
|
|
|
|
if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
return 0;
|
|
|
|
ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
|
|
if (!ref)
|
|
return -ENOMEM;
|
|
|
|
ref->root_id = root_id;
|
|
if (key)
|
|
ref->key_for_search = *key;
|
|
else
|
|
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
|
|
|
|
ref->inode_list = NULL;
|
|
ref->level = level;
|
|
ref->count = count;
|
|
ref->parent = parent;
|
|
ref->wanted_disk_byte = wanted_disk_byte;
|
|
prelim_ref_insert(fs_info, preftree, ref, sc);
|
|
return extent_is_shared(sc);
|
|
}
|
|
|
|
/* direct refs use root == 0, key == NULL */
|
|
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
|
|
struct preftrees *preftrees, int level, u64 parent,
|
|
u64 wanted_disk_byte, int count,
|
|
struct share_check *sc, gfp_t gfp_mask)
|
|
{
|
|
return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
|
|
parent, wanted_disk_byte, count, sc, gfp_mask);
|
|
}
|
|
|
|
/* indirect refs use parent == 0 */
|
|
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
|
|
struct preftrees *preftrees, u64 root_id,
|
|
const struct btrfs_key *key, int level,
|
|
u64 wanted_disk_byte, int count,
|
|
struct share_check *sc, gfp_t gfp_mask)
|
|
{
|
|
struct preftree *tree = &preftrees->indirect;
|
|
|
|
if (!key)
|
|
tree = &preftrees->indirect_missing_keys;
|
|
return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
|
|
wanted_disk_byte, count, sc, gfp_mask);
|
|
}
|
|
|
|
static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
|
|
{
|
|
struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct prelim_ref *ref = NULL;
|
|
struct prelim_ref target = {};
|
|
int result;
|
|
|
|
target.parent = bytenr;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
ref = rb_entry(parent, struct prelim_ref, rbnode);
|
|
result = prelim_ref_compare(ref, &target);
|
|
|
|
if (result < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (result > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
|
|
struct ulist *parents,
|
|
struct preftrees *preftrees, struct prelim_ref *ref,
|
|
int level, u64 time_seq, const u64 *extent_item_pos,
|
|
bool ignore_offset)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_key key;
|
|
struct btrfs_key *key_for_search = &ref->key_for_search;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_inode_elem *eie = NULL, *old = NULL;
|
|
u64 disk_byte;
|
|
u64 wanted_disk_byte = ref->wanted_disk_byte;
|
|
u64 count = 0;
|
|
u64 data_offset;
|
|
|
|
if (level != 0) {
|
|
eb = path->nodes[level];
|
|
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
|
|
if (ret < 0)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1. We normally enter this function with the path already pointing to
|
|
* the first item to check. But sometimes, we may enter it with
|
|
* slot == nritems.
|
|
* 2. We are searching for normal backref but bytenr of this leaf
|
|
* matches shared data backref
|
|
* 3. The leaf owner is not equal to the root we are searching
|
|
*
|
|
* For these cases, go to the next leaf before we continue.
|
|
*/
|
|
eb = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(eb) ||
|
|
is_shared_data_backref(preftrees, eb->start) ||
|
|
ref->root_id != btrfs_header_owner(eb)) {
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_next_leaf(root, path);
|
|
else
|
|
ret = btrfs_next_old_leaf(root, path, time_seq);
|
|
}
|
|
|
|
while (!ret && count < ref->count) {
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
|
|
if (key.objectid != key_for_search->objectid ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY)
|
|
break;
|
|
|
|
/*
|
|
* We are searching for normal backref but bytenr of this leaf
|
|
* matches shared data backref, OR
|
|
* the leaf owner is not equal to the root we are searching for
|
|
*/
|
|
if (slot == 0 &&
|
|
(is_shared_data_backref(preftrees, eb->start) ||
|
|
ref->root_id != btrfs_header_owner(eb))) {
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_next_leaf(root, path);
|
|
else
|
|
ret = btrfs_next_old_leaf(root, path, time_seq);
|
|
continue;
|
|
}
|
|
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
data_offset = btrfs_file_extent_offset(eb, fi);
|
|
|
|
if (disk_byte == wanted_disk_byte) {
|
|
eie = NULL;
|
|
old = NULL;
|
|
if (ref->key_for_search.offset == key.offset - data_offset)
|
|
count++;
|
|
else
|
|
goto next;
|
|
if (extent_item_pos) {
|
|
ret = check_extent_in_eb(&key, eb, fi,
|
|
*extent_item_pos,
|
|
&eie, ignore_offset);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
if (ret > 0)
|
|
goto next;
|
|
ret = ulist_add_merge_ptr(parents, eb->start,
|
|
eie, (void **)&old, GFP_NOFS);
|
|
if (ret < 0)
|
|
break;
|
|
if (!ret && extent_item_pos) {
|
|
while (old->next)
|
|
old = old->next;
|
|
old->next = eie;
|
|
}
|
|
eie = NULL;
|
|
}
|
|
next:
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_next_item(root, path);
|
|
else
|
|
ret = btrfs_next_old_item(root, path, time_seq);
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = 0;
|
|
else if (ret < 0)
|
|
free_inode_elem_list(eie);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* resolve an indirect backref in the form (root_id, key, level)
|
|
* to a logical address
|
|
*/
|
|
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 time_seq,
|
|
struct preftrees *preftrees,
|
|
struct prelim_ref *ref, struct ulist *parents,
|
|
const u64 *extent_item_pos, bool ignore_offset)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct extent_buffer *eb;
|
|
int ret = 0;
|
|
int root_level;
|
|
int level = ref->level;
|
|
struct btrfs_key search_key = ref->key_for_search;
|
|
|
|
root = btrfs_get_fs_root(fs_info, ref->root_id, false);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out_free;
|
|
}
|
|
|
|
if (!path->search_commit_root &&
|
|
test_bit(BTRFS_ROOT_DELETING, &root->state)) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_is_testing(fs_info)) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (path->search_commit_root)
|
|
root_level = btrfs_header_level(root->commit_root);
|
|
else if (time_seq == SEQ_LAST)
|
|
root_level = btrfs_header_level(root->node);
|
|
else
|
|
root_level = btrfs_old_root_level(root, time_seq);
|
|
|
|
if (root_level + 1 == level)
|
|
goto out;
|
|
|
|
/*
|
|
* We can often find data backrefs with an offset that is too large
|
|
* (>= LLONG_MAX, maximum allowed file offset) due to underflows when
|
|
* subtracting a file's offset with the data offset of its
|
|
* corresponding extent data item. This can happen for example in the
|
|
* clone ioctl.
|
|
*
|
|
* So if we detect such case we set the search key's offset to zero to
|
|
* make sure we will find the matching file extent item at
|
|
* add_all_parents(), otherwise we will miss it because the offset
|
|
* taken form the backref is much larger then the offset of the file
|
|
* extent item. This can make us scan a very large number of file
|
|
* extent items, but at least it will not make us miss any.
|
|
*
|
|
* This is an ugly workaround for a behaviour that should have never
|
|
* existed, but it does and a fix for the clone ioctl would touch a lot
|
|
* of places, cause backwards incompatibility and would not fix the
|
|
* problem for extents cloned with older kernels.
|
|
*/
|
|
if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
|
|
search_key.offset >= LLONG_MAX)
|
|
search_key.offset = 0;
|
|
path->lowest_level = level;
|
|
if (time_seq == SEQ_LAST)
|
|
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
|
|
else
|
|
ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
|
|
|
|
btrfs_debug(fs_info,
|
|
"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
|
|
ref->root_id, level, ref->count, ret,
|
|
ref->key_for_search.objectid, ref->key_for_search.type,
|
|
ref->key_for_search.offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
eb = path->nodes[level];
|
|
while (!eb) {
|
|
if (WARN_ON(!level)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
level--;
|
|
eb = path->nodes[level];
|
|
}
|
|
|
|
ret = add_all_parents(root, path, parents, preftrees, ref, level,
|
|
time_seq, extent_item_pos, ignore_offset);
|
|
out:
|
|
btrfs_put_root(root);
|
|
out_free:
|
|
path->lowest_level = 0;
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static struct extent_inode_elem *
|
|
unode_aux_to_inode_list(struct ulist_node *node)
|
|
{
|
|
if (!node)
|
|
return NULL;
|
|
return (struct extent_inode_elem *)(uintptr_t)node->aux;
|
|
}
|
|
|
|
/*
|
|
* We maintain three separate rbtrees: one for direct refs, one for
|
|
* indirect refs which have a key, and one for indirect refs which do not
|
|
* have a key. Each tree does merge on insertion.
|
|
*
|
|
* Once all of the references are located, we iterate over the tree of
|
|
* indirect refs with missing keys. An appropriate key is located and
|
|
* the ref is moved onto the tree for indirect refs. After all missing
|
|
* keys are thus located, we iterate over the indirect ref tree, resolve
|
|
* each reference, and then insert the resolved reference onto the
|
|
* direct tree (merging there too).
|
|
*
|
|
* New backrefs (i.e., for parent nodes) are added to the appropriate
|
|
* rbtree as they are encountered. The new backrefs are subsequently
|
|
* resolved as above.
