2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/arch/x86/oprofile/nmi_int.c

792 lines
17 KiB
C

/**
* @file nmi_int.c
*
* @remark Copyright 2002-2009 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Robert Richter <robert.richter@amd.com>
* @author Barry Kasindorf <barry.kasindorf@amd.com>
* @author Jason Yeh <jason.yeh@amd.com>
* @author Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
*/
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/oprofile.h>
#include <linux/syscore_ops.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/kdebug.h>
#include <linux/cpu.h>
#include <asm/nmi.h>
#include <asm/msr.h>
#include <asm/apic.h>
#include "op_counter.h"
#include "op_x86_model.h"
static struct op_x86_model_spec *model;
static DEFINE_PER_CPU(struct op_msrs, cpu_msrs);
static DEFINE_PER_CPU(unsigned long, saved_lvtpc);
/* must be protected with get_online_cpus()/put_online_cpus(): */
static int nmi_enabled;
static int ctr_running;
struct op_counter_config counter_config[OP_MAX_COUNTER];
/* common functions */
u64 op_x86_get_ctrl(struct op_x86_model_spec const *model,
struct op_counter_config *counter_config)
{
u64 val = 0;
u16 event = (u16)counter_config->event;
val |= ARCH_PERFMON_EVENTSEL_INT;
val |= counter_config->user ? ARCH_PERFMON_EVENTSEL_USR : 0;
val |= counter_config->kernel ? ARCH_PERFMON_EVENTSEL_OS : 0;
val |= (counter_config->unit_mask & 0xFF) << 8;
counter_config->extra &= (ARCH_PERFMON_EVENTSEL_INV |
ARCH_PERFMON_EVENTSEL_EDGE |
ARCH_PERFMON_EVENTSEL_CMASK);
val |= counter_config->extra;
event &= model->event_mask ? model->event_mask : 0xFF;
val |= event & 0xFF;
val |= (event & 0x0F00) << 24;
return val;
}
static int profile_exceptions_notify(unsigned int val, struct pt_regs *regs)
{
if (ctr_running)
model->check_ctrs(regs, &__get_cpu_var(cpu_msrs));
else if (!nmi_enabled)
return NMI_DONE;
else
model->stop(&__get_cpu_var(cpu_msrs));
return NMI_HANDLED;
}
static void nmi_cpu_save_registers(struct op_msrs *msrs)
{
struct op_msr *counters = msrs->counters;
struct op_msr *controls = msrs->controls;
unsigned int i;
for (i = 0; i < model->num_counters; ++i) {
if (counters[i].addr)
rdmsrl(counters[i].addr, counters[i].saved);
}
for (i = 0; i < model->num_controls; ++i) {
if (controls[i].addr)
rdmsrl(controls[i].addr, controls[i].saved);
}
}
static void nmi_cpu_start(void *dummy)
{
struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
if (!msrs->controls)
WARN_ON_ONCE(1);
else
model->start(msrs);
}
static int nmi_start(void)
{
get_online_cpus();
ctr_running = 1;
/* make ctr_running visible to the nmi handler: */
smp_mb();
on_each_cpu(nmi_cpu_start, NULL, 1);
put_online_cpus();
return 0;
}
static void nmi_cpu_stop(void *dummy)
{
struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
if (!msrs->controls)
WARN_ON_ONCE(1);
else
model->stop(msrs);
}
static void nmi_stop(void)
{
get_online_cpus();
on_each_cpu(nmi_cpu_stop, NULL, 1);
ctr_running = 0;
put_online_cpus();
}
#ifdef CONFIG_OPROFILE_EVENT_MULTIPLEX
static DEFINE_PER_CPU(int, switch_index);
static inline int has_mux(void)
{
