mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 12:14:01 +08:00
3044100e58
* 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (74 commits) x86-64: Only set max_pfn_mapped to 512 MiB if we enter via head_64.S xen: Cope with unmapped pages when initializing kernel pagetable memblock, bootmem: Round pfn properly for memory and reserved regions memblock: Annotate memblock functions with __init_memblock memblock: Allow memblock_init to be called early memblock/arm: Fix memblock_region_is_memory() typo x86, memblock: Remove __memblock_x86_find_in_range_size() memblock: Fix wraparound in find_region() x86-32, memblock: Make add_highpages honor early reserved ranges x86, memblock: Fix crashkernel allocation arm, memblock: Fix the sparsemem build memblock: Fix section mismatch warnings powerpc, memblock: Fix memblock API change fallout memblock, microblaze: Fix memblock API change fallout x86: Remove old bootmem code x86, memblock: Use memblock_memory_size()/memblock_free_memory_size() to get correct dma_reserve x86: Remove not used early_res code x86, memblock: Replace e820_/_early string with memblock_ x86: Use memblock to replace early_res x86, memblock: Use memblock_debug to control debug message print out ... Fix up trivial conflicts in arch/x86/kernel/setup.c and kernel/Makefile
856 lines
21 KiB
C
856 lines
21 KiB
C
/*
|
|
* Generic VM initialization for x86-64 NUMA setups.
|
|
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/amd_nb.h>
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
struct memnode memnode;
|
|
|
|
s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
|
|
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
|
|
};
|
|
|
|
int numa_off __initdata;
|
|
static unsigned long __initdata nodemap_addr;
|
|
static unsigned long __initdata nodemap_size;
|
|
|
|
/*
|
|
* Map cpu index to node index
|
|
*/
|
|
DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
|
|
EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
|
|
|
|
/*
|
|
* Given a shift value, try to populate memnodemap[]
|
|
* Returns :
|
|
* 1 if OK
|
|
* 0 if memnodmap[] too small (of shift too small)
|
|
* -1 if node overlap or lost ram (shift too big)
|
|
*/
|
|
static int __init populate_memnodemap(const struct bootnode *nodes,
|
|
int numnodes, int shift, int *nodeids)
|
|
{
|
|
unsigned long addr, end;
|
|
int i, res = -1;
|
|
|
|
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
|
|
for (i = 0; i < numnodes; i++) {
|
|
addr = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (addr >= end)
|
|
continue;
|
|
if ((end >> shift) >= memnodemapsize)
|
|
return 0;
|
|
do {
|
|
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
|
|
return -1;
|
|
|
|
if (!nodeids)
|
|
memnodemap[addr >> shift] = i;
|
|
else
|
|
memnodemap[addr >> shift] = nodeids[i];
|
|
|
|
addr += (1UL << shift);
|
|
} while (addr < end);
|
|
res = 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int __init allocate_cachealigned_memnodemap(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
memnodemap = memnode.embedded_map;
|
|
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
|
|
return 0;
|
|
|
|
addr = 0x8000;
|
|
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
|
|
nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
|
|
nodemap_size, L1_CACHE_BYTES);
|
|
if (nodemap_addr == MEMBLOCK_ERROR) {
|
|
printk(KERN_ERR
|
|
"NUMA: Unable to allocate Memory to Node hash map\n");
|
|
nodemap_addr = nodemap_size = 0;
|
|
return -1;
|
|
}
|
|
memnodemap = phys_to_virt(nodemap_addr);
|
|
memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
|
|
|
|
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
|
|
nodemap_addr, nodemap_addr + nodemap_size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The LSB of all start and end addresses in the node map is the value of the
|
|
* maximum possible shift.
