2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/drivers/net/sunlance.c
Joe Perches a0607fd3a2 drivers/net: request_irq - Remove unnecessary leading & from second arg
Not as fancy as coccinelle.  Checkpatch errors ignored.
Compile tested allyesconfig x86, not all files compiled.

grep -rPl --include=*.[ch] "\brequest_irq\s*\([^,\)]+,\s*\&" drivers/net | while read file ; do \
	perl -i -e 'local $/; while (<>) { s@(\brequest_irq\s*\([^,\)]+,\s*)\&@\1@g ; print ; }' $file ;\
done

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-11-18 23:29:17 -08:00

1571 lines
41 KiB
C

/* $Id: sunlance.c,v 1.112 2002/01/15 06:48:55 davem Exp $
* lance.c: Linux/Sparc/Lance driver
*
* Written 1995, 1996 by Miguel de Icaza
* Sources:
* The Linux depca driver
* The Linux lance driver.
* The Linux skeleton driver.
* The NetBSD Sparc/Lance driver.
* Theo de Raadt (deraadt@openbsd.org)
* NCR92C990 Lan Controller manual
*
* 1.4:
* Added support to run with a ledma on the Sun4m
*
* 1.5:
* Added multiple card detection.
*
* 4/17/96: Burst sizes and tpe selection on sun4m by Eddie C. Dost
* (ecd@skynet.be)
*
* 5/15/96: auto carrier detection on sun4m by Eddie C. Dost
* (ecd@skynet.be)
*
* 5/17/96: lebuffer on scsi/ether cards now work David S. Miller
* (davem@caip.rutgers.edu)
*
* 5/29/96: override option 'tpe-link-test?', if it is 'false', as
* this disables auto carrier detection on sun4m. Eddie C. Dost
* (ecd@skynet.be)
*
* 1.7:
* 6/26/96: Bug fix for multiple ledmas, miguel.
*
* 1.8:
* Stole multicast code from depca.c, fixed lance_tx.
*
* 1.9:
* 8/21/96: Fixed the multicast code (Pedro Roque)
*
* 8/28/96: Send fake packet in lance_open() if auto_select is true,
* so we can detect the carrier loss condition in time.
* Eddie C. Dost (ecd@skynet.be)
*
* 9/15/96: Align rx_buf so that eth_copy_and_sum() won't cause an
* MNA trap during chksum_partial_copy(). (ecd@skynet.be)
*
* 11/17/96: Handle LE_C0_MERR in lance_interrupt(). (ecd@skynet.be)
*
* 12/22/96: Don't loop forever in lance_rx() on incomplete packets.
* This was the sun4c killer. Shit, stupid bug.
* (ecd@skynet.be)
*
* 1.10:
* 1/26/97: Modularize driver. (ecd@skynet.be)
*
* 1.11:
* 12/27/97: Added sun4d support. (jj@sunsite.mff.cuni.cz)
*
* 1.12:
* 11/3/99: Fixed SMP race in lance_start_xmit found by davem.
* Anton Blanchard (anton@progsoc.uts.edu.au)
* 2.00: 11/9/99: Massive overhaul and port to new SBUS driver interfaces.
* David S. Miller (davem@redhat.com)
* 2.01:
* 11/08/01: Use library crc32 functions (Matt_Domsch@dell.com)
*
*/
#undef DEBUG_DRIVER
static char lancestr[] = "LANCE";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/errno.h>
#include <linux/socket.h> /* Used for the temporal inet entries and routing */
#include <linux/route.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/pgtable.h>
#include <asm/byteorder.h> /* Used by the checksum routines */
#include <asm/idprom.h>
#include <asm/prom.h>
#include <asm/auxio.h> /* For tpe-link-test? setting */
#include <asm/irq.h>
#define DRV_NAME "sunlance"
#define DRV_VERSION "2.02"
#define DRV_RELDATE "8/24/03"
#define DRV_AUTHOR "Miguel de Icaza (miguel@nuclecu.unam.mx)"
static char version[] =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION("Sun Lance ethernet driver");
MODULE_LICENSE("GPL");
/* Define: 2^4 Tx buffers and 2^4 Rx buffers */
#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif
#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
#define LE_MO_PROM 0x8000 /* Enable promiscuous mode */
#define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */
#define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */
#define LE_C0_CERR 0x2000 /* SQE: Signal quality error */
#define LE_C0_MISS 0x1000 /* MISS: Missed a packet */
#define LE_C0_MERR 0x0800 /* ME: Memory error */
#define LE_C0_RINT 0x0400 /* Received interrupt */
#define LE_C0_TINT 0x0200 /* Transmitter Interrupt */
#define LE_C0_IDON 0x0100 /* IFIN: Init finished. */
#define LE_C0_INTR 0x0080 /* Interrupt or error */
#define LE_C0_INEA 0x0040 /* Interrupt enable */
#define LE_C0_RXON 0x0020 /* Receiver on */
#define LE_C0_TXON 0x0010 /* Transmitter on */
#define LE_C0_TDMD 0x0008 /* Transmitter demand */
#define LE_C0_STOP 0x0004 /* Stop the card */
#define LE_C0_STRT 0x0002 /* Start the card */
#define LE_C0_INIT 0x0001 /* Init the card */
#define LE_C3_BSWP 0x4 /* SWAP */
#define LE_C3_ACON 0x2 /* ALE Control */
#define LE_C3_BCON 0x1 /* Byte control */
/* Receive message descriptor 1 */
#define LE_R1_OWN 0x80 /* Who owns the entry */
#define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA 0x20 /* FRA: Frame error */
#define LE_R1_OFL 0x10 /* OFL: Frame overflow */
#define LE_R1_CRC 0x08 /* CRC error */
#define LE_R1_BUF 0x04 /* BUF: Buffer error */
#define LE_R1_SOP 0x02 /* Start of packet */
#define LE_R1_EOP 0x01 /* End of packet */
#define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */
#define LE_T1_OWN 0x80 /* Lance owns the packet */
#define LE_T1_ERR 0x40 /* Error summary */