return !!model->switch_ctrl;
}
inline int op_x86_phys_to_virt(int phys)
{
return __this_cpu_read(switch_index) + phys;
}
inline int op_x86_virt_to_phys(int virt)
{
return virt % model->num_counters;
}
static void nmi_shutdown_mux(void)
{
int i;
if (!has_mux())
return;
for_each_possible_cpu(i) {
kfree(per_cpu(cpu_msrs, i).multiplex);
per_cpu(cpu_msrs, i).multiplex = NULL;
per_cpu(switch_index, i) = 0;
}
}
static int nmi_setup_mux(void)
{
size_t multiplex_size =
sizeof(struct op_msr) * model->num_virt_counters;
int i;
if (!has_mux())
return 1;
for_each_possible_cpu(i) {
per_cpu(cpu_msrs, i).multiplex =
kzalloc(multiplex_size, GFP_KERNEL);
if (!per_cpu(cpu_msrs, i).multiplex)
return 0;
}
return 1;
}
static void nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs)
{
int i;
struct op_msr *multiplex = msrs->multiplex;
if (!has_mux())
return;
for (i = 0; i < model->num_virt_counters; ++i) {
if (counter_config[i].enabled) {
multiplex[i].saved = -(u64)counter_config[i].count;
} else {
multiplex[i].saved = 0;
}
}
per_cpu(switch_index, cpu) = 0;
}
static void nmi_cpu_save_mpx_registers(struct op_msrs *msrs)
{
struct op_msr *counters = msrs->counters;
struct op_msr *multiplex = msrs->multiplex;
int i;
for (i = 0; i < model->num_counters; ++i) {
int virt = op_x86_phys_to_virt(i);
if (counters[i].addr)
rdmsrl(counters[i].addr, multiplex[virt].saved);
}
}
static void nmi_cpu_restore_mpx_registers(struct op_msrs *msrs)
{
struct op_msr *counters = msrs->counters;
struct op_msr *multiplex = msrs->multiplex;
int i;
for (i = 0; i < model->num_counters; ++i) {
int virt = op_x86_phys_to_virt(i);
if (counters[i].addr)
wrmsrl(counters[i].addr, multiplex[virt].saved);
}
}
static void nmi_cpu_switch(void *dummy)
{
int cpu = smp_processor_id();
int si = per_cpu(switch_index, cpu);
struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
nmi_cpu_stop(NULL);
nmi_cpu_save_mpx_registers(msrs);
/* move to next set */
si += model->num_counters;
if ((si >= model->num_virt_counters) || (counter_config[si].count == 0))
per_cpu(switch_index, cpu) = 0;
else
per_cpu(switch_index, cpu) = si;
model->switch_ctrl(model, msrs);
nmi_cpu_restore_mpx_registers(msrs);
nmi_cpu_start(NULL);
}
/*
* Quick check to see if multiplexing is necessary.
* The check should be sufficient since counters are used
* in ordre.
*/
static int nmi_multiplex_on(void)
{
return counter_config[model->num_counters].count ? 0 : -EINVAL;
}
static int nmi_switch_event(void)
{
if (!has_mux())
return -ENOSYS; /* not implemented */
if (nmi_multiplex_on() < 0)
return -EINVAL; /* not necessary */
get_online_cpus();
if (ctr_running)
on_each_cpu(nmi_cpu_switch, NULL, 1);
put_online_cpus();
return 0;
}
static inline void mux_init(struct oprofile_operations *ops)
{
if (has_mux())
ops->switch_events = nmi_switch_event;
}
static void mux_clone(int cpu)
{
if (!has_mux())
return;
memcpy(per_cpu(cpu_msrs, cpu).multiplex,
per_cpu(cpu_msrs, 0).multiplex,
sizeof(struct op_msr) * model->num_virt_counters);
}
#else
inline int op_x86_phys_to_virt(int phys) { return phys; }
inline int op_x86_virt_to_phys(int virt) { return virt; }
