2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-18 10:13:57 +08:00
linux-next/mm/memblock.c
Tejun Heo 719361809f memblock: Reimplement __memblock_remove() using memblock_isolate_range()
__memblock_remove()'s open coded region manipulation can be trivially
replaced with memblock_islate_range().  This increases code sharing
and eases improving region tracking.

This pulls memblock_isolate_range() out of HAVE_MEMBLOCK_NODE_MAP.
Make it use memblock_get_region_node() instead of assuming rgn->nid is
available.

-v2: Fixed build failure on !HAVE_MEMBLOCK_NODE_MAP caused by direct
     rgn->nid access.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
2011-12-08 10:22:07 -08:00

992 lines
26 KiB
C

/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/poison.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
struct memblock memblock __initdata_memblock = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt = 1, /* empty dummy entry */
.memory.max = INIT_MEMBLOCK_REGIONS,
.reserved.regions = memblock_reserved_init_regions,
.reserved.cnt = 1, /* empty dummy entry */
.reserved.max = INIT_MEMBLOCK_REGIONS,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
};
int memblock_debug __initdata_memblock;
int memblock_can_resize __initdata_memblock;
/* inline so we don't get a warning when pr_debug is compiled out */
static inline const char *memblock_type_name(struct memblock_type *type)
{
if (type == &memblock.memory)
return "memory";
else if (type == &memblock.reserved)
return "reserved";
else
return "unknown";
}
/*
* Address comparison utilities
*/
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
phys_addr_t base2, phys_addr_t size2)
{
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}
static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
unsigned long i;
for (i = 0; i < type->cnt; i++) {
phys_addr_t rgnbase = type->regions[i].base;
phys_addr_t rgnsize = type->regions[i].size;
if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < type->cnt) ? i : -1;
}
/*
* Find, allocate, deallocate or reserve unreserved regions. All allocations
* are top-down.
*/
static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align)
{
phys_addr_t base, res_base;
long j;
/* In case, huge size is requested */
if (end < size)
return 0;
base = round_down(end - size, align);
/* Prevent allocations returning 0 as it's also used to
* indicate an allocation failure
*/
if (start == 0)
start = PAGE_SIZE;
while (start <= base) {
j = memblock_overlaps_region(&memblock.reserved, base, size);
if (j < 0)
return base;
res_base = memblock.reserved.regions[j].base;
if (res_base < size)
break;
base = round_down(res_base - size, align);
}
return 0;
}
/*
* Find a free area with specified alignment in a specific range.
*/
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align)
{
long i;
BUG_ON(0 == size);
/* Pump up max_addr */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
end = memblock.current_limit;
/* We do a top-down search, this tends to limit memory
* fragmentation by keeping early boot allocs near the
* top of memory
*/
for (i = memblock.memory.cnt - 1; i >= 0; i--) {
phys_addr_t memblockbase = memblock.memory.regions[i].base;
phys_addr_t memblocksize = memblock.memory.regions[i].size;
phys_addr_t bottom, top, found;
if (memblocksize < size)
continue;
if ((memblockbase + memblocksize) <= start)
break;
bottom = max(memblockbase, start);
top = min(memblockbase + memblocksize, end);
if (bottom >= top)
continue;
found = memblock_find_region(bottom, top, size, align);
if (found)
return found;
}
return 0;
}
/*
* Free memblock.reserved.regions
*/
int __init_memblock memblock_free_reserved_regions(void)
{
if (memblock.reserved.regions == memblock_reserved_init_regions)
return 0;
return memblock_free(__pa(memblock.reserved.regions),
sizeof(struct memblock_region) * memblock.reserved.max);
}
/*
* Reserve memblock.reserved.regions
*/
int __init_memblock memblock_reserve_reserved_regions(void)
{
if (memblock.reserved.regions == memblock_reserved_init_regions)
return 0;
return memblock_reserve(__pa(memblock.reserved.regions),
sizeof(struct memblock_region) * memblock.reserved.max);
}
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
{
memmove(&type->regions[r], &type->regions[r + 1],
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
type->cnt--;
/* Special case for empty arrays */
if (type->cnt == 0) {
type->cnt = 1;
type->regions[0].base = 0;
type->regions[0].size = 0;
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
}
}
static int __init_memblock memblock_double_array(struct memblock_type *type)
{
struct memblock_region *new_array, *old_array;
phys_addr_t old_size, new_size, addr;
int use_slab = slab_is_available();
/* We don't allow resizing until we know about the reserved regions
* of memory that aren't suitable for allocation
*/
if (!memblock_can_resize)
return -1;
/* Calculate new doubled size */
old_size = type->max * sizeof(struct memblock_region);
new_size = old_size << 1;
/* Try to find some space for it.