|
|
*/
|
|
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 time_seq,
|
|
struct preftrees *preftrees,
|
|
const u64 *extent_item_pos,
|
|
struct share_check *sc, bool ignore_offset)
|
|
{
|
|
int err;
|
|
int ret = 0;
|
|
struct ulist *parents;
|
|
struct ulist_node *node;
|
|
struct ulist_iterator uiter;
|
|
struct rb_node *rnode;
|
|
|
|
parents = ulist_alloc(GFP_NOFS);
|
|
if (!parents)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We could trade memory usage for performance here by iterating
|
|
* the tree, allocating new refs for each insertion, and then
|
|
* freeing the entire indirect tree when we're done. In some test
|
|
* cases, the tree can grow quite large (~200k objects).
|
|
*/
|
|
while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
|
|
struct prelim_ref *ref;
|
|
|
|
ref = rb_entry(rnode, struct prelim_ref, rbnode);
|
|
if (WARN(ref->parent,
|
|
"BUG: direct ref found in indirect tree")) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
|
|
preftrees->indirect.count--;
|
|
|
|
if (ref->count == 0) {
|
|
free_pref(ref);
|
|
continue;
|
|
}
|
|
|
|
if (sc && sc->root_objectid &&
|
|
ref->root_id != sc->root_objectid) {
|
|
free_pref(ref);
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
|
|
ref, parents, extent_item_pos,
|
|
ignore_offset);
|
|
/*
|
|
* we can only tolerate ENOENT,otherwise,we should catch error
|
|
* and return directly.
|
|
*/
|
|
if (err == -ENOENT) {
|
|
prelim_ref_insert(fs_info, &preftrees->direct, ref,
|
|
NULL);
|
|
continue;
|
|
} else if (err) {
|
|
free_pref(ref);
|
|
ret = err;
|
|
goto out;
|
|
}
|
|
|
|
/* we put the first parent into the ref at hand */
|
|
ULIST_ITER_INIT(&uiter);
|
|
node = ulist_next(parents, &uiter);
|
|
ref->parent = node ? node->val : 0;
|
|
ref->inode_list = unode_aux_to_inode_list(node);
|
|
|
|
/* Add a prelim_ref(s) for any other parent(s). */
|
|
while ((node = ulist_next(parents, &uiter))) {
|
|
struct prelim_ref *new_ref;
|
|
|
|
new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
|
|
GFP_NOFS);
|
|
if (!new_ref) {
|
|
free_pref(ref);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
memcpy(new_ref, ref, sizeof(*ref));
|
|
new_ref->parent = node->val;
|
|
new_ref->inode_list = unode_aux_to_inode_list(node);
|
|
prelim_ref_insert(fs_info, &preftrees->direct,
|
|
new_ref, NULL);
|
|
}
|
|
|
|
/*
|
|
* Now it's a direct ref, put it in the direct tree. We must
|
|
* do this last because the ref could be merged/freed here.
|
|
*/
|
|
prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
|
|
|
|
ulist_reinit(parents);
|
|
cond_resched();
|
|
}
|
|
out:
|
|
ulist_free(parents);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* read tree blocks and add keys where required.
|
|
*/
|
|
static int add_missing_keys(struct btrfs_fs_info *fs_info,
|
|
struct preftrees *preftrees, bool lock)
|
|
{
|
|
struct prelim_ref *ref;
|
|
struct extent_buffer *eb;
|
|
struct preftree *tree = &preftrees->indirect_missing_keys;
|
|
struct rb_node *node;
|
|
|
|
while ((node = rb_first_cached(&tree->root))) {
|
|
ref = rb_entry(node, struct prelim_ref, rbnode);
|
|
rb_erase_cached(node, &tree->root);
|
|
|
|
BUG_ON(ref->parent); /* should not be a direct ref */
|
|
BUG_ON(ref->key_for_search.type);
|
|
BUG_ON(!ref->wanted_disk_byte);
|
|
|
|
eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
|
|
ref->level - 1, NULL);
|
|
if (IS_ERR(eb)) {
|
|
free_pref(ref);
|
|
return PTR_ERR(eb);
|
|
} else if (!extent_buffer_uptodate(eb)) {
|
|
free_pref(ref);
|
|
free_extent_buffer(eb);
|
|
return -EIO;
|
|
}
|
|
if (lock)
|
|
btrfs_tree_read_lock(eb);
|
|
if (btrfs_header_level(eb) == 0)
|
|
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
if (lock)
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
|
|
cond_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all currently queued delayed refs from this head whose seq nr is
|
|
* smaller or equal that seq to the list
|
|
*/
|
|
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
|
|
struct btrfs_delayed_ref_head *head, u64 seq,
|
|
struct preftrees *preftrees, struct share_check *sc)
|
|
{
|
|
struct btrfs_delayed_ref_node *node;
|
|
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
|
|
struct btrfs_key key;
|
|
struct btrfs_key tmp_op_key;
|
|
struct rb_node *n;
|
|
int count;
|
|
int ret = 0;
|
|
|
|
if (extent_op && extent_op->update_key)
|
|
btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
|
|
|
|
spin_lock(&head->lock);
|
|
for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
|
|
node = rb_entry(n, struct btrfs_delayed_ref_node,
|
|
ref_node);
|
|
if (node->seq > seq)
|
|
continue;
|
|
|
|
switch (node->action) {
|
|
case BTRFS_ADD_DELAYED_EXTENT:
|
|
case BTRFS_UPDATE_DELAYED_HEAD:
|
|
WARN_ON(1);
|
|
continue;
|
|
case BTRFS_ADD_DELAYED_REF:
|
|
count = node->ref_mod;
|
|
break;
|
|
case BTRFS_DROP_DELAYED_REF:
|
|
count = node->ref_mod * -1;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
switch (node->type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY: {
|
|
/* NORMAL INDIRECT METADATA backref */
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
ret = add_indirect_ref(fs_info, preftrees, ref->root,
|
|
&tmp_op_key, ref->level + 1,
|
|
node->bytenr, count, sc,
|
|
GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_BLOCK_REF_KEY: {
|
|
/* SHARED DIRECT METADATA backref */
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
|
|
ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
|
|
ref->parent, node->bytenr, count,
|
|
sc, GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
/* NORMAL INDIRECT DATA backref */
|
|
struct btrfs_delayed_data_ref *ref;
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
|
|
key.objectid = ref->objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = ref->offset;
|
|
|
|
/*
|
|
* Found a inum that doesn't match our known inum, we
|
|
* know it's shared.
|
|
*/
|
|
if (sc && sc->inum && ref->objectid != sc->inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
|
|
ret = add_indirect_ref(fs_info, preftrees, ref->root,
|
|
&key, 0, node->bytenr, count, sc,
|
|
GFP_ATOMIC);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
/* SHARED DIRECT FULL backref */
|
|
struct btrfs_delayed_data_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
|
|
ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
|
|
node->bytenr, count, sc,
|
|
GFP_ATOMIC);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
/*
|
|
* We must ignore BACKREF_FOUND_SHARED until all delayed
|
|
* refs have been checked.
|
|
*/
|
|
if (ret && (ret != BACKREF_FOUND_SHARED))
|
|
break;
|
|
}
|
|
if (!ret)
|
|
ret = extent_is_shared(sc);
|
|
out:
|
|
spin_unlock(&head->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* add all inline backrefs for bytenr to the list
|
|
*
|
|
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
|
|
*/
|
|
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 bytenr,
|
|
int *info_level, struct preftrees *preftrees,
|
|
struct share_check *sc)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
struct btrfs_extent_item *ei;
|
|
u64 flags;
|
|
u64 item_size;
|
|
|
|
/*
|
|
* enumerate all inline refs
|
|
*/
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
item_size = btrfs_item_size_nr(leaf, slot);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)ptr;
|
|
*info_level = btrfs_tree_block_level(leaf, info);
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
*info_level = found_key.offset;
|
|
} else {
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
|
|
}
|
|
|
|
while (ptr < end) {
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 offset;
|
|
int type;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_get_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_REF_TYPE_ANY);
|
|
if (type == BTRFS_REF_TYPE_INVALID)
|
|
return -EUCLEAN;
|
|
|
|
offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
|
|
switch (type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = add_direct_ref(fs_info, preftrees,
|
|
*info_level + 1, offset,
|
|
bytenr, 1, NULL, GFP_NOFS);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
|
|
ret = add_direct_ref(fs_info, preftrees, 0, offset,
|
|
bytenr, count, sc, GFP_NOFS);
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
ret = add_indirect_ref(fs_info, preftrees, offset,
|
|
NULL, *info_level + 1,
|
|
bytenr, 1, NULL, GFP_NOFS);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
|
|
if (sc && sc->inum && key.objectid != sc->inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
break;
|
|
}
|
|
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
|
|
ret = add_indirect_ref(fs_info, preftrees, root,
|
|
&key, 0, bytenr, count,
|
|
sc, GFP_NOFS);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all non-inline backrefs for bytenr to the list
|
|
*
|
|
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
|
|
*/
|
|
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 bytenr,
|
|
int info_level, struct preftrees *preftrees,
|
|
struct share_check *sc)
|
|
{
|
|
struct btrfs_root *extent_root = fs_info->extent_root;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
while (1) {
|
|
ret = btrfs_next_item(extent_root, path);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
|
|
continue;
|
|
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
|
|
break;
|
|
|
|
switch (key.type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
/* SHARED DIRECT METADATA backref */
|
|
ret = add_direct_ref(fs_info, preftrees,
|
|
info_level + 1, key.offset,
|
|
bytenr, 1, NULL, GFP_NOFS);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
/* SHARED DIRECT FULL backref */
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_shared_data_ref);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
ret = add_direct_ref(fs_info, preftrees, 0,
|
|
key.offset, bytenr, count,
|
|
sc, GFP_NOFS);
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
/* NORMAL INDIRECT METADATA backref */
|
|
ret = add_indirect_ref(fs_info, preftrees, key.offset,
|
|
NULL, info_level + 1, bytenr,
|
|
1, NULL, GFP_NOFS);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
/* NORMAL INDIRECT DATA backref */
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_extent_data_ref);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
|
|
if (sc && sc->inum && key.objectid != sc->inum) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
break;
|
|
}
|
|
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
ret = add_indirect_ref(fs_info, preftrees, root,
|
|
&key, 0, bytenr, count,
|
|
sc, GFP_NOFS);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this adds all existing backrefs (inline backrefs, backrefs and delayed
|
|
* refs) for the given bytenr to the refs list, merges duplicates and resolves
|
|
* indirect refs to their parent bytenr.