#define LE_T1_EMORE 0x10 /* Error: more than one retry needed */
#define LE_T1_EONE 0x08 /* Error: one retry needed */
#define LE_T1_EDEF 0x04 /* Error: deferred */
#define LE_T1_SOP 0x02 /* Start of packet */
#define LE_T1_EOP 0x01 /* End of packet */
#define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */
#define LE_T3_BUF 0x8000 /* Buffer error */
#define LE_T3_UFL 0x4000 /* Error underflow */
#define LE_T3_LCOL 0x1000 /* Error late collision */
#define LE_T3_CLOS 0x0800 /* Error carrier loss */
#define LE_T3_RTY 0x0400 /* Error retry */
#define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */
#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
#define TX_NEXT(__x) (((__x)+1) & TX_RING_MOD_MASK)
#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
#define RX_NEXT(__x) (((__x)+1) & RX_RING_MOD_MASK)
#define PKT_BUF_SZ 1544
#define RX_BUFF_SIZE PKT_BUF_SZ
#define TX_BUFF_SIZE PKT_BUF_SZ
struct lance_rx_desc {
u16 rmd0; /* low address of packet */
u8 rmd1_bits; /* descriptor bits */
u8 rmd1_hadr; /* high address of packet */
s16 length; /* This length is 2s complement (negative)!
* Buffer length
*/
u16 mblength; /* This is the actual number of bytes received */
};
struct lance_tx_desc {
u16 tmd0; /* low address of packet */
u8 tmd1_bits; /* descriptor bits */
u8 tmd1_hadr; /* high address of packet */
s16 length; /* Length is 2s complement (negative)! */
u16 misc;
};
/* The LANCE initialization block, described in databook. */
/* On the Sparc, this block should be on a DMA region */
struct lance_init_block {
u16 mode; /* Pre-set mode (reg. 15) */
u8 phys_addr[6]; /* Physical ethernet address */
u32 filter[2]; /* Multicast filter. */
/* Receive and transmit ring base, along with extra bits. */
u16 rx_ptr; /* receive descriptor addr */
u16 rx_len; /* receive len and high addr */
u16 tx_ptr; /* transmit descriptor addr */
u16 tx_len; /* transmit len and high addr */
/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
struct lance_rx_desc brx_ring[RX_RING_SIZE];
struct lance_tx_desc btx_ring[TX_RING_SIZE];
u8 tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
u8 pad[2]; /* align rx_buf for copy_and_sum(). */
u8 rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
};
#define libdesc_offset(rt, elem) \
((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem])))))
#define libbuff_offset(rt, elem) \
((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem][0])))))
struct lance_private {
void __iomem *lregs; /* Lance RAP/RDP regs. */
void __iomem *dregs; /* DMA controller regs. */
struct lance_init_block __iomem *init_block_iomem;
struct lance_init_block *init_block_mem;
spinlock_t lock;
int rx_new, tx_new;
int rx_old, tx_old;
struct of_device *ledma; /* If set this points to ledma */
char tpe; /* cable-selection is TPE */
char auto_select; /* cable-selection by carrier */
char burst_sizes; /* ledma SBus burst sizes */
char pio_buffer; /* init block in PIO space? */
unsigned short busmaster_regval;
void (*init_ring)(struct net_device *);
void (*rx)(struct net_device *);
void (*tx)(struct net_device *);
char *name;
dma_addr_t init_block_dvma;
struct net_device *dev; /* Backpointer */
struct of_device *op;
struct of_device *lebuffer;
struct timer_list multicast_timer;
};
#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\
lp->tx_old - lp->tx_new-1)
/* Lance registers. */
#define RDP 0x00UL /* register data port */
#define RAP 0x02UL /* register address port */
#define LANCE_REG_SIZE 0x04UL
#define STOP_LANCE(__lp) \
do { void __iomem *__base = (__lp)->lregs; \
sbus_writew(LE_CSR0, __base + RAP); \
sbus_writew(LE_C0_STOP, __base + RDP); \
} while (0)
int sparc_lance_debug = 2;
/* The Lance uses 24 bit addresses */
/* On the Sun4c the DVMA will provide the remaining bytes for us */
/* On the Sun4m we have to instruct the ledma to provide them */
/* Even worse, on scsi/ether SBUS cards, the init block and the
* transmit/receive buffers are addresses as offsets from absolute
* zero on the lebuffer PIO area. -DaveM
*/
#define LANCE_ADDR(x) ((long)(x) & ~0xff000000)
/* Load the CSR registers */
static void load_csrs(struct lance_private *lp)
{
u32 leptr;
if (lp->pio_buffer)
leptr = 0;
else
leptr = LANCE_ADDR(lp->init_block_dvma);
sbus_writew(LE_CSR1, lp->lregs + RAP);
sbus_writew(leptr & 0xffff, lp->lregs + RDP);
sbus_writew(LE_CSR2, lp->lregs + RAP);
sbus_writew(leptr >> 16, lp->lregs + RDP);
sbus_writew(LE_CSR3, lp->lregs + RAP);
sbus_writew(lp->busmaster_regval, lp->lregs + RDP);
/* Point back to csr0 */
sbus_writew(LE_CSR0, lp->lregs + RAP);
}
/* Setup the Lance Rx and Tx rings */
static void lance_init_ring_dvma(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block *ib = lp->init_block_mem;
dma_addr_t aib = lp->init_block_dvma;
__u32 leptr;
int i;
/* Lock out other processes while setting up hardware */
netif_stop_queue(dev);
lp->rx_new = lp->tx_new = 0;
lp->rx_old = lp->tx_old = 0;
/* Copy the ethernet address to the lance init block
* Note that on the sparc you need to swap the ethernet address.