static inline void nmi_shutdown_mux(void) { }
static inline int nmi_setup_mux(void) { return 1; }
static inline void
nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs) { }
static inline void mux_init(struct oprofile_operations *ops) { }
static void mux_clone(int cpu) { }
#endif
static void free_msrs(void)
{
int i;
for_each_possible_cpu(i) {
kfree(per_cpu(cpu_msrs, i).counters);
per_cpu(cpu_msrs, i).counters = NULL;
kfree(per_cpu(cpu_msrs, i).controls);
per_cpu(cpu_msrs, i).controls = NULL;
}
nmi_shutdown_mux();
}
static int allocate_msrs(void)
{
size_t controls_size = sizeof(struct op_msr) * model->num_controls;
size_t counters_size = sizeof(struct op_msr) * model->num_counters;
int i;
for_each_possible_cpu(i) {
per_cpu(cpu_msrs, i).counters = kzalloc(counters_size,
GFP_KERNEL);
if (!per_cpu(cpu_msrs, i).counters)
goto fail;
per_cpu(cpu_msrs, i).controls = kzalloc(controls_size,
GFP_KERNEL);
if (!per_cpu(cpu_msrs, i).controls)
goto fail;
}
if (!nmi_setup_mux())
goto fail;
return 1;
fail:
free_msrs();
return 0;
}
static void nmi_cpu_setup(void *dummy)
{
int cpu = smp_processor_id();
struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
nmi_cpu_save_registers(msrs);
raw_spin_lock(&oprofilefs_lock);
model->setup_ctrs(model, msrs);
nmi_cpu_setup_mux(cpu, msrs);
raw_spin_unlock(&oprofilefs_lock);
per_cpu(saved_lvtpc, cpu) = apic_read(APIC_LVTPC);
apic_write(APIC_LVTPC, APIC_DM_NMI);
}
static void nmi_cpu_restore_registers(struct op_msrs *msrs)
{
struct op_msr *counters = msrs->counters;
struct op_msr *controls = msrs->controls;
unsigned int i;
for (i = 0; i < model->num_controls; ++i) {
if (controls[i].addr)
wrmsrl(controls[i].addr, controls[i].saved);
}
for (i = 0; i < model->num_counters; ++i) {
if (counters[i].addr)
wrmsrl(counters[i].addr, counters[i].saved);
}
}
static void nmi_cpu_shutdown(void *dummy)
{
unsigned int v;
int cpu = smp_processor_id();
struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
/* restoring APIC_LVTPC can trigger an apic error because the delivery
* mode and vector nr combination can be illegal. That's by design: on
* power on apic lvt contain a zero vector nr which are legal only for
* NMI delivery mode. So inhibit apic err before restoring lvtpc
*/
v = apic_read(APIC_LVTERR);
apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
apic_write(APIC_LVTPC, per_cpu(saved_lvtpc, cpu));
apic_write(APIC_LVTERR, v);
nmi_cpu_restore_registers(msrs);
}
static void nmi_cpu_up(void *dummy)
{
if (nmi_enabled)
nmi_cpu_setup(dummy);
if (ctr_running)
nmi_cpu_start(dummy);
}
static void nmi_cpu_down(void *dummy)
{
if (ctr_running)
nmi_cpu_stop(dummy);
if (nmi_enabled)
nmi_cpu_shutdown(dummy);
}
static int nmi_create_files(struct super_block *sb, struct dentry *root)
{
unsigned int i;
for (i = 0; i < model->num_virt_counters; ++i) {
struct dentry *dir;
char buf[4];
/* quick little hack to _not_ expose a counter if it is not
* available for use. This should protect userspace app.
* NOTE: assumes 1:1 mapping here (that counters are organized
* sequentially in their struct assignment).