|
|
*/
|
|
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
|
|
int numnodes)
|
|
{
|
|
int i, nodes_used = 0;
|
|
unsigned long start, end;
|
|
unsigned long bitfield = 0, memtop = 0;
|
|
|
|
for (i = 0; i < numnodes; i++) {
|
|
start = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (start >= end)
|
|
continue;
|
|
bitfield |= start;
|
|
nodes_used++;
|
|
if (end > memtop)
|
|
memtop = end;
|
|
}
|
|
if (nodes_used <= 1)
|
|
i = 63;
|
|
else
|
|
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
|
|
memnodemapsize = (memtop >> i)+1;
|
|
return i;
|
|
}
|
|
|
|
int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
|
|
int *nodeids)
|
|
{
|
|
int shift;
|
|
|
|
shift = extract_lsb_from_nodes(nodes, numnodes);
|
|
if (allocate_cachealigned_memnodemap())
|
|
return -1;
|
|
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
|
|
shift);
|
|
|
|
if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
|
|
printk(KERN_INFO "Your memory is not aligned you need to "
|
|
"rebuild your kernel with a bigger NODEMAPSIZE "
|
|
"shift=%d\n", shift);
|
|
return -1;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
int __meminit __early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
return phys_to_nid(pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
static void * __init early_node_mem(int nodeid, unsigned long start,
|
|
unsigned long end, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
unsigned long mem;
|
|
|
|
/*
|
|
* put it on high as possible
|
|
* something will go with NODE_DATA
|
|
*/
|
|
if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
|
|
start = MAX_DMA_PFN<<PAGE_SHIFT;
|
|
if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
|
|
end > (MAX_DMA32_PFN<<PAGE_SHIFT))
|
|
start = MAX_DMA32_PFN<<PAGE_SHIFT;
|
|
mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
|
|
if (mem != MEMBLOCK_ERROR)
|
|
return __va(mem);
|
|
|
|
/* extend the search scope */
|
|
end = max_pfn_mapped << PAGE_SHIFT;
|
|
if (end > (MAX_DMA32_PFN<<PAGE_SHIFT))
|
|
start = MAX_DMA32_PFN<<PAGE_SHIFT;
|
|
else
|
|
start = MAX_DMA_PFN<<PAGE_SHIFT;
|
|
mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
|
|
if (mem != MEMBLOCK_ERROR)
|
|
return __va(mem);
|
|
|
|
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
|
|
size, nodeid);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize bootmem allocator for a node */
|
|
void __init
|
|
setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long start_pfn, last_pfn, nodedata_phys;
|
|
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
|
|
int nid;
|
|
|
|
if (!end)
|
|
return;
|
|
|
|
/*
|
|
* Don't confuse VM with a node that doesn't have the
|
|
* minimum amount of memory:
|
|
*/
|
|
if (end && (end - start) < NODE_MIN_SIZE)
|
|
return;
|
|
|
|
start = roundup(start, ZONE_ALIGN);
|
|
|
|
printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
|
|
start, end);
|
|
|
|
start_pfn = start >> PAGE_SHIFT;
|
|
last_pfn = end >> PAGE_SHIFT;
|
|
|
|
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
|
|
SMP_CACHE_BYTES);
|
|
if (node_data[nodeid] == NULL)
|
|
return;
|
|
nodedata_phys = __pa(node_data[nodeid]);
|
|
memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
|
|
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
|
|
nodedata_phys + pgdat_size - 1);
|
|
nid = phys_to_nid(nodedata_phys);
|
|
if (nid != nodeid)
|
|
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
|
|
|
|
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
|
|
NODE_DATA(nodeid)->node_id = nodeid;
|
|
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
|
|
|
|
node_set_online(nodeid);
|
|
}
|
|
|
|
/*
|
|
* There are unfortunately some poorly designed mainboards around that
|
|
* only connect memory to a single CPU. This breaks the 1:1 cpu->node
|
|
* mapping. To avoid this fill in the mapping for all possible CPUs,
|
|
* as the number of CPUs is not known yet. We round robin the existing
|
|
* nodes.