*/
ib->phys_addr [0] = dev->dev_addr [1];
ib->phys_addr [1] = dev->dev_addr [0];
ib->phys_addr [2] = dev->dev_addr [3];
ib->phys_addr [3] = dev->dev_addr [2];
ib->phys_addr [4] = dev->dev_addr [5];
ib->phys_addr [5] = dev->dev_addr [4];
/* Setup the Tx ring entries */
for (i = 0; i < TX_RING_SIZE; i++) {
leptr = LANCE_ADDR(aib + libbuff_offset(tx_buf, i));
ib->btx_ring [i].tmd0 = leptr;
ib->btx_ring [i].tmd1_hadr = leptr >> 16;
ib->btx_ring [i].tmd1_bits = 0;
ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */
ib->btx_ring [i].misc = 0;
}
/* Setup the Rx ring entries */
for (i = 0; i < RX_RING_SIZE; i++) {
leptr = LANCE_ADDR(aib + libbuff_offset(rx_buf, i));
ib->brx_ring [i].rmd0 = leptr;
ib->brx_ring [i].rmd1_hadr = leptr >> 16;
ib->brx_ring [i].rmd1_bits = LE_R1_OWN;
ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000;
ib->brx_ring [i].mblength = 0;
}
/* Setup the initialization block */
/* Setup rx descriptor pointer */
leptr = LANCE_ADDR(aib + libdesc_offset(brx_ring, 0));
ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16);
ib->rx_ptr = leptr;
/* Setup tx descriptor pointer */
leptr = LANCE_ADDR(aib + libdesc_offset(btx_ring, 0));
ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16);
ib->tx_ptr = leptr;
}
static void lance_init_ring_pio(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block __iomem *ib = lp->init_block_iomem;
u32 leptr;
int i;
/* Lock out other processes while setting up hardware */
netif_stop_queue(dev);
lp->rx_new = lp->tx_new = 0;
lp->rx_old = lp->tx_old = 0;
/* Copy the ethernet address to the lance init block
* Note that on the sparc you need to swap the ethernet address.
*/
sbus_writeb(dev->dev_addr[1], &ib->phys_addr[0]);
sbus_writeb(dev->dev_addr[0], &ib->phys_addr[1]);
sbus_writeb(dev->dev_addr[3], &ib->phys_addr[2]);
sbus_writeb(dev->dev_addr[2], &ib->phys_addr[3]);
sbus_writeb(dev->dev_addr[5], &ib->phys_addr[4]);
sbus_writeb(dev->dev_addr[4], &ib->phys_addr[5]);
/* Setup the Tx ring entries */
for (i = 0; i < TX_RING_SIZE; i++) {
leptr = libbuff_offset(tx_buf, i);
sbus_writew(leptr, &ib->btx_ring [i].tmd0);
sbus_writeb(leptr >> 16,&ib->btx_ring [i].tmd1_hadr);
sbus_writeb(0, &ib->btx_ring [i].tmd1_bits);
/* The ones required by tmd2 */
sbus_writew(0xf000, &ib->btx_ring [i].length);
sbus_writew(0, &ib->btx_ring [i].misc);
}
/* Setup the Rx ring entries */
for (i = 0; i < RX_RING_SIZE; i++) {
leptr = libbuff_offset(rx_buf, i);
sbus_writew(leptr, &ib->brx_ring [i].rmd0);
sbus_writeb(leptr >> 16,&ib->brx_ring [i].rmd1_hadr);
sbus_writeb(LE_R1_OWN, &ib->brx_ring [i].rmd1_bits);
sbus_writew(-RX_BUFF_SIZE|0xf000,
&ib->brx_ring [i].length);
sbus_writew(0, &ib->brx_ring [i].mblength);
}
/* Setup the initialization block */
/* Setup rx descriptor pointer */
leptr = libdesc_offset(brx_ring, 0);
sbus_writew((LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16),
&ib->rx_len);
sbus_writew(leptr, &ib->rx_ptr);
/* Setup tx descriptor pointer */
leptr = libdesc_offset(btx_ring, 0);
sbus_writew((LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16),
&ib->tx_len);
sbus_writew(leptr, &ib->tx_ptr);
}
static void init_restart_ledma(struct lance_private *lp)
{
u32 csr = sbus_readl(lp->dregs + DMA_CSR);
if (!(csr & DMA_HNDL_ERROR)) {
/* E-Cache draining */
while (sbus_readl(lp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN)
barrier();
}
csr = sbus_readl(lp->dregs + DMA_CSR);
csr &= ~DMA_E_BURSTS;
if (lp->burst_sizes & DMA_BURST32)
csr |= DMA_E_BURST32;
else
csr |= DMA_E_BURST16;
csr |= (DMA_DSBL_RD_DRN | DMA_DSBL_WR_INV | DMA_FIFO_INV);
if (lp->tpe)
csr |= DMA_EN_ENETAUI;
else
csr &= ~DMA_EN_ENETAUI;
