2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/edac/i3000_edac.c
Jingoo Han ba935f4097 EDAC: Remove DEFINE_PCI_DEVICE_TABLE macro
Currently, there is no other bus that has something like this macro for
their device ids. Thus, DEFINE_PCI_DEVICE_TABLE macro should be removed.

Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Link: http://lkml.kernel.org/r/001c01ceefb3$5724d860$056e8920$%han@samsung.com
[ Boris: swap commit message with better one. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
2013-12-06 10:23:41 +01:00

571 lines
14 KiB
C

/*
* Intel 3000/3010 Memory Controller kernel module
* Copyright (C) 2007 Akamai Technologies, Inc.
* Shamelessly copied from:
* Intel D82875P Memory Controller kernel module
* (C) 2003 Linux Networx (http://lnxi.com)
*
* This file may be distributed under the terms of the
* GNU General Public License.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/edac.h>
#include "edac_core.h"
#define I3000_REVISION "1.1"
#define EDAC_MOD_STR "i3000_edac"
#define I3000_RANKS 8
#define I3000_RANKS_PER_CHANNEL 4
#define I3000_CHANNELS 2
/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
#define I3000_MCHBAR_MASK 0xffffc000
#define I3000_MMR_WINDOW_SIZE 16384
#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
*
* 7:1 reserved
* 0 bit 32 of address
*/
#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
*
* 31:7 address
* 6:1 reserved
* 0 Error channel 0/1
*/
#define I3000_DEAP_GRAIN (1 << 7)
/*
* Helper functions to decode the DEAP/EDEAP hardware registers.
*
* The type promotion here is deliberate; we're deriving an
* unsigned long pfn and offset from hardware regs which are u8/u32.
*/
static inline unsigned long deap_pfn(u8 edeap, u32 deap)
{
deap >>= PAGE_SHIFT;
deap |= (edeap & 1) << (32 - PAGE_SHIFT);
return deap;
}
static inline unsigned long deap_offset(u32 deap)
{
return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
}
static inline int deap_channel(u32 deap)
{
return deap & 1;
}
#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
*
* 7:0 DRAM ECC Syndrome
*/
#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
*
* 15:12 reserved
* 11 MCH Thermal Sensor Event
* for SMI/SCI/SERR
* 10 reserved
* 9 LOCK to non-DRAM Memory Flag (LCKF)
* 8 Received Refresh Timeout Flag (RRTOF)
* 7:2 reserved
* 1 Multi-bit DRAM ECC Error Flag (DMERR)
* 0 Single-bit DRAM ECC Error Flag (DSERR)
*/
#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
#define I3000_ERRSTS_UE 0x0002
#define I3000_ERRSTS_CE 0x0001
#define I3000_ERRCMD 0xca /* Error Command (16b)
*
* 15:12 reserved
* 11 SERR on MCH Thermal Sensor Event
* (TSESERR)
* 10 reserved
* 9 SERR on LOCK to non-DRAM Memory
* (LCKERR)
* 8 SERR on DRAM Refresh Timeout
* (DRTOERR)
* 7:2 reserved
* 1 SERR Multi-Bit DRAM ECC Error
* (DMERR)
* 0 SERR on Single-Bit ECC Error
* (DSERR)
*/
/* Intel MMIO register space - device 0 function 0 - MMR space */
#define I3000_DRB_SHIFT 25 /* 32MiB grain */
#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
*
* 7:0 Channel 0 DRAM Rank Boundary Address
*/
#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
*
* 7:0 Channel 1 DRAM Rank Boundary Address
*/
#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
*
* 7 reserved
* 6:4 DRAM odd Rank Attribute
* 3 reserved
* 2:0 DRAM even Rank Attribute
*
* Each attribute defines the page
* size of the corresponding rank:
* 000: unpopulated
* 001: reserved
* 010: 4 KB
* 011: 8 KB
* 100: 16 KB
* Others: reserved
*/
#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
static inline unsigned char odd_rank_attrib(unsigned char dra)
{
return (dra & 0x70) >> 4;
}
static inline unsigned char even_rank_attrib(unsigned char dra)
{
return dra & 0x07;
}
#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
*
* 31:30 reserved
* 29 Initialization Complete (IC)
* 28:11 reserved
* 10:8 Refresh Mode Select (RMS)
* 7 reserved
* 6:4 Mode Select (SMS)
* 3:2 reserved
* 1:0 DRAM Type (DT)
*/
#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
*
* 31 Enhanced Addressing Enable (ENHADE)
* 30:0 reserved
*/
enum i3000p_chips {
I3000 = 0,
};
struct i3000_dev_info {
const char *ctl_name;
};
struct i3000_error_info {
u16 errsts;
u8 derrsyn;
u8 edeap;
u32 deap;
u16 errsts2;
};
static const struct i3000_dev_info i3000_devs[] = {
[I3000] = {
.ctl_name = "i3000"},
};
static struct pci_dev *mci_pdev;
static int i3000_registered = 1;
static struct edac_pci_ctl_info *i3000_pci;
static void i3000_get_error_info(struct mem_ctl_info *mci,
struct i3000_error_info *info)
{
struct pci_dev *pdev;
pdev = to_pci_dev(mci->pdev);
/*
* This is a mess because there is no atomic way to read all the
* registers at once and the registers can transition from CE being
* overwritten by UE.