|
|
*/
|
|
void __init numa_init_array(void)
|
|
{
|
|
int rr, i;
|
|
|
|
rr = first_node(node_online_map);
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
if (early_cpu_to_node(i) != NUMA_NO_NODE)
|
|
continue;
|
|
numa_set_node(i, rr);
|
|
rr = next_node(rr, node_online_map);
|
|
if (rr == MAX_NUMNODES)
|
|
rr = first_node(node_online_map);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
/* Numa emulation */
|
|
static struct bootnode nodes[MAX_NUMNODES] __initdata;
|
|
static struct bootnode physnodes[MAX_NUMNODES] __initdata;
|
|
static char *cmdline __initdata;
|
|
|
|
static int __init setup_physnodes(unsigned long start, unsigned long end,
|
|
int acpi, int k8)
|
|
{
|
|
int nr_nodes = 0;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (acpi)
|
|
nr_nodes = acpi_get_nodes(physnodes);
|
|
#endif
|
|
#ifdef CONFIG_K8_NUMA
|
|
if (k8)
|
|
nr_nodes = k8_get_nodes(physnodes);
|
|
#endif
|
|
/*
|
|
* Basic sanity checking on the physical node map: there may be errors
|
|
* if the SRAT or K8 incorrectly reported the topology or the mem=
|
|
* kernel parameter is used.
|
|
*/
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
if (physnodes[i].start == physnodes[i].end)
|
|
continue;
|
|
if (physnodes[i].start > end) {
|
|
physnodes[i].end = physnodes[i].start;
|
|
continue;
|
|
}
|
|
if (physnodes[i].end < start) {
|
|
physnodes[i].start = physnodes[i].end;
|
|
continue;
|
|
}
|
|
if (physnodes[i].start < start)
|
|
physnodes[i].start = start;
|
|
if (physnodes[i].end > end)
|
|
physnodes[i].end = end;
|
|
}
|
|
|
|
/*
|
|
* Remove all nodes that have no memory or were truncated because of the
|
|
* limited address range.
|
|
*/
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
if (physnodes[i].start == physnodes[i].end)
|
|
continue;
|
|
physnodes[ret].start = physnodes[i].start;
|
|
physnodes[ret].end = physnodes[i].end;
|
|
ret++;
|
|
}
|
|
|
|
/*
|
|
* If no physical topology was detected, a single node is faked to cover
|
|
* the entire address space.
|
|
*/
|
|
if (!ret) {
|
|
physnodes[ret].start = start;
|
|
physnodes[ret].end = end;
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Setups up nid to range from addr to addr + size. If the end
|
|
* boundary is greater than max_addr, then max_addr is used instead.
|
|
* The return value is 0 if there is additional memory left for
|
|
* allocation past addr and -1 otherwise. addr is adjusted to be at
|
|
* the end of the node.
|
|
*/
|
|
static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
|
|
{
|
|
int ret = 0;
|
|
nodes[nid].start = *addr;
|
|
*addr += size;
|
|
if (*addr >= max_addr) {
|
|
*addr = max_addr;
|
|
ret = -1;
|
|
}
|
|
nodes[nid].end = *addr;
|
|
node_set(nid, node_possible_map);
|
|
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
|
|
nodes[nid].start, nodes[nid].end,
|
|
(nodes[nid].end - nodes[nid].start) >> 20);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
|
|
* to max_addr. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_interleave(u64 addr, u64 max_addr,
|
|
int nr_phys_nodes, int nr_nodes)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 size;
|
|
int big;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (nr_nodes <= 0)
|
|
return -1;
|
|
if (nr_nodes > MAX_NUMNODES) {
|
|
pr_info("numa=fake=%d too large, reducing to %d\n",
|
|
nr_nodes, MAX_NUMNODES);
|
|
nr_nodes = MAX_NUMNODES;
|
|
}
|
|
|
|
size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
|
|
/*
|
|
* Calculate the number of big nodes that can be allocated as a result
|
|
* of consolidating the remainder.