*/
if (!avail_to_resrv_perfctr_nmi_bit(op_x86_virt_to_phys(i)))
continue;
snprintf(buf, sizeof(buf), "%d", i);
dir = oprofilefs_mkdir(sb, root, buf);
oprofilefs_create_ulong(sb, dir, "enabled", &counter_config[i].enabled);
oprofilefs_create_ulong(sb, dir, "event", &counter_config[i].event);
oprofilefs_create_ulong(sb, dir, "count", &counter_config[i].count);
oprofilefs_create_ulong(sb, dir, "unit_mask", &counter_config[i].unit_mask);
oprofilefs_create_ulong(sb, dir, "kernel", &counter_config[i].kernel);
oprofilefs_create_ulong(sb, dir, "user", &counter_config[i].user);
oprofilefs_create_ulong(sb, dir, "extra", &counter_config[i].extra);
}
return 0;
}
static int oprofile_cpu_notifier(struct notifier_block *b, unsigned long action,
void *data)
{
int cpu = (unsigned long)data;
switch (action) {
case CPU_DOWN_FAILED:
case CPU_ONLINE:
smp_call_function_single(cpu, nmi_cpu_up, NULL, 0);
break;
case CPU_DOWN_PREPARE:
smp_call_function_single(cpu, nmi_cpu_down, NULL, 1);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block oprofile_cpu_nb = {
.notifier_call = oprofile_cpu_notifier
};
static int nmi_setup(void)
{
int err = 0;
int cpu;
if (!allocate_msrs())
return -ENOMEM;
/* We need to serialize save and setup for HT because the subset
* of msrs are distinct for save and setup operations
*/
/* Assume saved/restored counters are the same on all CPUs */
err = model->fill_in_addresses(&per_cpu(cpu_msrs, 0));
if (err)
goto fail;
for_each_possible_cpu(cpu) {
if (!cpu)
continue;
memcpy(per_cpu(cpu_msrs, cpu).counters,
per_cpu(cpu_msrs, 0).counters,
sizeof(struct op_msr) * model->num_counters);
memcpy(per_cpu(cpu_msrs, cpu).controls,
per_cpu(cpu_msrs, 0).controls,
sizeof(struct op_msr) * model->num_controls);
mux_clone(cpu);
}
nmi_enabled = 0;
ctr_running = 0;
/* make variables visible to the nmi handler: */
smp_mb();
err = register_nmi_handler(NMI_LOCAL, profile_exceptions_notify,
0, "oprofile");
if (err)
goto fail;
get_online_cpus();
register_cpu_notifier(&oprofile_cpu_nb);
nmi_enabled = 1;
/* make nmi_enabled visible to the nmi handler: */
smp_mb();
on_each_cpu(nmi_cpu_setup, NULL, 1);
put_online_cpus();
return 0;
fail:
free_msrs();
return err;
}
static void nmi_shutdown(void)
{
struct op_msrs *msrs;
get_online_cpus();
unregister_cpu_notifier(&oprofile_cpu_nb);
on_each_cpu(nmi_cpu_shutdown, NULL, 1);
nmi_enabled = 0;
ctr_running = 0;
put_online_cpus();
/* make variables visible to the nmi handler: */
smp_mb();
unregister_nmi_handler(NMI_LOCAL, "oprofile");
msrs = &get_cpu_var(cpu_msrs);
model->shutdown(msrs);
free_msrs();
put_cpu_var(cpu_msrs);
}
#ifdef CONFIG_PM
static int nmi_suspend(void)
{
/* Only one CPU left, just stop that one */
if (nmi_enabled == 1)
nmi_cpu_stop(NULL);
return 0;
}
static void nmi_resume(void)
{
if (nmi_enabled == 1)
nmi_cpu_start(NULL);
}
static struct syscore_ops oprofile_syscore_ops = {
.resume = nmi_resume,
.suspend = nmi_suspend,
};
static void __init init_suspend_resume(void)
{
register_syscore_ops(&oprofile_syscore_ops);
}
static void exit_suspend_resume(void)
{
unregister_syscore_ops(&oprofile_syscore_ops);
}
#else
static inline void init_suspend_resume(void) { }
static inline void exit_suspend_resume(void) { }
#endif /* CONFIG_PM */
static int __init p4_init(char **cpu_type)
{
__u8 cpu_model = boot_cpu_data.x86_model;
if (cpu_model > 6 || cpu_model == 5)
return 0;
#ifndef CONFIG_SMP
*cpu_type = "i386/p4";
model = &op_p4_spec;
return 1;
#else
switch (smp_num_siblings) {
case 1:
*cpu_type = "i386/p4";
model = &op_p4_spec;
return 1;
case 2:
*cpu_type = "i386/p4-ht";
model = &op_p4_ht2_spec;
return 1;
}
#endif
printk(KERN_INFO "oprofile: P4 HyperThreading detected with > 2 threads\n");
printk(KERN_INFO "oprofile: Reverting to timer mode.\n");
return 0;
}
enum __force_cpu_type {
reserved = 0, /* do not force */
timer,
arch_perfmon,
};
static int force_cpu_type;
static int set_cpu_type(const char *str, struct kernel_param *kp)
{
if (!strcmp(str, "timer")) {
force_cpu_type = timer;
printk(KERN_INFO "oprofile: forcing NMI timer mode\n");
} else if (!strcmp(str, "arch_perfmon")) {
force_cpu_type = arch_perfmon;
printk(KERN_INFO "oprofile: forcing architectural perfmon\n");
} else {
force_cpu_type = 0;
}
return 0;
}
module_param_call(cpu_type, set_cpu_type, NULL, NULL, 0);
static int __init ppro_init(char **cpu_type)
{
__u8 cpu_model = boot_cpu_data.x86_model;
struct op_x86_model_spec *spec = &op_ppro_spec; /* default */
if (force_cpu_type == arch_perfmon && cpu_has_arch_perfmon)
return 0;
/*
* Documentation on identifying Intel processors by CPU family
* and model can be found in the Intel Software Developer's
* Manuals (SDM):
*
* http://www.intel.com/products/processor/manuals/
*
* As of May 2010 the documentation for this was in the:
* "Intel 64 and IA-32 Architectures Software Developer's
* Manual Volume 3B: System Programming Guide", "Table B-1
* CPUID Signature Values of DisplayFamily_DisplayModel".