|
|
* When roots are found, they're added to the roots list
|
|
*
|
|
* If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
|
|
* much like trans == NULL case, the difference only lies in it will not
|
|
* commit root.
|
|
* The special case is for qgroup to search roots in commit_transaction().
|
|
*
|
|
* @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
|
|
* shared extent is detected.
|
|
*
|
|
* Otherwise this returns 0 for success and <0 for an error.
|
|
*
|
|
* If ignore_offset is set to false, only extent refs whose offsets match
|
|
* extent_item_pos are returned. If true, every extent ref is returned
|
|
* and extent_item_pos is ignored.
|
|
*
|
|
* FIXME some caching might speed things up
|
|
*/
|
|
static int find_parent_nodes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist *refs,
|
|
struct ulist *roots, const u64 *extent_item_pos,
|
|
struct share_check *sc, bool ignore_offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_delayed_ref_root *delayed_refs = NULL;
|
|
struct btrfs_delayed_ref_head *head;
|
|
int info_level = 0;
|
|
int ret;
|
|
struct prelim_ref *ref;
|
|
struct rb_node *node;
|
|
struct extent_inode_elem *eie = NULL;
|
|
struct preftrees preftrees = {
|
|
.direct = PREFTREE_INIT,
|
|
.indirect = PREFTREE_INIT,
|
|
.indirect_missing_keys = PREFTREE_INIT
|
|
};
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
if (!trans) {
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
}
|
|
|
|
if (time_seq == SEQ_LAST)
|
|
path->skip_locking = 1;
|
|
|
|
/*
|
|
* grab both a lock on the path and a lock on the delayed ref head.
|
|
* We need both to get a consistent picture of how the refs look
|
|
* at a specified point in time
|
|
*/
|
|
again:
|
|
head = NULL;
|
|
|
|
ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
if (trans && likely(trans->type != __TRANS_DUMMY) &&
|
|
time_seq != SEQ_LAST) {
|
|
#else
|
|
if (trans && time_seq != SEQ_LAST) {
|
|
#endif
|
|
/*
|
|
* look if there are updates for this ref queued and lock the
|
|
* head
|
|
*/
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
|
|
if (head) {
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
refcount_inc(&head->refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's
|
|
* released and try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref_head(head);
|
|
goto again;
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
ret = add_delayed_refs(fs_info, head, time_seq,
|
|
&preftrees, sc);
|
|
mutex_unlock(&head->mutex);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
spin_unlock(&delayed_refs->lock);
|
|
}
|
|
}
|
|
|
|
if (path->slots[0]) {
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == bytenr &&
|
|
(key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
key.type == BTRFS_METADATA_ITEM_KEY)) {
|
|
ret = add_inline_refs(fs_info, path, bytenr,
|
|
&info_level, &preftrees, sc);
|
|
if (ret)
|
|
goto out;
|
|
ret = add_keyed_refs(fs_info, path, bytenr, info_level,
|
|
&preftrees, sc);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
|
|
if (ret)
|
|
goto out;
|
|
|
|
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
|
|
|
|
ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
|
|
extent_item_pos, sc, ignore_offset);
|
|
if (ret)
|
|
goto out;
|
|
|
|
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
|
|
|
|
/*
|
|
* This walks the tree of merged and resolved refs. Tree blocks are
|
|
* read in as needed. Unique entries are added to the ulist, and
|
|
* the list of found roots is updated.
|
|
*
|
|
* We release the entire tree in one go before returning.
|
|
*/
|
|
node = rb_first_cached(&preftrees.direct.root);
|
|
while (node) {
|
|
ref = rb_entry(node, struct prelim_ref, rbnode);
|
|
node = rb_next(&ref->rbnode);
|
|
/*
|
|
* ref->count < 0 can happen here if there are delayed
|
|
* refs with a node->action of BTRFS_DROP_DELAYED_REF.
|
|
* prelim_ref_insert() relies on this when merging
|
|
* identical refs to keep the overall count correct.
|
|
* prelim_ref_insert() will merge only those refs
|
|
* which compare identically. Any refs having
|
|
* e.g. different offsets would not be merged,
|
|
* and would retain their original ref->count < 0.
|
|
*/
|
|
if (roots && ref->count && ref->root_id && ref->parent == 0) {
|
|
if (sc && sc->root_objectid &&
|
|
ref->root_id != sc->root_objectid) {
|
|
ret = BACKREF_FOUND_SHARED;
|
|
goto out;
|
|
}
|
|
|
|
/* no parent == root of tree */
|
|
ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
if (ref->count && ref->parent) {
|
|
if (extent_item_pos && !ref->inode_list &&
|
|
ref->level == 0) {
|
|
struct extent_buffer *eb;
|
|
|
|
eb = read_tree_block(fs_info, ref->parent, 0,
|
|
ref->level, NULL);
|
|
if (IS_ERR(eb)) {
|
|
ret = PTR_ERR(eb);
|
|
goto out;
|
|
} else if (!extent_buffer_uptodate(eb)) {
|
|
free_extent_buffer(eb);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (!path->skip_locking) {
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_read(eb);
|
|
}
|
|
ret = find_extent_in_eb(eb, bytenr,
|
|
*extent_item_pos, &eie, ignore_offset);
|
|
if (!path->skip_locking)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
if (ret < 0)
|
|
goto out;
|
|
ref->inode_list = eie;
|
|
}
|
|
ret = ulist_add_merge_ptr(refs, ref->parent,
|
|
ref->inode_list,
|
|
(void **)&eie, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!ret && extent_item_pos) {
|
|
/*
|
|
* we've recorded that parent, so we must extend
|
|
* its inode list here
|
|
*/
|
|
BUG_ON(!eie);
|
|
while (eie->next)
|
|
eie = eie->next;
|
|
eie->next = ref->inode_list;
|
|
}
|
|
eie = NULL;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
prelim_release(&preftrees.direct);
|
|
prelim_release(&preftrees.indirect);
|
|
prelim_release(&preftrees.indirect_missing_keys);
|
|
|
|
if (ret < 0)
|
|
free_inode_elem_list(eie);
|
|
return ret;
|
|
}
|
|
|
|
static void free_leaf_list(struct ulist *blocks)
|
|
{
|
|
struct ulist_node *node = NULL;
|
|
struct extent_inode_elem *eie;
|
|
struct ulist_iterator uiter;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((node = ulist_next(blocks, &uiter))) {
|
|
if (!node->aux)
|
|
continue;
|
|
eie = unode_aux_to_inode_list(node);
|
|
free_inode_elem_list(eie);
|
|
node->aux = 0;
|
|
}
|
|
|
|
ulist_free(blocks);
|
|
}
|
|
|
|
/*
|
|
* Finds all leafs with a reference to the specified combination of bytenr and
|
|
* offset. key_list_head will point to a list of corresponding keys (caller must
|
|
* free each list element). The leafs will be stored in the leafs ulist, which
|
|
* must be freed with ulist_free.
|
|
*
|
|
* returns 0 on success, <0 on error
|
|
*/
|
|
int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **leafs,
|
|
const u64 *extent_item_pos, bool ignore_offset)
|
|
{
|
|
int ret;
|
|
|
|
*leafs = ulist_alloc(GFP_NOFS);
|
|
if (!*leafs)
|
|
return -ENOMEM;
|
|
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
|
|
*leafs, NULL, extent_item_pos, NULL, ignore_offset);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
free_leaf_list(*leafs);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* walk all backrefs for a given extent to find all roots that reference this
|
|
* extent. Walking a backref means finding all extents that reference this
|
|
* extent and in turn walk the backrefs of those, too. Naturally this is a
|
|
* recursive process, but here it is implemented in an iterative fashion: We
|
|
* find all referencing extents for the extent in question and put them on a
|
|
* list. In turn, we find all referencing extents for those, further appending
|
|
* to the list. The way we iterate the list allows adding more elements after
|
|
* the current while iterating. The process stops when we reach the end of the
|
|
* list. Found roots are added to the roots list.
|
|
*
|
|
* returns 0 on success, < 0 on error.