*/
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
if (!(info->errsts & I3000_ERRSTS_BITS))
return;
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
/*
* If the error is the same for both reads then the first set
* of reads is valid. If there is a change then there is a CE
* with no info and the second set of reads is valid and
* should be UE info.
*/
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
}
/*
* Clear any error bits.
* (Yes, we really clear bits by writing 1 to them.)
*/
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
I3000_ERRSTS_BITS);
}
static int i3000_process_error_info(struct mem_ctl_info *mci,
struct i3000_error_info *info,
int handle_errors)
{
int row, multi_chan, channel;
unsigned long pfn, offset;
multi_chan = mci->csrows[0]->nr_channels - 1;
if (!(info->errsts & I3000_ERRSTS_BITS))
return 0;
if (!handle_errors)
return 1;
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
-1, -1, -1,
"UE overwrote CE", "");
info->errsts = info->errsts2;
}
pfn = deap_pfn(info->edeap, info->deap);
offset = deap_offset(info->deap);
channel = deap_channel(info->deap);
row = edac_mc_find_csrow_by_page(mci, pfn);
if (info->errsts & I3000_ERRSTS_UE)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
pfn, offset, 0,
row, -1, -1,
"i3000 UE", "");
else
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, offset, info->derrsyn,
row, multi_chan ? channel : 0, -1,
"i3000 CE", "");
return 1;
}
static void i3000_check(struct mem_ctl_info *mci)
{
struct i3000_error_info info;
edac_dbg(1, "MC%d\n", mci->mc_idx);
i3000_get_error_info(mci, &info);
i3000_process_error_info(mci, &info, 1);
}
static int i3000_is_interleaved(const unsigned char *c0dra,
const unsigned char *c1dra,
const unsigned char *c0drb,
const unsigned char *c1drb)
{
int i;
/*
* If the channels aren't populated identically then
* we're not interleaved.
*/
for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
even_rank_attrib(c0dra[i]) !=
even_rank_attrib(c1dra[i]))
return 0;
/*
* If the rank boundaries for the two channels are different
* then we're not interleaved.
*/
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
if (c0drb[i] != c1drb[i])
return 0;
return 1;
}
static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
{
int rc;
int i, j;
struct mem_ctl_info *mci = NULL;
struct edac_mc_layer layers[2];
unsigned long last_cumul_size, nr_pages;
int interleaved, nr_channels;
unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
unsigned long mchbar;
void __iomem *window;
edac_dbg(0, "MC:\n");
pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
mchbar &= I3000_MCHBAR_MASK;
window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
if (!window) {
printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
mchbar);
return -ENODEV;
}
c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
c0drb[i] = readb(window + I3000_C0DRB + i);
c1drb[i] = readb(window + I3000_C1DRB + i);
}
iounmap(window);
/*
* Figure out how many channels we have.
*
* If we have what the datasheet calls "asymmetric channels"
* (essentially the same as what was called "virtual single
* channel mode" in the i82875) then it's a single channel as
* far as EDAC is concerned.