udelay(20);
sbus_writel(csr, lp->dregs + DMA_CSR);
udelay(200);
}
static int init_restart_lance(struct lance_private *lp)
{
u16 regval = 0;
int i;
if (lp->dregs)
init_restart_ledma(lp);
sbus_writew(LE_CSR0, lp->lregs + RAP);
sbus_writew(LE_C0_INIT, lp->lregs + RDP);
/* Wait for the lance to complete initialization */
for (i = 0; i < 100; i++) {
regval = sbus_readw(lp->lregs + RDP);
if (regval & (LE_C0_ERR | LE_C0_IDON))
break;
barrier();
}
if (i == 100 || (regval & LE_C0_ERR)) {
printk(KERN_ERR "LANCE unopened after %d ticks, csr0=%4.4x.\n",
i, regval);
if (lp->dregs)
printk("dcsr=%8.8x\n", sbus_readl(lp->dregs + DMA_CSR));
return -1;
}
/* Clear IDON by writing a "1", enable interrupts and start lance */
sbus_writew(LE_C0_IDON, lp->lregs + RDP);
sbus_writew(LE_C0_INEA | LE_C0_STRT, lp->lregs + RDP);
if (lp->dregs) {
u32 csr = sbus_readl(lp->dregs + DMA_CSR);
csr |= DMA_INT_ENAB;
sbus_writel(csr, lp->dregs + DMA_CSR);
}
return 0;
}
static void lance_rx_dvma(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block *ib = lp->init_block_mem;
struct lance_rx_desc *rd;
u8 bits;
int len, entry = lp->rx_new;
struct sk_buff *skb;
for (rd = &ib->brx_ring [entry];
!((bits = rd->rmd1_bits) & LE_R1_OWN);
rd = &ib->brx_ring [entry]) {
/* We got an incomplete frame? */
if ((bits & LE_R1_POK) != LE_R1_POK) {
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
} else if (bits & LE_R1_ERR) {
/* Count only the end frame as a rx error,
* not the beginning
*/
if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++;
if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++;
if (bits & LE_R1_OFL) dev->stats.rx_over_errors++;
if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++;
if (bits & LE_R1_EOP) dev->stats.rx_errors++;
} else {
len = (rd->mblength & 0xfff) - 4;
skb = dev_alloc_skb(len + 2);
if (skb == NULL) {
printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
dev->name);
dev->stats.rx_dropped++;
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
lp->rx_new = RX_NEXT(entry);
return;
}
dev->stats.rx_bytes += len;
skb_reserve(skb, 2); /* 16 byte align */
skb_put(skb, len); /* make room */
skb_copy_to_linear_data(skb,
(unsigned char *)&(ib->rx_buf [entry][0]),
len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
}
/* Return the packet to the pool */
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
entry = RX_NEXT(entry);
}
lp->rx_new = entry;
}
static void lance_tx_dvma(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block *ib = lp->init_block_mem;
int i, j;
spin_lock(&lp->lock);
j = lp->tx_old;
for (i = j; i != lp->tx_new; i = j) {
struct lance_tx_desc *td = &ib->btx_ring [i];
u8 bits = td->tmd1_bits;
/* If we hit a packet not owned by us, stop */
if (bits & LE_T1_OWN)
break;
if (bits & LE_T1_ERR) {
u16 status = td->misc;
dev->stats.tx_errors++;
if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++;
if (status & LE_T3_LCOL) dev->stats.tx_window_errors++;
if (status & LE_T3_CLOS) {
dev->stats.tx_carrier_errors++;
if (lp->auto_select) {
lp->tpe = 1 - lp->tpe;
printk(KERN_NOTICE "%s: Carrier Lost, trying %s\n",
dev->name, lp->tpe?"TPE":"AUI");
STOP_LANCE(lp);
lp->init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
}
/* Buffer errors and underflows turn off the
* transmitter, restart the adapter.
*/
if (status & (LE_T3_BUF|LE_T3_UFL)) {
dev->stats.tx_fifo_errors++;
printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, restarting\n",
dev->name);
STOP_LANCE(lp);
lp->init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
} else if ((bits & LE_T1_POK) == LE_T1_POK) {
/*
* So we don't count the packet more than once.