*
* WARNING: We assume that either slab_is_available() and we use it or
* we use MEMBLOCK for allocations. That means that this is unsafe to use
* when bootmem is currently active (unless bootmem itself is implemented
* on top of MEMBLOCK which isn't the case yet)
*
* This should however not be an issue for now, as we currently only
* call into MEMBLOCK while it's still active, or much later when slab is
* active for memory hotplug operations
*/
if (use_slab) {
new_array = kmalloc(new_size, GFP_KERNEL);
addr = new_array ? __pa(new_array) : 0;
} else
addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
if (!addr) {
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
memblock_type_name(type), type->max, type->max * 2);
return -1;
}
new_array = __va(addr);
memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
/* Found space, we now need to move the array over before
* we add the reserved region since it may be our reserved
* array itself that is full.
*/
memcpy(new_array, type->regions, old_size);
memset(new_array + type->max, 0, old_size);
old_array = type->regions;
type->regions = new_array;
type->max <<= 1;
/* If we use SLAB that's it, we are done */
if (use_slab)
return 0;
/* Add the new reserved region now. Should not fail ! */
BUG_ON(memblock_reserve(addr, new_size));
/* If the array wasn't our static init one, then free it. We only do
* that before SLAB is available as later on, we don't know whether
* to use kfree or free_bootmem_pages(). Shouldn't be a big deal
* anyways
*/
if (old_array != memblock_memory_init_regions &&
old_array != memblock_reserved_init_regions)
memblock_free(__pa(old_array), old_size);
return 0;
}
/**
* memblock_merge_regions - merge neighboring compatible regions
* @type: memblock type to scan
*
* Scan @type and merge neighboring compatible regions.
*/
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
{
int i = 0;
/* cnt never goes below 1 */
while (i < type->cnt - 1) {
struct memblock_region *this = &type->regions[i];
struct memblock_region *next = &type->regions[i + 1];
if (this->base + this->size != next->base ||
memblock_get_region_node(this) !=
memblock_get_region_node(next)) {
BUG_ON(this->base + this->size > next->base);
i++;
continue;
}
this->size += next->size;
memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
type->cnt--;
}
}
/**
* memblock_insert_region - insert new memblock region
* @type: memblock type to insert into
* @idx: index for the insertion point
* @base: base address of the new region
* @size: size of the new region
*
* Insert new memblock region [@base,@base+@size) into @type at @idx.
* @type must already have extra room to accomodate the new region.
*/
static void __init_memblock memblock_insert_region(struct memblock_type *type,
int idx, phys_addr_t base,
phys_addr_t size, int nid)
{
struct memblock_region *rgn = &type->regions[idx];
BUG_ON(type->cnt >= type->max);
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
rgn->base = base;
rgn->size = size;
memblock_set_region_node(rgn, nid);
type->cnt++;
}
/**
* memblock_add_region - add new memblock region
* @type: memblock type to add new region into
* @base: base address of the new region
* @size: size of the new region
*
* Add new memblock region [@base,@base+@size) into @type. The new region
* is allowed to overlap with existing ones - overlaps don't affect already
* existing regions. @type is guaranteed to be minimal (all neighbouring
* compatible regions are merged) after the addition.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int __init_memblock memblock_add_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
bool insert = false;
phys_addr_t obase = base, end = base + size;
int i, nr_new;
/* special case for empty array */
if (type->regions[0].size == 0) {
WARN_ON(type->cnt != 1);
type->regions[0].base = base;
type->regions[0].size = size;
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
return 0;
}
repeat:
/*
* The following is executed twice. Once with %false @insert and
* then with %true. The first counts the number of regions needed
* to accomodate the new area. The second actually inserts them.