|
|
*/
|
|
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
|
|
FAKE_NODE_MIN_SIZE;
|
|
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
if (!size) {
|
|
pr_err("Not enough memory for each node. "
|
|
"NUMA emulation disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < nr_phys_nodes; i++)
|
|
if (physnodes[i].start != physnodes[i].end)
|
|
node_set(i, physnode_mask);
|
|
|
|
/*
|
|
* Continue to fill physical nodes with fake nodes until there is no
|
|
* memory left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 end = physnodes[i].start + size;
|
|
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
|
|
|
|
if (ret < big)
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
|
|
/*
|
|
* Continue to add memory to this fake node if its
|
|
* non-reserved memory is less than the per-node size.
|
|
*/
|
|
while (end - physnodes[i].start -
|
|
memblock_x86_hole_size(physnodes[i].start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > physnodes[i].end) {
|
|
end = physnodes[i].end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (physnodes[i].end - end -
|
|
memblock_x86_hole_size(end, physnodes[i].end) < size)
|
|
end = physnodes[i].end;
|
|
|
|
/*
|
|
* Avoid allocating more nodes than requested, which can
|
|
* happen as a result of rounding down each node's size
|
|
* to FAKE_NODE_MIN_SIZE.
|
|
*/
|
|
if (nodes_weight(physnode_mask) + ret >= nr_nodes)
|
|
end = physnodes[i].end;
|
|
|
|
if (setup_node_range(ret++, &physnodes[i].start,
|
|
end - physnodes[i].start,
|
|
physnodes[i].end) < 0)
|
|
node_clear(i, physnode_mask);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns the end address of a node so that there is at least `size' amount of
|
|
* non-reserved memory or `max_addr' is reached.
|
|
*/
|
|
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
while (end - start - memblock_x86_hole_size(start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > max_addr) {
|
|
end = max_addr;
|
|
break;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
|
|
* `addr' to `max_addr'. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 min_size;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (!size)
|
|
return -1;
|
|
/*
|
|
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
|
|
* increased accordingly if the requested size is too small. This
|
|
* creates a uniform distribution of node sizes across the entire
|
|
* machine (but not necessarily over physical nodes).
|
|
*/
|
|
min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
|
|
MAX_NUMNODES;
|
|
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
|
|
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
|
|
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
|
|
FAKE_NODE_MIN_HASH_MASK;
|
|
if (size < min_size) {
|
|
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
|
|
size >> 20, min_size >> 20);
|
|
size = min_size;
|
|
}
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++)
|
|
if (physnodes[i].start != physnodes[i].end)
|
|
node_set(i, physnode_mask);
|
|
/*
|
|
* Fill physical nodes with fake nodes of size until there is no memory
|
|
* left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
|
|
u64 end;
|
|
|
|
end = find_end_of_node(physnodes[i].start,
|
|
physnodes[i].end, size);
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (physnodes[i].end - end -
|
|
memblock_x86_hole_size(end, physnodes[i].end) < size)
|
|
end = physnodes[i].end;
|
|
|
|
/*
|
|
* Setup the fake node that will be allocated as bootmem
|
|
* later. If setup_node_range() returns non-zero, there
|
|
* is no more memory available on this physical node.
|
|
*/
|
|
if (setup_node_range(ret++, &physnodes[i].start,
|
|
end - physnodes[i].start,
|
|
physnodes[i].end) < 0)
|
|
node_clear(i, physnode_mask);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sets up the system RAM area from start_pfn to last_pfn according to the
|
|
* numa=fake command-line option.
|
|
*/
|
|
static int __init numa_emulation(unsigned long start_pfn,
|
|
unsigned long last_pfn, int acpi, int k8)
|
|
{
|
|
u64 addr = start_pfn << PAGE_SHIFT;
|
|
u64 max_addr = last_pfn << PAGE_SHIFT;
|
|
int num_phys_nodes;
|
|
int num_nodes;
|
|
int i;
|
|
|
|
num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
|
|
/*
|
|
* If the numa=fake command-line contains a 'M' or 'G', it represents
|
|
* the fixed node size. Otherwise, if it is just a single number N,
|
|
* split the system RAM into N fake nodes.