|
|
*/
|
|
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **roots,
|
|
bool ignore_offset)
|
|
{
|
|
struct ulist *tmp;
|
|
struct ulist_node *node = NULL;
|
|
struct ulist_iterator uiter;
|
|
int ret;
|
|
|
|
tmp = ulist_alloc(GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
*roots = ulist_alloc(GFP_NOFS);
|
|
if (!*roots) {
|
|
ulist_free(tmp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while (1) {
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
|
|
tmp, *roots, NULL, NULL, ignore_offset);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
ulist_free(tmp);
|
|
ulist_free(*roots);
|
|
*roots = NULL;
|
|
return ret;
|
|
}
|
|
node = ulist_next(tmp, &uiter);
|
|
if (!node)
|
|
break;
|
|
bytenr = node->val;
|
|
cond_resched();
|
|
}
|
|
|
|
ulist_free(tmp);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 time_seq, struct ulist **roots,
|
|
bool ignore_offset)
|
|
{
|
|
int ret;
|
|
|
|
if (!trans)
|
|
down_read(&fs_info->commit_root_sem);
|
|
ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
|
|
time_seq, roots, ignore_offset);
|
|
if (!trans)
|
|
up_read(&fs_info->commit_root_sem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* btrfs_check_shared - tell us whether an extent is shared
|
|
*
|
|
* btrfs_check_shared uses the backref walking code but will short
|
|
* circuit as soon as it finds a root or inode that doesn't match the
|
|
* one passed in. This provides a significant performance benefit for
|
|
* callers (such as fiemap) which want to know whether the extent is
|
|
* shared but do not need a ref count.
|
|
*
|
|
* This attempts to attach to the running transaction in order to account for
|
|
* delayed refs, but continues on even when no running transaction exists.
|
|
*
|
|
* Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
|
|
*/
|
|
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
|
|
struct ulist *roots, struct ulist *tmp)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *node;
|
|
struct seq_list elem = SEQ_LIST_INIT(elem);
|
|
int ret = 0;
|
|
struct share_check shared = {
|
|
.root_objectid = root->root_key.objectid,
|
|
.inum = inum,
|
|
.share_count = 0,
|
|
};
|
|
|
|
ulist_init(roots);
|
|
ulist_init(tmp);
|
|
|
|
trans = btrfs_join_transaction_nostart(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
trans = NULL;
|
|
down_read(&fs_info->commit_root_sem);
|
|
} else {
|
|
btrfs_get_tree_mod_seq(fs_info, &elem);
|
|
}
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while (1) {
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
|
|
roots, NULL, &shared, false);
|
|
if (ret == BACKREF_FOUND_SHARED) {
|
|
/* this is the only condition under which we return 1 */
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (ret < 0 && ret != -ENOENT)
|
|
break;
|
|
ret = 0;
|
|
node = ulist_next(tmp, &uiter);
|
|
if (!node)
|
|
break;
|
|
bytenr = node->val;
|
|
shared.share_count = 0;
|
|
cond_resched();
|
|
}
|
|
|
|
if (trans) {
|
|
btrfs_put_tree_mod_seq(fs_info, &elem);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
up_read(&fs_info->commit_root_sem);
|
|
}
|
|
out:
|
|
ulist_release(roots);
|
|
ulist_release(tmp);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
|
|
u64 start_off, struct btrfs_path *path,
|
|
struct btrfs_inode_extref **ret_extref,
|
|
u64 *found_off)
|
|
{
|
|
int ret, slot;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_inode_extref *extref;
|
|
const struct extent_buffer *leaf;
|
|
unsigned long ptr;
|
|
|
|
key.objectid = inode_objectid;
|
|
key.type = BTRFS_INODE_EXTREF_KEY;
|
|
key.offset = start_off;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
/*
|
|
* If the item at offset is not found,
|
|
* btrfs_search_slot will point us to the slot
|
|
* where it should be inserted. In our case
|
|
* that will be the slot directly before the
|
|
* next INODE_REF_KEY_V2 item. In the case
|
|
* that we're pointing to the last slot in a
|
|
* leaf, we must move one leaf over.
|
|
*/
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret) {
|
|
if (ret >= 1)
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
/*
|
|
* Check that we're still looking at an extended ref key for
|
|
* this particular objectid. If we have different
|
|
* objectid or type then there are no more to be found
|
|
* in the tree and we can exit.
|
|
*/
|
|
ret = -ENOENT;
|
|
if (found_key.objectid != inode_objectid)
|
|
break;
|
|
if (found_key.type != BTRFS_INODE_EXTREF_KEY)
|
|
break;
|
|
|
|
ret = 0;
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
extref = (struct btrfs_inode_extref *)ptr;
|
|
*ret_extref = extref;
|
|
if (found_off)
|
|
*found_off = found_key.offset;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this iterates to turn a name (from iref/extref) into a full filesystem path.
|
|
* Elements of the path are separated by '/' and the path is guaranteed to be
|
|
* 0-terminated. the path is only given within the current file system.
|
|
* Therefore, it never starts with a '/'. the caller is responsible to provide
|
|
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
|
|
* the start point of the resulting string is returned. this pointer is within
|
|
* dest, normally.
|
|
* in case the path buffer would overflow, the pointer is decremented further
|
|
* as if output was written to the buffer, though no more output is actually
|
|
* generated. that way, the caller can determine how much space would be
|
|
* required for the path to fit into the buffer. in that case, the returned
|
|
* value will be smaller than dest. callers must check this!
|
|
*/
|
|
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
|
|
u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb_in, u64 parent,
|
|
char *dest, u32 size)
|
|
{
|
|
int slot;
|
|
u64 next_inum;
|
|
int ret;
|
|
s64 bytes_left = ((s64)size) - 1;
|
|
struct extent_buffer *eb = eb_in;
|
|
struct btrfs_key found_key;
|
|
int leave_spinning = path->leave_spinning;
|
|
struct btrfs_inode_ref *iref;
|
|
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '\0';
|
|
|
|
path->leave_spinning = 1;
|
|
while (1) {
|
|
bytes_left -= name_len;
|
|
if (bytes_left >= 0)
|
|
read_extent_buffer(eb, dest + bytes_left,
|
|
name_off, name_len);
|
|
if (eb != eb_in) {
|
|
if (!path->skip_locking)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
ret = btrfs_find_item(fs_root, path, parent, 0,
|
|
BTRFS_INODE_REF_KEY, &found_key);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
if (ret)
|
|
break;
|
|
|
|
next_inum = found_key.offset;
|
|
|
|
/* regular exit ahead */
|
|
if (parent == next_inum)
|
|
break;
|
|
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
/* make sure we can use eb after releasing the path */
|
|
if (eb != eb_in) {
|
|
if (!path->skip_locking)
|
|
btrfs_set_lock_blocking_read(eb);
|
|
path->nodes[0] = NULL;
|
|
path->locks[0] = 0;
|
|
}
|
|
btrfs_release_path(path);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
name_off = (unsigned long)(iref + 1);
|
|
|
|
parent = next_inum;
|
|
--bytes_left;
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '/';
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = leave_spinning;
|
|
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return dest + bytes_left;
|
|
}
|
|
|
|
/*
|
|
* this makes the path point to (logical EXTENT_ITEM *)
|
|
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
|
|
* tree blocks and <0 on error.
|
|
*/
|
|
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
|
|
struct btrfs_path *path, struct btrfs_key *found_key,
|
|
u64 *flags_ret)
|
|
{
|
|
int ret;
|
|
u64 flags;
|
|
u64 size = 0;
|
|
u32 item_size;
|
|
const struct extent_buffer *eb;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
|
|
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.objectid = logical;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ret;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
|
|
if (found_key->type == BTRFS_METADATA_ITEM_KEY)
|
|
size = fs_info->nodesize;
|
|
else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
|
|
size = found_key->offset;
|
|
|
|
if (found_key->objectid > logical ||
|
|
found_key->objectid + size <= logical) {
|
|
btrfs_debug(fs_info,
|
|
"logical %llu is not within any extent", logical);
|
|
return -ENOENT;
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(eb, path->slots[0]);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
|
|
btrfs_debug(fs_info,
|
|
"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
|
|
logical, logical - found_key->objectid, found_key->objectid,
|
|
found_key->offset, flags, item_size);
|
|
|
|
WARN_ON(!flags_ret);
|
|
if (flags_ret) {
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
|
|
else if (flags & BTRFS_EXTENT_FLAG_DATA)
|
|
*flags_ret = BTRFS_EXTENT_FLAG_DATA;
|
|
else
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* helper function to iterate extent inline refs. ptr must point to a 0 value
|
|
* for the first call and may be modified. it is used to track state.
|
|
* if more refs exist, 0 is returned and the next call to
|
|
* get_extent_inline_ref must pass the modified ptr parameter to get the
|
|
* next ref. after the last ref was processed, 1 is returned.
|
|
* returns <0 on error
|
|
*/
|
|
static int get_extent_inline_ref(unsigned long *ptr,
|
|
const struct extent_buffer *eb,
|
|
const struct btrfs_key *key,
|
|
const struct btrfs_extent_item *ei,
|
|
u32 item_size,
|
|
struct btrfs_extent_inline_ref **out_eiref,
|
|
int *out_type)
|
|
{
|
|
unsigned long end;
|
|
u64 flags;
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
if (!*ptr) {
|
|
/* first call */
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
if (key->type == BTRFS_METADATA_ITEM_KEY) {
|
|
/* a skinny metadata extent */
|
|
*out_eiref =
|
|
(struct btrfs_extent_inline_ref *)(ei + 1);
|
|
} else {
|
|
WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_eiref =
|
|
(struct btrfs_extent_inline_ref *)(info + 1);
|
|
}
|
|
} else {
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
}
|
|
*ptr = (unsigned long)*out_eiref;
|
|
if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
|
|
return -ENOENT;
|
|
}
|
|
|
|
end = (unsigned long)ei + item_size;
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
|
|
*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
|
|
BTRFS_REF_TYPE_ANY);
|
|
if (*out_type == BTRFS_REF_TYPE_INVALID)
|
|
return -EUCLEAN;
|
|
|
|
*ptr += btrfs_extent_inline_ref_size(*out_type);
|
|
WARN_ON(*ptr > end);
|
|
if (*ptr == end)
|
|
return 1; /* last */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* reads the tree block backref for an extent. tree level and root are returned
|
|
* through out_level and out_root. ptr must point to a 0 value for the first
|
|
* call and may be modified (see get_extent_inline_ref comment).