*/
interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
nr_channels = interleaved ? 2 : 1;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = I3000_RANKS / nr_channels;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = nr_channels;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
if (!mci)
return -ENOMEM;
edac_dbg(3, "MC: init mci\n");
mci->pdev = &pdev->dev;
mci->mtype_cap = MEM_FLAG_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = I3000_REVISION;
mci->ctl_name = i3000_devs[dev_idx].ctl_name;
mci->dev_name = pci_name(pdev);
mci->edac_check = i3000_check;
mci->ctl_page_to_phys = NULL;
/*
* The dram rank boundary (DRB) reg values are boundary addresses
* for each DRAM rank with a granularity of 32MB. DRB regs are
* cumulative; the last one will contain the total memory
* contained in all ranks.
*
* If we're in interleaved mode then we're only walking through
* the ranks of controller 0, so we double all the values we see.
*/
for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
u8 value;
u32 cumul_size;
struct csrow_info *csrow = mci->csrows[i];
value = drb[i];
cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
if (interleaved)
cumul_size <<= 1;
edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
if (cumul_size == last_cumul_size)
continue;
csrow->first_page = last_cumul_size;
csrow->last_page = cumul_size - 1;
nr_pages = cumul_size - last_cumul_size;
last_cumul_size = cumul_size;
for (j = 0; j < nr_channels; j++) {
struct dimm_info *dimm = csrow->channels[j]->dimm;
dimm->nr_pages = nr_pages / nr_channels;
dimm->grain = I3000_DEAP_GRAIN;
dimm->mtype = MEM_DDR2;
dimm->dtype = DEV_UNKNOWN;
dimm->edac_mode = EDAC_UNKNOWN;
}
}
/*
* Clear any error bits.
* (Yes, we really clear bits by writing 1 to them.)
*/
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
I3000_ERRSTS_BITS);
rc = -ENODEV;
if (edac_mc_add_mc(mci)) {
edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
goto fail;
}
/* allocating generic PCI control info */
i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!i3000_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
/* get this far and it's successful */
edac_dbg(3, "MC: success\n");
return 0;
fail:
if (mci)
edac_mc_free(mci);
return rc;
}
/* returns count (>= 0), or negative on error */
static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int rc;
edac_dbg(0, "MC:\n");
if (pci_enable_device(pdev) < 0)
return -EIO;
rc = i3000_probe1(pdev, ent->driver_data);
if (!mci_pdev)
mci_pdev = pci_dev_get(pdev);
return rc;
}
static void i3000_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
edac_dbg(0, "\n");
if (i3000_pci)
edac_pci_release_generic_ctl(i3000_pci);
mci = edac_mc_del_mc(&pdev->dev);
if (!mci)
return;
edac_mc_free(mci);
}
static const struct pci_device_id i3000_pci_tbl[] = {
{
PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
I3000},
{
0,
} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
static struct pci_driver i3000_driver = {
.name = EDAC_MOD_STR,
.probe = i3000_init_one,
.remove = i3000_remove_one,
.id_table = i3000_pci_tbl,
};
static int __init i3000_init(void)
{
int pci_rc;
edac_dbg(3, "MC:\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i3000_driver);
if (pci_rc < 0)
goto fail0;
if (!mci_pdev) {
i3000_registered = 0;
mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_3000_HB, NULL);
if (!mci_pdev) {
edac_dbg(0, "i3000 pci_get_device fail\n");
pci_rc = -ENODEV;
goto fail1;
}
pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
if (pci_rc < 0) {
edac_dbg(0, "i3000 init fail\n");
pci_rc = -ENODEV;
goto fail1;
}
}
return 0;
fail1:
pci_unregister_driver(&i3000_driver);
fail0:
if (mci_pdev)
pci_dev_put(mci_pdev);
return pci_rc;
}
static void __exit i3000_exit(void)
{
edac_dbg(3, "MC:\n");
pci_unregister_driver(&i3000_driver);
if (!i3000_registered) {
i3000_remove_one(mci_pdev);
pci_dev_put(mci_pdev);
}
}
module_init(i3000_init);
module_exit(i3000_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");