*/
base = obase;
nr_new = 0;
for (i = 0; i < type->cnt; i++) {
struct memblock_region *rgn = &type->regions[i];
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
if (rbase >= end)
break;
if (rend <= base)
continue;
/*
* @rgn overlaps. If it separates the lower part of new
* area, insert that portion.
*/
if (rbase > base) {
nr_new++;
if (insert)
memblock_insert_region(type, i++, base,
rbase - base, MAX_NUMNODES);
}
/* area below @rend is dealt with, forget about it */
base = min(rend, end);
}
/* insert the remaining portion */
if (base < end) {
nr_new++;
if (insert)
memblock_insert_region(type, i, base, end - base,
MAX_NUMNODES);
}
/*
* If this was the first round, resize array and repeat for actual
* insertions; otherwise, merge and return.
*/
if (!insert) {
while (type->cnt + nr_new > type->max)
if (memblock_double_array(type) < 0)
return -ENOMEM;
insert = true;
goto repeat;
} else {
memblock_merge_regions(type);
return 0;
}
}
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
{
return memblock_add_region(&memblock.memory, base, size);
}
/**
* memblock_isolate_range - isolate given range into disjoint memblocks
* @type: memblock type to isolate range for
* @base: base of range to isolate
* @size: size of range to isolate
* @start_rgn: out parameter for the start of isolated region
* @end_rgn: out parameter for the end of isolated region
*
* Walk @type and ensure that regions don't cross the boundaries defined by
* [@base,@base+@size). Crossing regions are split at the boundaries,
* which may create at most two more regions. The index of the first
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
phys_addr_t base, phys_addr_t size,
int *start_rgn, int *end_rgn)
{
phys_addr_t end = base + size;
int i;
*start_rgn = *end_rgn = 0;
/* we'll create at most two more regions */
while (type->cnt + 2 > type->max)
if (memblock_double_array(type) < 0)
return -ENOMEM;
for (i = 0; i < type->cnt; i++) {
struct memblock_region *rgn = &type->regions[i];
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
if (rbase >= end)
break;
if (rend <= base)
continue;
if (rbase < base) {
/*
* @rgn intersects from below. Split and continue
* to process the next region - the new top half.
*/
rgn->base = base;
rgn->size = rend - rgn->base;
memblock_insert_region(type, i, rbase, base - rbase,
memblock_get_region_node(rgn));
} else if (rend > end) {
/*
* @rgn intersects from above. Split and redo the
* current region - the new bottom half.
*/
rgn->base = end;
rgn->size = rend - rgn->base;
memblock_insert_region(type, i--, rbase, end - rbase,
memblock_get_region_node(rgn));
} else {
/* @rgn is fully contained, record it */
if (!*end_rgn)
*start_rgn = i;
*end_rgn = i + 1;
}
}
return 0;
}
static int __init_memblock __memblock_remove(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
int start_rgn, end_rgn;
int i, ret;
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
if (ret)
return ret;
for (i = end_rgn - 1; i >= start_rgn; i--)
memblock_remove_region(type, i);
return 0;
}
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
{
return __memblock_remove(&memblock.memory, base, size);
}
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
{
memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
(unsigned long long)base,
(unsigned long long)base + size,
(void *)_RET_IP_);
return __memblock_remove(&memblock.reserved, base, size);
}
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
struct memblock_type *_rgn = &memblock.reserved;
memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
(unsigned long long)base,
(unsigned long long)base + size,
(void *)_RET_IP_);
BUG_ON(0 == size);
return memblock_add_region(_rgn, base, size);
}
/**
* __next_free_mem_range - next function for for_each_free_mem_range()
* @idx: pointer to u64 loop variable
* @nid: nid: node selector, %MAX_NUMNODES for all nodes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Find the first free area from *@idx which matches @nid, fill the out
* parameters, and update *@idx for the next iteration. The lower 32bit of
* *@idx contains index into memory region and the upper 32bit indexes the
* areas before each reserved region. For example, if reserved regions
* look like the following,
*
* 0:[0-16), 1:[32-48), 2:[128-130)
*
* The upper 32bit indexes the following regions.
*
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
*
* As both region arrays are sorted, the function advances the two indices
* in lockstep and returns each intersection.