|
|
* returns 0 if data was provided, 1 if there was no more data to provide or
|
|
* <0 on error.
|
|
*/
|
|
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
|
|
struct btrfs_key *key, struct btrfs_extent_item *ei,
|
|
u32 item_size, u64 *out_root, u8 *out_level)
|
|
{
|
|
int ret;
|
|
int type;
|
|
struct btrfs_extent_inline_ref *eiref;
|
|
|
|
if (*ptr == (unsigned long)-1)
|
|
return 1;
|
|
|
|
while (1) {
|
|
ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
|
|
&eiref, &type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
break;
|
|
|
|
if (ret == 1)
|
|
return 1;
|
|
}
|
|
|
|
/* we can treat both ref types equally here */
|
|
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
|
|
|
|
if (key->type == BTRFS_EXTENT_ITEM_KEY) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_level = btrfs_tree_block_level(eb, info);
|
|
} else {
|
|
ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
|
|
*out_level = (u8)key->offset;
|
|
}
|
|
|
|
if (ret == 1)
|
|
*ptr = (unsigned long)-1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
|
|
struct extent_inode_elem *inode_list,
|
|
u64 root, u64 extent_item_objectid,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
struct extent_inode_elem *eie;
|
|
int ret = 0;
|
|
|
|
for (eie = inode_list; eie; eie = eie->next) {
|
|
btrfs_debug(fs_info,
|
|
"ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
|
|
extent_item_objectid, eie->inum,
|
|
eie->offset, root);
|
|
ret = iterate(eie->inum, eie->offset, root, ctx);
|
|
if (ret) {
|
|
btrfs_debug(fs_info,
|
|
"stopping iteration for %llu due to ret=%d",
|
|
extent_item_objectid, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* calls iterate() for every inode that references the extent identified by
|
|
* the given parameters.
|
|
* when the iterator function returns a non-zero value, iteration stops.
|
|
*/
|
|
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
|
|
u64 extent_item_objectid, u64 extent_item_pos,
|
|
int search_commit_root,
|
|
iterate_extent_inodes_t *iterate, void *ctx,
|
|
bool ignore_offset)
|
|
{
|
|
int ret;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct ulist *refs = NULL;
|
|
struct ulist *roots = NULL;
|
|
struct ulist_node *ref_node = NULL;
|
|
struct ulist_node *root_node = NULL;
|
|
struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
|
|
struct ulist_iterator ref_uiter;
|
|
struct ulist_iterator root_uiter;
|
|
|
|
btrfs_debug(fs_info, "resolving all inodes for extent %llu",
|
|
extent_item_objectid);
|
|
|
|
if (!search_commit_root) {
|
|
trans = btrfs_attach_transaction(fs_info->extent_root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT &&
|
|
PTR_ERR(trans) != -EROFS)
|
|
return PTR_ERR(trans);
|
|
trans = NULL;
|
|
}
|
|
}
|
|
|
|
if (trans)
|
|
btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
|
|
else
|
|
down_read(&fs_info->commit_root_sem);
|
|
|
|
ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
|
|
tree_mod_seq_elem.seq, &refs,
|
|
&extent_item_pos, ignore_offset);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ULIST_ITER_INIT(&ref_uiter);
|
|
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
|
|
ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
|
|
tree_mod_seq_elem.seq, &roots,
|
|
ignore_offset);
|
|
if (ret)
|
|
break;
|
|
ULIST_ITER_INIT(&root_uiter);
|
|
while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
|
|
btrfs_debug(fs_info,
|
|
"root %llu references leaf %llu, data list %#llx",
|
|
root_node->val, ref_node->val,
|
|
ref_node->aux);
|
|
ret = iterate_leaf_refs(fs_info,
|
|
(struct extent_inode_elem *)
|
|
(uintptr_t)ref_node->aux,
|
|
root_node->val,
|
|
extent_item_objectid,
|
|
iterate, ctx);
|
|
}
|
|
ulist_free(roots);
|
|
}
|
|
|
|
free_leaf_list(refs);
|
|
out:
|
|
if (trans) {
|
|
btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
up_read(&fs_info->commit_root_sem);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
iterate_extent_inodes_t *iterate, void *ctx,
|
|
bool ignore_offset)
|
|
{
|
|
int ret;
|
|
u64 extent_item_pos;
|
|
u64 flags = 0;
|
|
struct btrfs_key found_key;
|
|
int search_commit_root = path->search_commit_root;
|
|
|
|
ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
|
|
btrfs_release_path(path);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
return -EINVAL;
|
|
|
|
extent_item_pos = logical - found_key.objectid;
|
|
ret = iterate_extent_inodes(fs_info, found_key.objectid,
|
|
extent_item_pos, search_commit_root,
|
|
iterate, ctx, ignore_offset);
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx);
|
|
|
|
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
u32 cur;
|
|
u32 len;
|
|
u32 name_len;
|
|
u64 parent = 0;
|
|
int found = 0;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_item *item;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_key found_key;
|
|
|
|
while (!ret) {
|
|
ret = btrfs_find_item(fs_root, path, inum,
|
|
parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
|
|
&found_key);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = found ? 0 : -ENOENT;
|
|
break;
|
|
}
|
|
++found;
|
|
|
|
parent = found_key.offset;
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
item = btrfs_item_nr(slot);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
/* path must be released before calling iterate()! */
|
|
btrfs_debug(fs_root->fs_info,
|
|
"following ref at offset %u for inode %llu in tree %llu",
|
|
cur, found_key.objectid,
|
|
fs_root->root_key.objectid);
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)(iref + 1), eb, ctx);
|
|
if (ret)
|
|
break;
|
|
len = sizeof(*iref) + name_len;
|
|
iref = (struct btrfs_inode_ref *)((char *)iref + len);
|
|
}
|
|
free_extent_buffer(eb);
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
int slot;
|
|
u64 offset = 0;
|
|
u64 parent;
|
|
int found = 0;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_inode_extref *extref;
|
|
u32 item_size;
|
|
u32 cur_offset;
|
|
unsigned long ptr;
|
|
|
|
while (1) {
|
|
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
|
|
&offset);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = found ? 0 : -ENOENT;
|
|
break;
|
|
}
|
|
++found;
|
|
|
|
slot = path->slots[0];
|
|
eb = btrfs_clone_extent_buffer(path->nodes[0]);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < item_size) {
|
|
u32 name_len;
|
|
|
|
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
|
|
parent = btrfs_inode_extref_parent(eb, extref);
|
|
name_len = btrfs_inode_extref_name_len(eb, extref);
|
|
ret = iterate(parent, name_len,
|
|
(unsigned long)&extref->name, eb, ctx);
|
|
if (ret)
|
|
break;
|
|
|
|
cur_offset += btrfs_inode_extref_name_len(eb, extref);
|
|
cur_offset += sizeof(*extref);
|
|
}
|
|
free_extent_buffer(eb);
|
|
|
|
offset++;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path, iterate_irefs_t *iterate,
|
|
void *ctx)
|
|
{
|
|
int ret;
|
|
int found_refs = 0;
|
|
|
|
ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
|
|
if (!ret)
|
|
++found_refs;
|
|
else if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
|
|
if (ret == -ENOENT && found_refs)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* returns 0 if the path could be dumped (probably truncated)
|
|
* returns <0 in case of an error
|
|
*/
|
|
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
|
|
struct extent_buffer *eb, void *ctx)
|
|
{
|
|
struct inode_fs_paths *ipath = ctx;
|
|
char *fspath;
|
|
char *fspath_min;
|
|
int i = ipath->fspath->elem_cnt;
|
|
const int s_ptr = sizeof(char *);
|
|
u32 bytes_left;
|
|
|
|
bytes_left = ipath->fspath->bytes_left > s_ptr ?
|
|
ipath->fspath->bytes_left - s_ptr : 0;
|
|
|
|
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
|
|
fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
|
|
name_off, eb, inum, fspath_min, bytes_left);
|
|
if (IS_ERR(fspath))
|
|
return PTR_ERR(fspath);
|
|
|
|
if (fspath > fspath_min) {
|
|
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
|
|
++ipath->fspath->elem_cnt;
|
|
ipath->fspath->bytes_left = fspath - fspath_min;
|
|
} else {
|
|
++ipath->fspath->elem_missed;
|
|
ipath->fspath->bytes_missing += fspath_min - fspath;
|
|
ipath->fspath->bytes_left = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this dumps all file system paths to the inode into the ipath struct, provided
|
|
* is has been created large enough. each path is zero-terminated and accessed
|
|
* from ipath->fspath->val[i].