|
|
*/
|
|
if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
|
|
u64 size;
|
|
|
|
size = memparse(cmdline, &cmdline);
|
|
num_nodes = split_nodes_size_interleave(addr, max_addr, size);
|
|
} else {
|
|
unsigned long n;
|
|
|
|
n = simple_strtoul(cmdline, NULL, 0);
|
|
num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
|
|
}
|
|
|
|
if (num_nodes < 0)
|
|
return num_nodes;
|
|
memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
|
|
if (memnode_shift < 0) {
|
|
memnode_shift = 0;
|
|
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
|
|
"disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* We need to vacate all active ranges that may have been registered for
|
|
* the e820 memory map.
|
|
*/
|
|
remove_all_active_ranges();
|
|
for_each_node_mask(i, node_possible_map) {
|
|
memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
|
|
nodes[i].end >> PAGE_SHIFT);
|
|
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
|
|
}
|
|
acpi_fake_nodes(nodes, num_nodes);
|
|
numa_init_array();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_EMU */
|
|
|
|
void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
|
|
int acpi, int k8)
|
|
{
|
|
int i;
|
|
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
|
|
last_pfn << PAGE_SHIFT))
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
#endif
|
|
|
|
#ifdef CONFIG_K8_NUMA
|
|
if (!numa_off && k8 && !k8_scan_nodes())
|
|
return;
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
#endif
|
|
printk(KERN_INFO "%s\n",
|
|
numa_off ? "NUMA turned off" : "No NUMA configuration found");
|
|
|
|
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
|
|
start_pfn << PAGE_SHIFT,
|
|
last_pfn << PAGE_SHIFT);
|
|
/* setup dummy node covering all memory */
|
|
memnode_shift = 63;
|
|
memnodemap = memnode.embedded_map;
|
|
memnodemap[0] = 0;
|
|
node_set_online(0);
|
|
node_set(0, node_possible_map);
|
|
for (i = 0; i < nr_cpu_ids; i++)
|
|
numa_set_node(i, 0);
|
|
memblock_x86_register_active_regions(0, start_pfn, last_pfn);
|
|
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
unsigned long __init numa_free_all_bootmem(void)
|
|
{
|
|
unsigned long pages = 0;
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
pages += free_all_bootmem_node(NODE_DATA(i));
|
|
|
|
pages += free_all_memory_core_early(MAX_NUMNODES);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static __init int numa_setup(char *opt)
|
|
{
|
|
if (!opt)
|
|
return -EINVAL;
|
|
if (!strncmp(opt, "off", 3))
|
|
numa_off = 1;
|
|
#ifdef CONFIG_NUMA_EMU
|
|
if (!strncmp(opt, "fake=", 5))
|
|
cmdline = opt + 5;
|
|
#endif
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (!strncmp(opt, "noacpi", 6))
|
|
acpi_numa = -1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
early_param("numa", numa_setup);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
static __init int find_near_online_node(int node)
|
|
{
|
|
int n, val;
|
|
int min_val = INT_MAX;
|
|
int best_node = -1;
|
|
|
|
for_each_online_node(n) {
|
|
val = node_distance(node, n);
|
|
|
|
if (val < min_val) {
|
|
min_val = val;
|
|
best_node = n;
|
|
}
|
|
}
|
|
|
|
return best_node;
|
|
}
|
|
|
|
/*
|
|
* Setup early cpu_to_node.
|
|
*
|
|
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
|
|
* and apicid_to_node[] tables have valid entries for a CPU.
|
|
* This means we skip cpu_to_node[] initialisation for NUMA
|
|
* emulation and faking node case (when running a kernel compiled
|
|
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
|
|
* is already initialized in a round robin manner at numa_init_array,
|
|
* prior to this call, and this initialization is good enough
|
|
* for the fake NUMA cases.