*/
void __init_memblock __next_free_mem_range(u64 *idx, int nid,
phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid)
{
struct memblock_type *mem = &memblock.memory;
struct memblock_type *rsv = &memblock.reserved;
int mi = *idx & 0xffffffff;
int ri = *idx >> 32;
for ( ; mi < mem->cnt; mi++) {
struct memblock_region *m = &mem->regions[mi];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
/* only memory regions are associated with nodes, check it */
if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
continue;
/* scan areas before each reservation for intersection */
for ( ; ri < rsv->cnt + 1; ri++) {
struct memblock_region *r = &rsv->regions[ri];
phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
/* if ri advanced past mi, break out to advance mi */
if (r_start >= m_end)
break;
/* if the two regions intersect, we're done */
if (m_start < r_end) {
if (out_start)
*out_start = max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
*out_nid = memblock_get_region_node(m);
/*
* The region which ends first is advanced
* for the next iteration.
*/
if (m_end <= r_end)
mi++;
else
ri++;
*idx = (u32)mi | (u64)ri << 32;
return;
}
}
}
/* signal end of iteration */
*idx = ULLONG_MAX;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
* Common iterator interface used to define for_each_mem_range().
*/
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
unsigned long *out_start_pfn,
unsigned long *out_end_pfn, int *out_nid)
{
struct memblock_type *type = &memblock.memory;
struct memblock_region *r;
while (++*idx < type->cnt) {
r = &type->regions[*idx];
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
continue;
if (nid == MAX_NUMNODES || nid == r->nid)
break;
}
if (*idx >= type->cnt) {
*idx = -1;
return;
}
if (out_start_pfn)
*out_start_pfn = PFN_UP(r->base);
if (out_end_pfn)
*out_end_pfn = PFN_DOWN(r->base + r->size);
if (out_nid)
*out_nid = r->nid;
}
/**
* memblock_set_node - set node ID on memblock regions
* @base: base of area to set node ID for
* @size: size of area to set node ID for
* @nid: node ID to set
*
* Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
* Regions which cross the area boundaries are split as necessary.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
int nid)
{
struct memblock_type *type = &memblock.memory;
int start_rgn, end_rgn;
int i, ret;
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
if (ret)
return ret;
for (i = start_rgn; i < end_rgn; i++)
type->regions[i].nid = nid;
memblock_merge_regions(type);
return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
phys_addr_t found;
/* We align the size to limit fragmentation. Without this, a lot of
* small allocs quickly eat up the whole reserve array on sparc
*/
size = round_up(size, align);
found = memblock_find_in_range(0, max_addr, size, align);
if (found && !memblock_reserve(found, size))
return found;
return 0;
}
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = __memblock_alloc_base(size, align, max_addr);
if (alloc == 0)
panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
(unsigned long long) size, (unsigned long long) max_addr);
return alloc;
}
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
{
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
/*
* Additional node-local top-down allocators.
*
* WARNING: Only available after early_node_map[] has been populated,
* on some architectures, that is after all the calls to add_active_range()
* have been done to populate it.
*/
static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
phys_addr_t end, int *nid)
{
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
unsigned long start_pfn, end_pfn;
int i;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
return max(start, PFN_PHYS(start_pfn));
#endif
*nid = 0;
return start;
}
phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
phys_addr_t end,
phys_addr_t size,
phys_addr_t align, int nid)
{
struct memblock_type *mem = &memblock.memory;
int i;
BUG_ON(0 == size);
/* Pump up max_addr */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
end = memblock.current_limit;
for (i = mem->cnt - 1; i >= 0; i--) {
struct memblock_region *r = &mem->regions[i];
phys_addr_t base = max(start, r->base);
phys_addr_t top = min(end, r->base + r->size);
while (base < top) {
phys_addr_t tbase, ret;
int tnid;
tbase = memblock_nid_range_rev(base, top, &tnid);
if (nid == MAX_NUMNODES || tnid == nid) {
ret = memblock_find_region(tbase, top, size, align);
if (ret)
return ret;
}
top = tbase;
}
}
return 0;
}
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
phys_addr_t found;
/*
* We align the size to limit fragmentation. Without this, a lot of
* small allocs quickly eat up the whole reserve array on sparc
*/
size = round_up(size, align);