*/
switch (cpu_model) {
case 0 ... 2:
*cpu_type = "i386/ppro";
break;
case 3 ... 5:
*cpu_type = "i386/pii";
break;
case 6 ... 8:
case 10 ... 11:
*cpu_type = "i386/piii";
break;
case 9:
case 13:
*cpu_type = "i386/p6_mobile";
break;
case 14:
*cpu_type = "i386/core";
break;
case 0x0f:
case 0x16:
case 0x17:
case 0x1d:
*cpu_type = "i386/core_2";
break;
case 0x1a:
case 0x1e:
case 0x2e:
spec = &op_arch_perfmon_spec;
*cpu_type = "i386/core_i7";
break;
case 0x1c:
*cpu_type = "i386/atom";
break;
default:
/* Unknown */
return 0;
}
model = spec;
return 1;
}
int __init op_nmi_init(struct oprofile_operations *ops)
{
__u8 vendor = boot_cpu_data.x86_vendor;
__u8 family = boot_cpu_data.x86;
char *cpu_type = NULL;
int ret = 0;
if (!cpu_has_apic)
return -ENODEV;
if (force_cpu_type == timer)
return -ENODEV;
switch (vendor) {
case X86_VENDOR_AMD:
/* Needs to be at least an Athlon (or hammer in 32bit mode) */
switch (family) {
case 6:
cpu_type = "i386/athlon";
break;
case 0xf:
/*
* Actually it could be i386/hammer too, but
* give user space an consistent name.
*/
cpu_type = "x86-64/hammer";
break;
case 0x10:
cpu_type = "x86-64/family10";
break;
case 0x11:
cpu_type = "x86-64/family11h";
break;
case 0x12:
cpu_type = "x86-64/family12h";
break;
case 0x14:
cpu_type = "x86-64/family14h";
break;
case 0x15:
cpu_type = "x86-64/family15h";
break;
default:
return -ENODEV;
}
model = &op_amd_spec;
break;
case X86_VENDOR_INTEL:
switch (family) {
/* Pentium IV */
case 0xf:
p4_init(&cpu_type);
break;
/* A P6-class processor */
case 6:
ppro_init(&cpu_type);
break;
default:
break;
}
if (cpu_type)
break;
if (!cpu_has_arch_perfmon)
return -ENODEV;
/* use arch perfmon as fallback */
cpu_type = "i386/arch_perfmon";
model = &op_arch_perfmon_spec;
break;
default:
return -ENODEV;
}
/* default values, can be overwritten by model */
ops->create_files = nmi_create_files;
ops->setup = nmi_setup;
ops->shutdown = nmi_shutdown;
ops->start = nmi_start;
ops->stop = nmi_stop;
ops->cpu_type = cpu_type;
if (model->init)
ret = model->init(ops);
if (ret)
return ret;
if (!model->num_virt_counters)
model->num_virt_counters = model->num_counters;
mux_init(ops);
init_suspend_resume();
printk(KERN_INFO "oprofile: using NMI interrupt.\n");
return 0;
}
void op_nmi_exit(void)
{
exit_suspend_resume();
}