|
|
* when it returns, there are ipath->fspath->elem_cnt number of paths available
|
|
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
|
|
* number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
|
|
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
|
|
* have been needed to return all paths.
|
|
*/
|
|
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
|
|
{
|
|
return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
|
|
inode_to_path, ipath);
|
|
}
|
|
|
|
struct btrfs_data_container *init_data_container(u32 total_bytes)
|
|
{
|
|
struct btrfs_data_container *data;
|
|
size_t alloc_bytes;
|
|
|
|
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
|
|
data = kvmalloc(alloc_bytes, GFP_KERNEL);
|
|
if (!data)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (total_bytes >= sizeof(*data)) {
|
|
data->bytes_left = total_bytes - sizeof(*data);
|
|
data->bytes_missing = 0;
|
|
} else {
|
|
data->bytes_missing = sizeof(*data) - total_bytes;
|
|
data->bytes_left = 0;
|
|
}
|
|
|
|
data->elem_cnt = 0;
|
|
data->elem_missed = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* allocates space to return multiple file system paths for an inode.
|
|
* total_bytes to allocate are passed, note that space usable for actual path
|
|
* information will be total_bytes - sizeof(struct inode_fs_paths).
|
|
* the returned pointer must be freed with free_ipath() in the end.
|
|
*/
|
|
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct inode_fs_paths *ifp;
|
|
struct btrfs_data_container *fspath;
|
|
|
|
fspath = init_data_container(total_bytes);
|
|
if (IS_ERR(fspath))
|
|
return ERR_CAST(fspath);
|
|
|
|
ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
|
|
if (!ifp) {
|
|
kvfree(fspath);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ifp->btrfs_path = path;
|
|
ifp->fspath = fspath;
|
|
ifp->fs_root = fs_root;
|
|
|
|
return ifp;
|
|
}
|
|
|
|
void free_ipath(struct inode_fs_paths *ipath)
|
|
{
|
|
if (!ipath)
|
|
return;
|
|
kvfree(ipath->fspath);
|
|
kfree(ipath);
|
|
}
|
|
|
|
struct btrfs_backref_iter *btrfs_backref_iter_alloc(
|
|
struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
|
|
{
|
|
struct btrfs_backref_iter *ret;
|
|
|
|
ret = kzalloc(sizeof(*ret), gfp_flag);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
ret->path = btrfs_alloc_path();
|
|
if (!ret) {
|
|
kfree(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* Current backref iterator only supports iteration in commit root */
|
|
ret->path->search_commit_root = 1;
|
|
ret->path->skip_locking = 1;
|
|
ret->fs_info = fs_info;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
|
|
{
|
|
struct btrfs_fs_info *fs_info = iter->fs_info;
|
|
struct btrfs_path *path = iter->path;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
iter->bytenr = bytenr;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 0) {
|
|
ret = -EUCLEAN;
|
|
goto release;
|
|
}
|
|
if (path->slots[0] == 0) {
|
|
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
|
|
ret = -EUCLEAN;
|
|
goto release;
|
|
}
|
|
path->slots[0]--;
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
|
|
key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
|
|
ret = -ENOENT;
|
|
goto release;
|
|
}
|
|
memcpy(&iter->cur_key, &key, sizeof(key));
|
|
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]);
|
|
iter->end_ptr = (u32)(iter->item_ptr +
|
|
btrfs_item_size_nr(path->nodes[0], path->slots[0]));
|
|
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_extent_item);
|
|
|
|
/*
|
|
* Only support iteration on tree backref yet.
|
|
*
|
|
* This is an extra precaution for non skinny-metadata, where
|
|
* EXTENT_ITEM is also used for tree blocks, that we can only use
|
|
* extent flags to determine if it's a tree block.
|
|
*/
|
|
if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
|
|
ret = -ENOTSUPP;
|
|
goto release;
|
|
}
|
|
iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
|
|
|
|
/* If there is no inline backref, go search for keyed backref */
|
|
if (iter->cur_ptr >= iter->end_ptr) {
|
|
ret = btrfs_next_item(fs_info->extent_root, path);
|
|
|
|
/* No inline nor keyed ref */
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto release;
|
|
}
|
|
if (ret < 0)
|
|
goto release;
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
|
|
path->slots[0]);
|
|
if (iter->cur_key.objectid != bytenr ||
|
|
(iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
|
|
iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
|
|
ret = -ENOENT;
|
|
goto release;
|
|
}
|
|
iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]);
|
|
iter->item_ptr = iter->cur_ptr;
|
|
iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
|
|
path->nodes[0], path->slots[0]));
|
|
}
|
|
|
|
return 0;
|
|
release:
|
|
btrfs_backref_iter_release(iter);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Go to the next backref item of current bytenr, can be either inlined or
|
|
* keyed.
|
|
*
|
|
* Caller needs to check whether it's inline ref or not by iter->cur_key.
|
|
*
|
|
* Return 0 if we get next backref without problem.
|
|
* Return >0 if there is no extra backref for this bytenr.
|
|
* Return <0 if there is something wrong happened.
|
|
*/
|
|
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
|
|
{
|
|
struct extent_buffer *eb = btrfs_backref_get_eb(iter);
|
|
struct btrfs_path *path = iter->path;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
u32 size;
|
|
|
|
if (btrfs_backref_iter_is_inline_ref(iter)) {
|
|
/* We're still inside the inline refs */
|
|
ASSERT(iter->cur_ptr < iter->end_ptr);
|
|
|
|
if (btrfs_backref_has_tree_block_info(iter)) {
|
|
/* First tree block info */
|
|
size = sizeof(struct btrfs_tree_block_info);
|
|
} else {
|
|
/* Use inline ref type to determine the size */
|
|
int type;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)
|
|
((unsigned long)iter->cur_ptr);
|
|
type = btrfs_extent_inline_ref_type(eb, iref);
|
|
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
}
|
|
iter->cur_ptr += size;
|
|
if (iter->cur_ptr < iter->end_ptr)
|
|
return 0;
|
|
|
|
/* All inline items iterated, fall through */
|
|
}
|
|
|
|
/* We're at keyed items, there is no inline item, go to the next one */
|
|
ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
|
|
if (ret)
|
|
return ret;
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
|
|
if (iter->cur_key.objectid != iter->bytenr ||
|
|
(iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
|
|
iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
|
|
return 1;
|
|
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]);
|
|
iter->cur_ptr = iter->item_ptr;
|
|
iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
|
|
path->slots[0]);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_backref_cache *cache, int is_reloc)
|
|
{
|
|
int i;
|
|
|
|
cache->rb_root = RB_ROOT;
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
|
|
INIT_LIST_HEAD(&cache->pending[i]);
|
|
INIT_LIST_HEAD(&cache->changed);
|
|
INIT_LIST_HEAD(&cache->detached);
|
|
INIT_LIST_HEAD(&cache->leaves);
|
|
INIT_LIST_HEAD(&cache->pending_edge);
|
|
INIT_LIST_HEAD(&cache->useless_node);
|
|
cache->fs_info = fs_info;
|
|
cache->is_reloc = is_reloc;
|
|
}
|
|
|
|
struct btrfs_backref_node *btrfs_backref_alloc_node(
|
|
struct btrfs_backref_cache *cache, u64 bytenr, int level)
|
|
{
|
|
struct btrfs_backref_node *node;
|
|
|
|
ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
|
|
node = kzalloc(sizeof(*node), GFP_NOFS);
|
|
if (!node)
|
|
return node;
|
|
|
|
INIT_LIST_HEAD(&node->list);
|
|
INIT_LIST_HEAD(&node->upper);
|
|
INIT_LIST_HEAD(&node->lower);
|
|
RB_CLEAR_NODE(&node->rb_node);
|
|
cache->nr_nodes++;
|
|
node->level = level;
|
|
node->bytenr = bytenr;
|
|
|
|
return node;
|
|
}
|
|
|
|
struct btrfs_backref_edge *btrfs_backref_alloc_edge(
|
|
struct btrfs_backref_cache *cache)
|
|
{
|
|
struct btrfs_backref_edge *edge;
|
|
|
|
edge = kzalloc(sizeof(*edge), GFP_NOFS);
|
|
if (edge)
|
|
cache->nr_edges++;
|
|
return edge;
|
|
}
|
|
|
|
/*
|
|
* Drop the backref node from cache, also cleaning up all its
|
|
* upper edges and any uncached nodes in the path.
|
|
*
|
|
* This cleanup happens bottom up, thus the node should either
|
|
* be the lowest node in the cache or a detached node.
|
|
*/
|
|
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
|
|
struct btrfs_backref_node *node)
|
|
{
|
|
struct btrfs_backref_node *upper;
|
|
struct btrfs_backref_edge *edge;
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
BUG_ON(!node->lowest && !node->detached);
|
|
while (!list_empty(&node->upper)) {
|
|
edge = list_entry(node->upper.next, struct btrfs_backref_edge,
|
|
list[LOWER]);
|
|
upper = edge->node[UPPER];
|
|
list_del(&edge->list[LOWER]);
|
|
list_del(&edge->list[UPPER]);
|
|
btrfs_backref_free_edge(cache, edge);
|
|
|
|
if (RB_EMPTY_NODE(&upper->rb_node)) {
|
|
BUG_ON(!list_empty(&node->upper));
|
|
btrfs_backref_drop_node(cache, node);
|
|
node = upper;
|
|
node->lowest = 1;
|
|
continue;
|
|
}
|
|
/*
|
|
* Add the node to leaf node list if no other child block
|
|
* cached.