*/
td->tmd1_bits = bits & ~(LE_T1_POK);
/* One collision before packet was sent. */
if (bits & LE_T1_EONE)
dev->stats.collisions++;
/* More than one collision, be optimistic. */
if (bits & LE_T1_EMORE)
dev->stats.collisions += 2;
dev->stats.tx_packets++;
}
j = TX_NEXT(j);
}
lp->tx_old = j;
out:
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL > 0)
netif_wake_queue(dev);
spin_unlock(&lp->lock);
}
static void lance_piocopy_to_skb(struct sk_buff *skb, void __iomem *piobuf, int len)
{
u16 *p16 = (u16 *) skb->data;
u32 *p32;
u8 *p8;
void __iomem *pbuf = piobuf;
/* We know here that both src and dest are on a 16bit boundary. */
*p16++ = sbus_readw(pbuf);
p32 = (u32 *) p16;
pbuf += 2;
len -= 2;
while (len >= 4) {
*p32++ = sbus_readl(pbuf);
pbuf += 4;
len -= 4;
}
p8 = (u8 *) p32;
if (len >= 2) {
p16 = (u16 *) p32;
*p16++ = sbus_readw(pbuf);
pbuf += 2;
len -= 2;
p8 = (u8 *) p16;
}
if (len >= 1)
*p8 = sbus_readb(pbuf);
}
static void lance_rx_pio(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block __iomem *ib = lp->init_block_iomem;
struct lance_rx_desc __iomem *rd;
unsigned char bits;
int len, entry;
struct sk_buff *skb;
entry = lp->rx_new;
for (rd = &ib->brx_ring [entry];
!((bits = sbus_readb(&rd->rmd1_bits)) & LE_R1_OWN);
rd = &ib->brx_ring [entry]) {
/* We got an incomplete frame? */
if ((bits & LE_R1_POK) != LE_R1_POK) {
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
} else if (bits & LE_R1_ERR) {
/* Count only the end frame as a rx error,
* not the beginning
*/
if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++;
if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++;
if (bits & LE_R1_OFL) dev->stats.rx_over_errors++;
if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++;
if (bits & LE_R1_EOP) dev->stats.rx_errors++;
} else {
len = (sbus_readw(&rd->mblength) & 0xfff) - 4;
skb = dev_alloc_skb(len + 2);
if (skb == NULL) {
printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
dev->name);
dev->stats.rx_dropped++;
sbus_writew(0, &rd->mblength);
sbus_writeb(LE_R1_OWN, &rd->rmd1_bits);
lp->rx_new = RX_NEXT(entry);
return;
}
dev->stats.rx_bytes += len;
skb_reserve (skb, 2); /* 16 byte align */
skb_put(skb, len); /* make room */
lance_piocopy_to_skb(skb, &(ib->rx_buf[entry][0]), len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
}
/* Return the packet to the pool */
sbus_writew(0, &rd->mblength);
sbus_writeb(LE_R1_OWN, &rd->rmd1_bits);
entry = RX_NEXT(entry);
}
lp->rx_new = entry;
}
static void lance_tx_pio(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block __iomem *ib = lp->init_block_iomem;
int i, j;
spin_lock(&lp->lock);
j = lp->tx_old;
for (i = j; i != lp->tx_new; i = j) {
struct lance_tx_desc __iomem *td = &ib->btx_ring [i];
u8 bits = sbus_readb(&td->tmd1_bits);
/* If we hit a packet not owned by us, stop */
if (bits & LE_T1_OWN)
break;
if (bits & LE_T1_ERR) {
u16 status = sbus_readw(&td->misc);
dev->stats.tx_errors++;
if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++;
if (status & LE_T3_LCOL) dev->stats.tx_window_errors++;
if (status & LE_T3_CLOS) {
dev->stats.tx_carrier_errors++;
if (lp->auto_select) {
lp->tpe = 1 - lp->tpe;
printk(KERN_NOTICE "%s: Carrier Lost, trying %s\n",
dev->name, lp->tpe?"TPE":"AUI");
STOP_LANCE(lp);
lp->init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
}
/* Buffer errors and underflows turn off the
* transmitter, restart the adapter.
*/
if (status & (LE_T3_BUF|LE_T3_UFL)) {
dev->stats.tx_fifo_errors++;
printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, restarting\n",
dev->name);
STOP_LANCE(lp);
lp->init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
} else if ((bits & LE_T1_POK) == LE_T1_POK) {
/*
* So we don't count the packet more than once.
