2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/md/linear.c
Kent Overstreet f73a1c7d11 block: Add bio_end_sector()
Just a little convenience macro - main reason to add it now is preparing
for immutable bio vecs, it'll reduce the size of the patch that puts
bi_sector/bi_size/bi_idx into a struct bvec_iter.

Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
CC: Lars Ellenberg <drbd-dev@lists.linbit.com>
CC: Jiri Kosina <jkosina@suse.cz>
CC: Alasdair Kergon <agk@redhat.com>
CC: dm-devel@redhat.com
CC: Neil Brown <neilb@suse.de>
CC: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: Heiko Carstens <heiko.carstens@de.ibm.com>
CC: linux-s390@vger.kernel.org
CC: Chris Mason <chris.mason@fusionio.com>
CC: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
2013-03-23 14:15:29 -07:00

390 lines
9.4 KiB
C

/*
linear.c : Multiple Devices driver for Linux
Copyright (C) 1994-96 Marc ZYNGIER
<zyngier@ufr-info-p7.ibp.fr> or
<maz@gloups.fdn.fr>
Linear mode management functions.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/blkdev.h>
#include <linux/raid/md_u.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "md.h"
#include "linear.h"
/*
* find which device holds a particular offset
*/
static inline struct dev_info *which_dev(struct mddev *mddev, sector_t sector)
{
int lo, mid, hi;
struct linear_conf *conf;
lo = 0;
hi = mddev->raid_disks - 1;
conf = rcu_dereference(mddev->private);
/*
* Binary Search
*/
while (hi > lo) {
mid = (hi + lo) / 2;
if (sector < conf->disks[mid].end_sector)
hi = mid;
else
lo = mid + 1;
}
return conf->disks + lo;
}
/**
* linear_mergeable_bvec -- tell bio layer if two requests can be merged
* @q: request queue
* @bvm: properties of new bio
* @biovec: the request that could be merged to it.
*
* Return amount of bytes we can take at this offset
*/
static int linear_mergeable_bvec(struct request_queue *q,
struct bvec_merge_data *bvm,
struct bio_vec *biovec)
{
struct mddev *mddev = q->queuedata;
struct dev_info *dev0;
unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9;
sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
int maxbytes = biovec->bv_len;
struct request_queue *subq;
rcu_read_lock();
dev0 = which_dev(mddev, sector);
maxsectors = dev0->end_sector - sector;
subq = bdev_get_queue(dev0->rdev->bdev);
if (subq->merge_bvec_fn) {
bvm->bi_bdev = dev0->rdev->bdev;
bvm->bi_sector -= dev0->end_sector - dev0->rdev->sectors;
maxbytes = min(maxbytes, subq->merge_bvec_fn(subq, bvm,
biovec));
}
rcu_read_unlock();
if (maxsectors < bio_sectors)
maxsectors = 0;
else
maxsectors -= bio_sectors;
if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0)
return maxbytes;
if (maxsectors > (maxbytes >> 9))
return maxbytes;
else
return maxsectors << 9;
}
static int linear_congested(void *data, int bits)
{
struct mddev *mddev = data;
struct linear_conf *conf;
int i, ret = 0;
if (mddev_congested(mddev, bits))
return 1;
rcu_read_lock();
conf = rcu_dereference(mddev->private);
for (i = 0; i < mddev->raid_disks && !ret ; i++) {
struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev);
ret |= bdi_congested(&q->backing_dev_info, bits);
}
rcu_read_unlock();
return ret;
}
static sector_t linear_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
struct linear_conf *conf;
sector_t array_sectors;
rcu_read_lock();
conf = rcu_dereference(mddev->private);
WARN_ONCE(sectors || raid_disks,
"%s does not support generic reshape\n", __func__);
array_sectors = conf->array_sectors;
rcu_read_unlock();
return array_sectors;
}
static struct linear_conf *linear_conf(struct mddev *mddev, int raid_disks)
{
struct linear_conf *conf;
struct md_rdev *rdev;
int i, cnt;
bool discard_supported = false;
conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(struct dev_info),
GFP_KERNEL);
if (!conf)
return NULL;
cnt = 0;
conf->array_sectors = 0;
rdev_for_each(rdev, mddev) {
int j = rdev->raid_disk;
struct dev_info *disk = conf->disks + j;
sector_t sectors;
if (j < 0 || j >= raid_disks || disk->rdev) {
printk(KERN_ERR "md/linear:%s: disk numbering problem. Aborting!\n",
mdname(mddev));
goto out;
}
disk->rdev = rdev;
if (mddev->chunk_sectors) {
sectors = rdev->sectors;
sector_div(sectors, mddev->chunk_sectors);
rdev->sectors = sectors * mddev->chunk_sectors;
}
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
conf->array_sectors += rdev->sectors;
cnt++;
if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
discard_supported = true;
}
if (cnt != raid_disks) {
printk(KERN_ERR "md/linear:%s: not enough drives present. Aborting!\n",
mdname(mddev));
goto out;
}
if (!discard_supported)