|
|
*/
|
|
if (list_empty(&upper->lower)) {
|
|
list_add_tail(&upper->lower, &cache->leaves);
|
|
upper->lowest = 1;
|
|
}
|
|
}
|
|
|
|
btrfs_backref_drop_node(cache, node);
|
|
}
|
|
|
|
/*
|
|
* Release all nodes/edges from current cache
|
|
*/
|
|
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
|
|
{
|
|
struct btrfs_backref_node *node;
|
|
int i;
|
|
|
|
while (!list_empty(&cache->detached)) {
|
|
node = list_entry(cache->detached.next,
|
|
struct btrfs_backref_node, list);
|
|
btrfs_backref_cleanup_node(cache, node);
|
|
}
|
|
|
|
while (!list_empty(&cache->leaves)) {
|
|
node = list_entry(cache->leaves.next,
|
|
struct btrfs_backref_node, lower);
|
|
btrfs_backref_cleanup_node(cache, node);
|
|
}
|
|
|
|
cache->last_trans = 0;
|
|
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
|
|
ASSERT(list_empty(&cache->pending[i]));
|
|
ASSERT(list_empty(&cache->pending_edge));
|
|
ASSERT(list_empty(&cache->useless_node));
|
|
ASSERT(list_empty(&cache->changed));
|
|
ASSERT(list_empty(&cache->detached));
|
|
ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
|
|
ASSERT(!cache->nr_nodes);
|
|
ASSERT(!cache->nr_edges);
|
|
}
|
|
|
|
/*
|
|
* Handle direct tree backref
|
|
*
|
|
* Direct tree backref means, the backref item shows its parent bytenr
|
|
* directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
|
|
*
|
|
* @ref_key: The converted backref key.
|
|
* For keyed backref, it's the item key.
|
|
* For inlined backref, objectid is the bytenr,
|
|
* type is btrfs_inline_ref_type, offset is
|
|
* btrfs_inline_ref_offset.
|
|
*/
|
|
static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
|
|
struct btrfs_key *ref_key,
|
|
struct btrfs_backref_node *cur)
|
|
{
|
|
struct btrfs_backref_edge *edge;
|
|
struct btrfs_backref_node *upper;
|
|
struct rb_node *rb_node;
|
|
|
|
ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
|
|
|
|
/* Only reloc root uses backref pointing to itself */
|
|
if (ref_key->objectid == ref_key->offset) {
|
|
struct btrfs_root *root;
|
|
|
|
cur->is_reloc_root = 1;
|
|
/* Only reloc backref cache cares about a specific root */
|
|
if (cache->is_reloc) {
|
|
root = find_reloc_root(cache->fs_info, cur->bytenr);
|
|
if (WARN_ON(!root))
|
|
return -ENOENT;
|
|
cur->root = root;
|
|
} else {
|
|
/*
|
|
* For generic purpose backref cache, reloc root node
|
|
* is useless.
|
|
*/
|
|
list_add(&cur->list, &cache->useless_node);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
edge = btrfs_backref_alloc_edge(cache);
|
|
if (!edge)
|
|
return -ENOMEM;
|
|
|
|
rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
|
|
if (!rb_node) {
|
|
/* Parent node not yet cached */
|
|
upper = btrfs_backref_alloc_node(cache, ref_key->offset,
|
|
cur->level + 1);
|
|
if (!upper) {
|
|
btrfs_backref_free_edge(cache, edge);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Backrefs for the upper level block isn't cached, add the
|
|
* block to pending list
|
|
*/
|
|
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
|
|
} else {
|
|
/* Parent node already cached */
|
|
upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
|
|
ASSERT(upper->checked);
|
|
INIT_LIST_HEAD(&edge->list[UPPER]);
|
|
}
|
|
btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle indirect tree backref
|
|
*
|
|
* Indirect tree backref means, we only know which tree the node belongs to.
|
|
* We still need to do a tree search to find out the parents. This is for
|
|
* TREE_BLOCK_REF backref (keyed or inlined).
|
|
*
|
|
* @ref_key: The same as @ref_key in handle_direct_tree_backref()
|
|
* @tree_key: The first key of this tree block.
|
|
* @path: A clean (released) path, to avoid allocating path everytime
|
|
* the function get called.
|
|
*/
|
|
static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *ref_key,
|
|
struct btrfs_key *tree_key,
|
|
struct btrfs_backref_node *cur)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_backref_node *upper;
|
|
struct btrfs_backref_node *lower;
|
|
struct btrfs_backref_edge *edge;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root;
|
|
struct rb_node *rb_node;
|
|
int level;
|
|
bool need_check = true;
|
|
int ret;
|
|
|
|
root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
|
|
if (IS_ERR(root))
|
|
return PTR_ERR(root);
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
cur->cowonly = 1;
|
|
|
|
if (btrfs_root_level(&root->root_item) == cur->level) {
|
|
/* Tree root */
|
|
ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
|
|
/*
|
|
* For reloc backref cache, we may ignore reloc root. But for
|
|
* general purpose backref cache, we can't rely on
|
|
* btrfs_should_ignore_reloc_root() as it may conflict with
|
|
* current running relocation and lead to missing root.
|
|
*
|
|
* For general purpose backref cache, reloc root detection is
|
|
* completely relying on direct backref (key->offset is parent
|
|
* bytenr), thus only do such check for reloc cache.
|
|
*/
|
|
if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
|
|
btrfs_put_root(root);
|
|
list_add(&cur->list, &cache->useless_node);
|
|
} else {
|
|
cur->root = root;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
level = cur->level + 1;
|
|
|
|
/* Search the tree to find parent blocks referring to the block */
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
path->lowest_level = level;
|
|
ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
|
|
path->lowest_level = 0;
|
|
if (ret < 0) {
|
|
btrfs_put_root(root);
|
|
return ret;
|
|
}
|
|
if (ret > 0 && path->slots[level] > 0)
|
|
path->slots[level]--;
|
|
|
|
eb = path->nodes[level];
|
|
if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
|
|
btrfs_err(fs_info,
|
|
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
|
|
cur->bytenr, level - 1, root->root_key.objectid,
|
|
tree_key->objectid, tree_key->type, tree_key->offset);
|
|
btrfs_put_root(root);
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
lower = cur;
|
|
|
|
/* Add all nodes and edges in the path */
|
|
for (; level < BTRFS_MAX_LEVEL; level++) {
|
|
if (!path->nodes[level]) {
|
|
ASSERT(btrfs_root_bytenr(&root->root_item) ==
|
|
lower->bytenr);
|
|
/* Same as previous should_ignore_reloc_root() call */
|
|
if (btrfs_should_ignore_reloc_root(root) &&
|
|
cache->is_reloc) {
|
|
btrfs_put_root(root);
|
|
list_add(&lower->list, &cache->useless_node);
|
|
} else {
|
|
lower->root = root;
|
|
}
|
|
break;
|
|
}
|
|
|
|
edge = btrfs_backref_alloc_edge(cache);
|
|
if (!edge) {
|
|
btrfs_put_root(root);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
eb = path->nodes[level];
|
|
rb_node = rb_simple_search(&cache->rb_root, eb->start);
|
|
if (!rb_node) {
|
|
upper = btrfs_backref_alloc_node(cache, eb->start,
|
|
lower->level + 1);
|
|
if (!upper) {
|
|
btrfs_put_root(root);
|
|
btrfs_backref_free_edge(cache, edge);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
upper->owner = btrfs_header_owner(eb);
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
upper->cowonly = 1;
|
|
|
|
/*
|
|
* If we know the block isn't shared we can avoid
|
|
* checking its backrefs.
|
|
*/
|
|
if (btrfs_block_can_be_shared(root, eb))
|
|
upper->checked = 0;
|
|
else
|
|
upper->checked = 1;
|
|
|
|
/*
|
|
* Add the block to pending list if we need to check its
|
|
* backrefs, we only do this once while walking up a
|
|
* tree as we will catch anything else later on.
|
|
*/
|
|
if (!upper->checked && need_check) {
|
|
need_check = false;
|
|
list_add_tail(&edge->list[UPPER],
|
|
&cache->pending_edge);
|
|
} else {
|
|
if (upper->checked)
|
|
need_check = true;
|
|
INIT_LIST_HEAD(&edge->list[UPPER]);
|
|
}
|
|
} else {
|
|
upper = rb_entry(rb_node, struct btrfs_backref_node,
|
|
rb_node);
|
|
ASSERT(upper->checked);
|
|
INIT_LIST_HEAD(&edge->list[UPPER]);
|
|
if (!upper->owner)
|
|
upper->owner = btrfs_header_owner(eb);
|
|
}
|
|
btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
|
|
|
|
if (rb_node) {
|
|
btrfs_put_root(root);
|
|
break;
|
|
}
|
|
lower = upper;
|
|
upper = NULL;
|
|
}
|
|
out:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add backref node @cur into @cache.
|
|
*
|
|
* NOTE: Even if the function returned 0, @cur is not yet cached as its upper
|
|
* links aren't yet bi-directional. Needs to finish such links.
|
|
* Use btrfs_backref_finish_upper_links() to finish such linkage.