*/
sbus_writeb(bits & ~(LE_T1_POK), &td->tmd1_bits);
/* One collision before packet was sent. */
if (bits & LE_T1_EONE)
dev->stats.collisions++;
/* More than one collision, be optimistic. */
if (bits & LE_T1_EMORE)
dev->stats.collisions += 2;
dev->stats.tx_packets++;
}
j = TX_NEXT(j);
}
lp->tx_old = j;
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL > 0)
netif_wake_queue(dev);
out:
spin_unlock(&lp->lock);
}
static irqreturn_t lance_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct lance_private *lp = netdev_priv(dev);
int csr0;
sbus_writew(LE_CSR0, lp->lregs + RAP);
csr0 = sbus_readw(lp->lregs + RDP);
/* Acknowledge all the interrupt sources ASAP */
sbus_writew(csr0 & (LE_C0_INTR | LE_C0_TINT | LE_C0_RINT),
lp->lregs + RDP);
if ((csr0 & LE_C0_ERR) != 0) {
/* Clear the error condition */
sbus_writew((LE_C0_BABL | LE_C0_ERR | LE_C0_MISS |
LE_C0_CERR | LE_C0_MERR),
lp->lregs + RDP);
}
if (csr0 & LE_C0_RINT)
lp->rx(dev);
if (csr0 & LE_C0_TINT)
lp->tx(dev);
if (csr0 & LE_C0_BABL)
dev->stats.tx_errors++;
if (csr0 & LE_C0_MISS)
dev->stats.rx_errors++;
if (csr0 & LE_C0_MERR) {
if (lp->dregs) {
u32 addr = sbus_readl(lp->dregs + DMA_ADDR);
printk(KERN_ERR "%s: Memory error, status %04x, addr %06x\n",
dev->name, csr0, addr & 0xffffff);
} else {
printk(KERN_ERR "%s: Memory error, status %04x\n",
dev->name, csr0);
}
sbus_writew(LE_C0_STOP, lp->lregs + RDP);
if (lp->dregs) {
u32 dma_csr = sbus_readl(lp->dregs + DMA_CSR);
dma_csr |= DMA_FIFO_INV;
sbus_writel(dma_csr, lp->dregs + DMA_CSR);
}
lp->init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
netif_wake_queue(dev);
}
sbus_writew(LE_C0_INEA, lp->lregs + RDP);
return IRQ_HANDLED;
}
/* Build a fake network packet and send it to ourselves. */
static void build_fake_packet(struct lance_private *lp)
{
struct net_device *dev = lp->dev;
int i, entry;
entry = lp->tx_new & TX_RING_MOD_MASK;
if (lp->pio_buffer) {
struct lance_init_block __iomem *ib = lp->init_block_iomem;
u16 __iomem *packet = (u16 __iomem *) &(ib->tx_buf[entry][0]);
struct ethhdr __iomem *eth = (struct ethhdr __iomem *) packet;
for (i = 0; i < (ETH_ZLEN / sizeof(u16)); i++)
sbus_writew(0, &packet[i]);
for (i = 0; i < 6; i++) {
sbus_writeb(dev->dev_addr[i], &eth->h_dest[i]);
sbus_writeb(dev->dev_addr[i], &eth->h_source[i]);
}
sbus_writew((-ETH_ZLEN) | 0xf000, &ib->btx_ring[entry].length);
sbus_writew(0, &ib->btx_ring[entry].misc);
sbus_writeb(LE_T1_POK|LE_T1_OWN, &ib->btx_ring[entry].tmd1_bits);
} else {
struct lance_init_block *ib = lp->init_block_mem;
u16 *packet = (u16 *) &(ib->tx_buf[entry][0]);
struct ethhdr *eth = (struct ethhdr *) packet;
memset(packet, 0, ETH_ZLEN);
for (i = 0; i < 6; i++) {
eth->h_dest[i] = dev->dev_addr[i];
eth->h_source[i] = dev->dev_addr[i];
}
ib->btx_ring[entry].length = (-ETH_ZLEN) | 0xf000;
ib->btx_ring[entry].misc = 0;
ib->btx_ring[entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN);
}
lp->tx_new = TX_NEXT(entry);
}
static int lance_open(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
int status = 0;
STOP_LANCE(lp);
if (request_irq(dev->irq, lance_interrupt, IRQF_SHARED,
lancestr, (void *) dev)) {
printk(KERN_ERR "Lance: Can't get irq %d\n", dev->irq);
return -EAGAIN;
}
/* On the 4m, setup the ledma to provide the upper bits for buffers */
if (lp->dregs) {
u32 regval = lp->init_block_dvma & 0xff000000;
sbus_writel(regval, lp->dregs + DMA_TEST);
}
/* Set mode and clear multicast filter only at device open,
* so that lance_init_ring() called at any error will not
* forget multicast filters.