found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
size, align, nid);
if (found && !memblock_reserve(found, size))
return found;
return 0;
}
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
phys_addr_t res = memblock_alloc_nid(size, align, nid);
if (res)
return res;
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
/*
* Remaining API functions
*/
/* You must call memblock_analyze() before this. */
phys_addr_t __init memblock_phys_mem_size(void)
{
return memblock.memory_size;
}
/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
return memblock.memory.regions[0].base;
}
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
{
int idx = memblock.memory.cnt - 1;
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}
/* You must call memblock_analyze() after this. */
void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
{
unsigned long i;
phys_addr_t limit;
struct memblock_region *p;
if (!memory_limit)
return;
/* Truncate the memblock regions to satisfy the memory limit. */
limit = memory_limit;
for (i = 0; i < memblock.memory.cnt; i++) {
if (limit > memblock.memory.regions[i].size) {
limit -= memblock.memory.regions[i].size;
continue;
}
memblock.memory.regions[i].size = limit;
memblock.memory.cnt = i + 1;
break;
}
memory_limit = memblock_end_of_DRAM();
/* And truncate any reserves above the limit also. */
for (i = 0; i < memblock.reserved.cnt; i++) {
p = &memblock.reserved.regions[i];
if (p->base > memory_limit)
p->size = 0;
else if ((p->base + p->size) > memory_limit)
p->size = memory_limit - p->base;
if (p->size == 0) {
memblock_remove_region(&memblock.reserved, i);
i--;
}
}
}
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
{
unsigned int left = 0, right = type->cnt;
do {
unsigned int mid = (right + left) / 2;
if (addr < type->regions[mid].base)
right = mid;
else if (addr >= (type->regions[mid].base +
type->regions[mid].size))
left = mid + 1;
else
return mid;
} while (left < right);
return -1;
}
int __init memblock_is_reserved(phys_addr_t addr)
{
return memblock_search(&memblock.reserved, addr) != -1;
}
int __init_memblock memblock_is_memory(phys_addr_t addr)
{
return memblock_search(&memblock.memory, addr) != -1;
}
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
int idx = memblock_search(&memblock.memory, base);
if (idx == -1)
return 0;
return memblock.memory.regions[idx].base <= base &&
(memblock.memory.regions[idx].base +
memblock.memory.regions[idx].size) >= (base + size);
}
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
}
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
{
memblock.current_limit = limit;
}
static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
{
unsigned long long base, size;
int i;
pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
for (i = 0; i < type->cnt; i++) {
struct memblock_region *rgn = &type->regions[i];
char nid_buf[32] = "";
base = rgn->base;
size = rgn->size;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
memblock_get_region_node(rgn));
#endif
pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
name, i, base, base + size - 1, size, nid_buf);
}
}
void __init_memblock __memblock_dump_all(void)
{
pr_info("MEMBLOCK configuration:\n");
pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
memblock_dump(&memblock.memory, "memory");
memblock_dump(&memblock.reserved, "reserved");
}
void __init memblock_analyze(void)
{
int i;
memblock.memory_size = 0;
for (i = 0; i < memblock.memory.cnt; i++)
memblock.memory_size += memblock.memory.regions[i].size;
/* We allow resizing from there */
memblock_can_resize = 1;
}
static int __init early_memblock(char *p)
{
if (p && strstr(p, "debug"))
memblock_debug = 1;
return 0;
}
early_param("memblock", early_memblock);
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
static int memblock_debug_show(struct seq_file *m, void *private)
{
struct memblock_type *type = m->private;
struct memblock_region *reg;
int i;
for (i = 0; i < type->cnt; i++) {
reg = &type->regions[i];
seq_printf(m, "%4d: ", i);
if (sizeof(phys_addr_t) == 4)
seq_printf(m, "0x%08lx..0x%08lx\n",
(unsigned long)reg->base,
(unsigned long)(reg->base + reg->size - 1));
else
seq_printf(m, "0x%016llx..0x%016llx\n",
(unsigned long long)reg->base,
(unsigned long long)(reg->base + reg->size - 1));
}
return 0;
}
static int memblock_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, memblock_debug_show, inode->i_private);
}
static const struct file_operations memblock_debug_fops = {
.open = memblock_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init memblock_init_debugfs(void)
{
struct dentry *root = debugfs_create_dir("memblock", NULL);
if (!root)
return -ENXIO;
debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
return 0;
}
__initcall(memblock_init_debugfs);
#endif /* CONFIG_DEBUG_FS */