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
else
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
/*
* Here we calculate the device offsets.
*/
conf->disks[0].end_sector = conf->disks[0].rdev->sectors;
for (i = 1; i < raid_disks; i++)
conf->disks[i].end_sector =
conf->disks[i-1].end_sector +
conf->disks[i].rdev->sectors;
return conf;
out:
kfree(conf);
return NULL;
}
static int linear_run (struct mddev *mddev)
{
struct linear_conf *conf;
int ret;
if (md_check_no_bitmap(mddev))
return -EINVAL;
conf = linear_conf(mddev, mddev->raid_disks);
if (!conf)
return 1;
mddev->private = conf;
md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec);
mddev->queue->backing_dev_info.congested_fn = linear_congested;
mddev->queue->backing_dev_info.congested_data = mddev;
ret = md_integrity_register(mddev);
if (ret) {
kfree(conf);
mddev->private = NULL;
}
return ret;
}
static int linear_add(struct mddev *mddev, struct md_rdev *rdev)
{
/* Adding a drive to a linear array allows the array to grow.
* It is permitted if the new drive has a matching superblock
* already on it, with raid_disk equal to raid_disks.
* It is achieved by creating a new linear_private_data structure
* and swapping it in in-place of the current one.
* The current one is never freed until the array is stopped.
* This avoids races.
*/
struct linear_conf *newconf, *oldconf;
if (rdev->saved_raid_disk != mddev->raid_disks)
return -EINVAL;
rdev->raid_disk = rdev->saved_raid_disk;
rdev->saved_raid_disk = -1;
newconf = linear_conf(mddev,mddev->raid_disks+1);
if (!newconf)
return -ENOMEM;
oldconf = rcu_dereference_protected(mddev->private,
lockdep_is_held(
&mddev->reconfig_mutex));
mddev->raid_disks++;
rcu_assign_pointer(mddev->private, newconf);
md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
kfree_rcu(oldconf, rcu);
return 0;
}
static int linear_stop (struct mddev *mddev)
{
struct linear_conf *conf =
rcu_dereference_protected(mddev->private,
lockdep_is_held(
&mddev->reconfig_mutex));
/*
* We do not require rcu protection here since
* we hold reconfig_mutex for both linear_add and
* linear_stop, so they cannot race.
* We should make sure any old 'conf's are properly
* freed though.
*/
rcu_barrier();
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
kfree(conf);
mddev->private = NULL;
return 0;
}
static void linear_make_request(struct mddev *mddev, struct bio *bio)
{
struct dev_info *tmp_dev;
sector_t start_sector;
if (unlikely(bio->bi_rw & REQ_FLUSH)) {
md_flush_request(mddev, bio);
return;
}
rcu_read_lock();
tmp_dev = which_dev(mddev, bio->bi_sector);
start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors;
if (unlikely(bio->bi_sector >= (tmp_dev->end_sector)
|| (bio->bi_sector < start_sector))) {
char b[BDEVNAME_SIZE];
printk(KERN_ERR
"md/linear:%s: make_request: Sector %llu out of bounds on "
"dev %s: %llu sectors, offset %llu\n",
mdname(mddev),
(unsigned long long)bio->bi_sector,
bdevname(tmp_dev->rdev->bdev, b),
(unsigned long long)tmp_dev->rdev->sectors,
(unsigned long long)start_sector);
rcu_read_unlock();
bio_io_error(bio);
return;
}
if (unlikely(bio_end_sector(bio) > tmp_dev->end_sector)) {
/* This bio crosses a device boundary, so we have to
* split it.
*/
struct bio_pair *bp;
sector_t end_sector = tmp_dev->end_sector;
rcu_read_unlock();
bp = bio_split(bio, end_sector - bio->bi_sector);
linear_make_request(mddev, &bp->bio1);
linear_make_request(mddev, &bp->bio2);
bio_pair_release(bp);
return;
}
bio->bi_bdev = tmp_dev->rdev->bdev;
bio->bi_sector = bio->bi_sector - start_sector
+ tmp_dev->rdev->data_offset;
rcu_read_unlock();
if (unlikely((bio->bi_rw & REQ_DISCARD) &&
!blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) {
/* Just ignore it */
bio_endio(bio, 0);
return;
}
generic_make_request(bio);
}
static void linear_status (struct seq_file *seq, struct mddev *mddev)
{
seq_printf(seq, " %dk rounding", mddev->chunk_sectors / 2);
}
static struct md_personality linear_personality =
{
.name = "linear",
.level = LEVEL_LINEAR,
.owner = THIS_MODULE,
.make_request = linear_make_request,
.run = linear_run,
.stop = linear_stop,
.status = linear_status,
.hot_add_disk = linear_add,
.size = linear_size,
};
static int __init linear_init (void)
{
return register_md_personality (&linear_personality);
}
static void linear_exit (void)
{
unregister_md_personality (&linear_personality);
}
module_init(linear_init);
module_exit(linear_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Linear device concatenation personality for MD");
MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
MODULE_ALIAS("md-linear");
MODULE_ALIAS("md-level--1");