|
|
*
|
|
* Called before the per_cpu areas are setup.
|
|
*/
|
|
void __init init_cpu_to_node(void)
|
|
{
|
|
int cpu;
|
|
u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
|
|
|
|
BUG_ON(cpu_to_apicid == NULL);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int node;
|
|
u16 apicid = cpu_to_apicid[cpu];
|
|
|
|
if (apicid == BAD_APICID)
|
|
continue;
|
|
node = apicid_to_node[apicid];
|
|
if (node == NUMA_NO_NODE)
|
|
continue;
|
|
if (!node_online(node))
|
|
node = find_near_online_node(node);
|
|
numa_set_node(cpu, node);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void __cpuinit numa_set_node(int cpu, int node)
|
|
{
|
|
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
|
|
|
|
/* early setting, no percpu area yet */
|
|
if (cpu_to_node_map) {
|
|
cpu_to_node_map[cpu] = node;
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
|
|
if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
|
|
printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
#endif
|
|
per_cpu(x86_cpu_to_node_map, cpu) = node;
|
|
|
|
if (node != NUMA_NO_NODE)
|
|
set_cpu_numa_node(cpu, node);
|
|
}
|
|
|
|
void __cpuinit numa_clear_node(int cpu)
|
|
{
|
|
numa_set_node(cpu, NUMA_NO_NODE);
|
|
}
|
|
|
|
#ifndef CONFIG_DEBUG_PER_CPU_MAPS
|
|
|
|
void __cpuinit numa_add_cpu(int cpu)
|
|
{
|
|
cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
|
|
}
|
|
|
|
void __cpuinit numa_remove_cpu(int cpu)
|
|
{
|
|
cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
|
|
}
|
|
|
|
#else /* CONFIG_DEBUG_PER_CPU_MAPS */
|
|
|
|
/*
|
|
* --------- debug versions of the numa functions ---------
|
|
*/
|
|
static void __cpuinit numa_set_cpumask(int cpu, int enable)
|
|
{
|
|
int node = early_cpu_to_node(cpu);
|
|
struct cpumask *mask;
|
|
char buf[64];
|
|
|
|
mask = node_to_cpumask_map[node];
|
|
if (mask == NULL) {
|
|
printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if (enable)
|
|
cpumask_set_cpu(cpu, mask);
|
|
else
|
|
cpumask_clear_cpu(cpu, mask);
|
|
|
|
cpulist_scnprintf(buf, sizeof(buf), mask);
|
|
printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
|
|
enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
|
|
}
|
|
|
|
void __cpuinit numa_add_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, 1);
|
|
}
|
|
|
|
void __cpuinit numa_remove_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, 0);
|
|
}
|
|
|
|
int __cpu_to_node(int cpu)
|
|
{
|
|
if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
|
|
printk(KERN_WARNING
|
|
"cpu_to_node(%d): usage too early!\n", cpu);
|
|
dump_stack();
|
|
return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
|
|
}
|
|
return per_cpu(x86_cpu_to_node_map, cpu);
|
|
}
|
|
EXPORT_SYMBOL(__cpu_to_node);
|
|
|
|
/*
|
|
* Same function as cpu_to_node() but used if called before the
|
|
* per_cpu areas are setup.
|
|
*/
|
|
int early_cpu_to_node(int cpu)
|
|
{
|
|
if (early_per_cpu_ptr(x86_cpu_to_node_map))
|
|
return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
|
|
|
|
if (!cpu_possible(cpu)) {
|
|
printk(KERN_WARNING
|
|
"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
|
|
dump_stack();
|
|
return NUMA_NO_NODE;
|
|
}
|
|
return per_cpu(x86_cpu_to_node_map, cpu);
|
|
}
|
|
|
|
/*
|
|
* --------- end of debug versions of the numa functions ---------
|
|
*/
|
|
|
|
#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
|