|
|
*
|
|
* @path: Released path for indirect tree backref lookup
|
|
* @iter: Released backref iter for extent tree search
|
|
* @node_key: The first key of the tree block
|
|
*/
|
|
int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
|
|
struct btrfs_path *path,
|
|
struct btrfs_backref_iter *iter,
|
|
struct btrfs_key *node_key,
|
|
struct btrfs_backref_node *cur)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_backref_edge *edge;
|
|
struct btrfs_backref_node *exist;
|
|
int ret;
|
|
|
|
ret = btrfs_backref_iter_start(iter, cur->bytenr);
|
|
if (ret < 0)
|
|
return ret;
|
|
/*
|
|
* We skip the first btrfs_tree_block_info, as we don't use the key
|
|
* stored in it, but fetch it from the tree block
|
|
*/
|
|
if (btrfs_backref_has_tree_block_info(iter)) {
|
|
ret = btrfs_backref_iter_next(iter);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* No extra backref? This means the tree block is corrupted */
|
|
if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
WARN_ON(cur->checked);
|
|
if (!list_empty(&cur->upper)) {
|
|
/*
|
|
* The backref was added previously when processing backref of
|
|
* type BTRFS_TREE_BLOCK_REF_KEY
|
|
*/
|
|
ASSERT(list_is_singular(&cur->upper));
|
|
edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
|
|
list[LOWER]);
|
|
ASSERT(list_empty(&edge->list[UPPER]));
|
|
exist = edge->node[UPPER];
|
|
/*
|
|
* Add the upper level block to pending list if we need check
|
|
* its backrefs
|
|
*/
|
|
if (!exist->checked)
|
|
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
|
|
} else {
|
|
exist = NULL;
|
|
}
|
|
|
|
for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
|
|
struct extent_buffer *eb;
|
|
struct btrfs_key key;
|
|
int type;
|
|
|
|
cond_resched();
|
|
eb = btrfs_backref_get_eb(iter);
|
|
|
|
key.objectid = iter->bytenr;
|
|
if (btrfs_backref_iter_is_inline_ref(iter)) {
|
|
struct btrfs_extent_inline_ref *iref;
|
|
|
|
/* Update key for inline backref */
|
|
iref = (struct btrfs_extent_inline_ref *)
|
|
((unsigned long)iter->cur_ptr);
|
|
type = btrfs_get_extent_inline_ref_type(eb, iref,
|
|
BTRFS_REF_TYPE_BLOCK);
|
|
if (type == BTRFS_REF_TYPE_INVALID) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
key.type = type;
|
|
key.offset = btrfs_extent_inline_ref_offset(eb, iref);
|
|
} else {
|
|
key.type = iter->cur_key.type;
|
|
key.offset = iter->cur_key.offset;
|
|
}
|
|
|
|
/*
|
|
* Parent node found and matches current inline ref, no need to
|
|
* rebuild this node for this inline ref
|
|
*/
|
|
if (exist &&
|
|
((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
|
|
exist->owner == key.offset) ||
|
|
(key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
|
|
exist->bytenr == key.offset))) {
|
|
exist = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
|
|
if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
ret = handle_direct_tree_backref(cache, &key, cur);
|
|
if (ret < 0)
|
|
goto out;
|
|
continue;
|
|
} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
|
|
ret = -EINVAL;
|
|
btrfs_print_v0_err(fs_info);
|
|
btrfs_handle_fs_error(fs_info, ret, NULL);
|
|
goto out;
|
|
} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
|
|
* means the root objectid. We need to search the tree to get
|
|
* its parent bytenr.
|
|
*/
|
|
ret = handle_indirect_tree_backref(cache, path, &key, node_key,
|
|
cur);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
cur->checked = 1;
|
|
WARN_ON(exist);
|
|
out:
|
|
btrfs_backref_iter_release(iter);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Finish the upwards linkage created by btrfs_backref_add_tree_node()
|
|
*/
|
|
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
|
|
struct btrfs_backref_node *start)
|
|
{
|
|
struct list_head *useless_node = &cache->useless_node;
|
|
struct btrfs_backref_edge *edge;
|
|
struct rb_node *rb_node;
|
|
LIST_HEAD(pending_edge);
|
|
|
|
ASSERT(start->checked);
|
|
|
|
/* Insert this node to cache if it's not COW-only */
|
|
if (!start->cowonly) {
|
|
rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
|
|
&start->rb_node);
|
|
if (rb_node)
|
|
btrfs_backref_panic(cache->fs_info, start->bytenr,
|
|
-EEXIST);
|
|
list_add_tail(&start->lower, &cache->leaves);
|
|
}
|
|
|
|
/*
|
|
* Use breadth first search to iterate all related edges.
|
|
*
|
|
* The starting points are all the edges of this node
|
|
*/
|
|
list_for_each_entry(edge, &start->upper, list[LOWER])
|
|
list_add_tail(&edge->list[UPPER], &pending_edge);
|
|
|
|
while (!list_empty(&pending_edge)) {
|
|
struct btrfs_backref_node *upper;
|
|
struct btrfs_backref_node *lower;
|
|
struct rb_node *rb_node;
|
|
|
|
edge = list_first_entry(&pending_edge,
|
|
struct btrfs_backref_edge, list[UPPER]);
|
|
list_del_init(&edge->list[UPPER]);
|
|
upper = edge->node[UPPER];
|
|
lower = edge->node[LOWER];
|
|
|
|
/* Parent is detached, no need to keep any edges */
|
|
if (upper->detached) {
|
|
list_del(&edge->list[LOWER]);
|
|
btrfs_backref_free_edge(cache, edge);
|
|
|
|
/* Lower node is orphan, queue for cleanup */
|
|
if (list_empty(&lower->upper))
|
|
list_add(&lower->list, useless_node);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* All new nodes added in current build_backref_tree() haven't
|
|
* been linked to the cache rb tree.
|
|
* So if we have upper->rb_node populated, this means a cache
|
|
* hit. We only need to link the edge, as @upper and all its
|
|
* parents have already been linked.
|
|
*/
|
|
if (!RB_EMPTY_NODE(&upper->rb_node)) {
|
|
if (upper->lowest) {
|
|
list_del_init(&upper->lower);
|
|
upper->lowest = 0;
|
|
}
|
|
|
|
list_add_tail(&edge->list[UPPER], &upper->lower);
|
|
continue;
|
|
}
|
|
|
|
/* Sanity check, we shouldn't have any unchecked nodes */
|
|
if (!upper->checked) {
|
|
ASSERT(0);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Sanity check, COW-only node has non-COW-only parent */
|
|
if (start->cowonly != upper->cowonly) {
|
|
ASSERT(0);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/* Only cache non-COW-only (subvolume trees) tree blocks */
|
|
if (!upper->cowonly) {
|
|
rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
|
|
&upper->rb_node);
|
|
if (rb_node) {
|
|
btrfs_backref_panic(cache->fs_info,
|
|
upper->bytenr, -EEXIST);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
|
|
list_add_tail(&edge->list[UPPER], &upper->lower);
|
|
|
|
/*
|
|
* Also queue all the parent edges of this uncached node
|
|
* to finish the upper linkage
|
|
*/
|
|
list_for_each_entry(edge, &upper->upper, list[LOWER])
|
|
list_add_tail(&edge->list[UPPER], &pending_edge);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
|
|
struct btrfs_backref_node *node)
|
|
{
|
|
struct btrfs_backref_node *lower;
|
|
struct btrfs_backref_node *upper;
|
|
struct btrfs_backref_edge *edge;
|
|
|
|
while (!list_empty(&cache->useless_node)) {
|
|
lower = list_first_entry(&cache->useless_node,
|
|
struct btrfs_backref_node, list);
|
|
list_del_init(&lower->list);
|
|
}
|
|
while (!list_empty(&cache->pending_edge)) {
|
|
edge = list_first_entry(&cache->pending_edge,
|
|
struct btrfs_backref_edge, list[UPPER]);
|
|
list_del(&edge->list[UPPER]);
|
|
list_del(&edge->list[LOWER]);
|
|
lower = edge->node[LOWER];
|
|
upper = edge->node[UPPER];
|
|
btrfs_backref_free_edge(cache, edge);
|
|
|
|
/*
|
|
* Lower is no longer linked to any upper backref nodes and
|
|
* isn't in the cache, we can free it ourselves.
|
|
*/
|
|
if (list_empty(&lower->upper) &&
|
|
RB_EMPTY_NODE(&lower->rb_node))
|
|
list_add(&lower->list, &cache->useless_node);
|
|
|
|
if (!RB_EMPTY_NODE(&upper->rb_node))
|
|
continue;
|
|
|
|
/* Add this guy's upper edges to the list to process */
|
|
list_for_each_entry(edge, &upper->upper, list[LOWER])
|
|
list_add_tail(&edge->list[UPPER],
|
|
&cache->pending_edge);
|
|
if (list_empty(&upper->upper))
|
|
list_add(&upper->list, &cache->useless_node);
|
|
}
|
|
|
|
while (!list_empty(&cache->useless_node)) {
|
|
lower = list_first_entry(&cache->useless_node,
|
|
struct btrfs_backref_node, list);
|
|
list_del_init(&lower->list);
|
|
if (lower == node)
|
|
node = NULL;
|
|
btrfs_backref_free_node(cache, lower);
|
|
}
|
|
|
|
btrfs_backref_cleanup_node(cache, node);
|
|
ASSERT(list_empty(&cache->useless_node) &&
|
|
list_empty(&cache->pending_edge));
|
|
}
|