*
* BTW it is common bug in all lance drivers! --ANK
*/
if (lp->pio_buffer) {
struct lance_init_block __iomem *ib = lp->init_block_iomem;
sbus_writew(0, &ib->mode);
sbus_writel(0, &ib->filter[0]);
sbus_writel(0, &ib->filter[1]);
} else {
struct lance_init_block *ib = lp->init_block_mem;
ib->mode = 0;
ib->filter [0] = 0;
ib->filter [1] = 0;
}
lp->init_ring(dev);
load_csrs(lp);
netif_start_queue(dev);
status = init_restart_lance(lp);
if (!status && lp->auto_select) {
build_fake_packet(lp);
sbus_writew(LE_C0_INEA | LE_C0_TDMD, lp->lregs + RDP);
}
return status;
}
static int lance_close(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
netif_stop_queue(dev);
del_timer_sync(&lp->multicast_timer);
STOP_LANCE(lp);
free_irq(dev->irq, (void *) dev);
return 0;
}
static int lance_reset(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
int status;
STOP_LANCE(lp);
/* On the 4m, reset the dma too */
if (lp->dregs) {
u32 csr, addr;
printk(KERN_ERR "resetting ledma\n");
csr = sbus_readl(lp->dregs + DMA_CSR);
sbus_writel(csr | DMA_RST_ENET, lp->dregs + DMA_CSR);
udelay(200);
sbus_writel(csr & ~DMA_RST_ENET, lp->dregs + DMA_CSR);
addr = lp->init_block_dvma & 0xff000000;
sbus_writel(addr, lp->dregs + DMA_TEST);
}
lp->init_ring(dev);
load_csrs(lp);
dev->trans_start = jiffies;
status = init_restart_lance(lp);
return status;
}
static void lance_piocopy_from_skb(void __iomem *dest, unsigned char *src, int len)
{
void __iomem *piobuf = dest;
u32 *p32;
u16 *p16;
u8 *p8;
switch ((unsigned long)src & 0x3) {
case 0:
p32 = (u32 *) src;
while (len >= 4) {
sbus_writel(*p32, piobuf);
p32++;
piobuf += 4;
len -= 4;
}
src = (char *) p32;
break;
case 1:
case 3:
p8 = (u8 *) src;
while (len >= 4) {
u32 val;
val = p8[0] << 24;
val |= p8[1] << 16;
val |= p8[2] << 8;
val |= p8[3];
sbus_writel(val, piobuf);
p8 += 4;
piobuf += 4;
len -= 4;
}
src = (char *) p8;
break;
case 2:
p16 = (u16 *) src;
while (len >= 4) {
u32 val = p16[0]<<16 | p16[1];
sbus_writel(val, piobuf);
p16 += 2;
piobuf += 4;
len -= 4;
}
src = (char *) p16;
break;
};
if (len >= 2) {
u16 val = src[0] << 8 | src[1];
sbus_writew(val, piobuf);
src += 2;
piobuf += 2;
len -= 2;
}
if (len >= 1)
sbus_writeb(src[0], piobuf);
}
static void lance_piozero(void __iomem *dest, int len)
{
void __iomem *piobuf = dest;
if ((unsigned long)piobuf & 1) {
sbus_writeb(0, piobuf);
piobuf += 1;
len -= 1;
if (len == 0)
return;
}
if (len == 1) {
sbus_writeb(0, piobuf);
return;
}
if ((unsigned long)piobuf & 2) {
sbus_writew(0, piobuf);
piobuf += 2;
len -= 2;
if (len == 0)
return;
}
while (len >= 4) {
sbus_writel(0, piobuf);
piobuf += 4;
len -= 4;
}
if (len >= 2) {
sbus_writew(0, piobuf);
piobuf += 2;
len -= 2;
}
if (len >= 1)
sbus_writeb(0, piobuf);
}
static void lance_tx_timeout(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n",
dev->name, sbus_readw(lp->lregs + RDP));
lance_reset(dev);
netif_wake_queue(dev);
}
static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
int entry, skblen, len;
skblen = skb->len;
len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen;
spin_lock_irq(&lp->lock);
dev->stats.tx_bytes += len;
entry = lp->tx_new & TX_RING_MOD_MASK;
if (lp->pio_buffer) {
struct lance_init_block __iomem *ib = lp->init_block_iomem;
sbus_writew((-len) | 0xf000, &ib->btx_ring[entry].length);
sbus_writew(0, &ib->btx_ring[entry].misc);
lance_piocopy_from_skb(&ib->tx_buf[entry][0], skb->data, skblen);
if (len != skblen)
lance_piozero(&ib->tx_buf[entry][skblen], len - skblen);
sbus_writeb(LE_T1_POK | LE_T1_OWN, &ib->btx_ring[entry].tmd1_bits);
} else {
struct lance_init_block *ib = lp->init_block_mem;
ib->btx_ring [entry].length = (-len) | 0xf000;
ib->btx_ring [entry].misc = 0;
skb_copy_from_linear_data(skb, &ib->tx_buf [entry][0], skblen);
if (len != skblen)
memset((char *) &ib->tx_buf [entry][skblen], 0, len - skblen);
ib->btx_ring [entry].tmd1_bits = (LE_T1_POK | LE_T1_OWN);
}
lp->tx_new = TX_NEXT(entry);
if (TX_BUFFS_AVAIL <= 0)
netif_stop_queue(dev);
/* Kick the lance: transmit now */
sbus_writew(LE_C0_INEA | LE_C0_TDMD, lp->lregs + RDP);
/* Read back CSR to invalidate the E-Cache.
* This is needed, because DMA_DSBL_WR_INV is set.
*/
if (lp->dregs)
sbus_readw(lp->lregs + RDP);
spin_unlock_irq(&lp->lock);
dev->trans_start = jiffies;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* taken from the depca driver */
static void lance_load_multicast(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct dev_mc_list *dmi = dev->mc_list;
char *addrs;
int i;
u32 crc;
u32 val;
/* set all multicast bits */
if (dev->flags & IFF_ALLMULTI)
val = ~0;
else
val = 0;
if (lp->pio_buffer) {
struct lance_init_block __iomem *ib = lp->init_block_iomem;
sbus_writel(val, &ib->filter[0]);
sbus_writel(val, &ib->filter[1]);
} else {
struct lance_init_block *ib = lp->init_block_mem;
ib->filter [0] = val;
ib->filter [1] = val;
}
if (dev->flags & IFF_ALLMULTI)
return;
/* Add addresses */
for (i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
/* multicast address? */
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc = crc >> 26;
if (lp->pio_buffer) {
struct lance_init_block __iomem *ib = lp->init_block_iomem;
u16 __iomem *mcast_table = (u16 __iomem *) &ib->filter;
u16 tmp = sbus_readw(&mcast_table[crc>>4]);
tmp |= 1 << (crc & 0xf);
sbus_writew(tmp, &mcast_table[crc>>4]);
} else {
struct lance_init_block *ib = lp->init_block_mem;
u16 *mcast_table = (u16 *) &ib->filter;
mcast_table [crc >> 4] |= 1 << (crc & 0xf);
}
}
}
static void lance_set_multicast(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
struct lance_init_block *ib_mem = lp->init_block_mem;
struct lance_init_block __iomem *ib_iomem = lp->init_block_iomem;
u16 mode;
if (!netif_running(dev))
return;
if (lp->tx_old != lp->tx_new) {
mod_timer(&lp->multicast_timer, jiffies + 4);
netif_wake_queue(dev);
return;
}
netif_stop_queue(dev);
STOP_LANCE(lp);
lp->init_ring(dev);
if (lp->pio_buffer)
mode = sbus_readw(&ib_iomem->mode);
else
mode = ib_mem->mode;
if (dev->flags & IFF_PROMISC) {
mode |= LE_MO_PROM;
if (lp->pio_buffer)
sbus_writew(mode, &ib_iomem->mode);
else
ib_mem->mode = mode;
} else {
mode &= ~LE_MO_PROM;
if (lp->pio_buffer)
sbus_writew(mode, &ib_iomem->mode);
else
ib_mem->mode = mode;
lance_load_multicast(dev);
}
load_csrs(lp);
init_restart_lance(lp);
netif_wake_queue(dev);
}
static void lance_set_multicast_retry(unsigned long _opaque)
{
struct net_device *dev = (struct net_device *) _opaque;
lance_set_multicast(dev);
}
static void lance_free_hwresources(struct lance_private *lp)
{
if (lp->lregs)
of_iounmap(&lp->op->resource[0], lp->lregs, LANCE_REG_SIZE);
if (lp->dregs) {
struct of_device *ledma = lp->ledma;
of_iounmap(&ledma->resource[0], lp->dregs,
resource_size(&ledma->resource[0]));
}
if (lp->init_block_iomem) {
of_iounmap(&lp->lebuffer->resource[0], lp->init_block_iomem,
sizeof(struct lance_init_block));
} else if (lp->init_block_mem) {
dma_free_coherent(&lp->op->dev,
sizeof(struct lance_init_block),
lp->init_block_mem,
lp->init_block_dvma);
}
}
/* Ethtool support... */
static void sparc_lance_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strcpy(info->driver, "sunlance");
strcpy(info->version, "2.02");
}
static u32 sparc_lance_get_link(struct net_device *dev)
{
/* We really do not keep track of this, but this
* is better than not reporting anything at all.
*/
return 1;
}
static const struct ethtool_ops sparc_lance_ethtool_ops = {
.get_drvinfo = sparc_lance_get_drvinfo,
.get_link = sparc_lance_get_link,
};
static const struct net_device_ops sparc_lance_ops = {
.ndo_open = lance_open,
.ndo_stop = lance_close,
.ndo_start_xmit = lance_start_xmit,
.ndo_set_multicast_list = lance_set_multicast,
.ndo_tx_timeout = lance_tx_timeout,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static int __devinit sparc_lance_probe_one(struct of_device *op,
struct of_device *ledma,
struct of_device *lebuffer)
{
struct device_node *dp = op->node;
static unsigned version_printed;
struct lance_private *lp;
struct net_device *dev;
int i;
dev = alloc_etherdev(sizeof(struct lance_private) + 8);
if (!dev)
return -ENOMEM;
lp = netdev_priv(dev);
if (sparc_lance_debug && version_printed++ == 0)
printk (KERN_INFO "%s", version);
spin_lock_init(&lp->lock);
/* Copy the IDPROM ethernet address to the device structure, later we
* will copy the address in the device structure to the lance
* initialization block.
*/
for (i = 0; i < 6; i++)
dev->dev_addr[i] = idprom->id_ethaddr[i];
/* Get the IO region */
lp->lregs = of_ioremap(&op->resource[0], 0,
LANCE_REG_SIZE, lancestr);
if (!lp->lregs) {
printk(KERN_ERR "SunLance: Cannot map registers.\n");
goto fail;
}
lp->ledma = ledma;
if (lp->ledma) {
lp->dregs = of_ioremap(&ledma->resource[0], 0,
resource_size(&ledma->resource[0]),
"ledma");
if (!lp->dregs) {
printk(KERN_ERR "SunLance: Cannot map "
"ledma registers.\n");
goto fail;
}
}
lp->op = op;
lp->lebuffer = lebuffer;
if (lebuffer) {
/* sanity check */
if (lebuffer->resource[0].start & 7) {
printk(KERN_ERR "SunLance: ERROR: Rx and Tx rings not on even boundary.\n");
goto fail;
}
lp->init_block_iomem =
of_ioremap(&lebuffer->resource[0], 0,
sizeof(struct lance_init_block), "lebuffer");
if (!lp->init_block_iomem) {
printk(KERN_ERR "SunLance: Cannot map PIO buffer.\n");
goto fail;
}
lp->init_block_dvma = 0;
lp->pio_buffer = 1;
lp->init_ring = lance_init_ring_pio;
lp->rx = lance_rx_pio;
lp->tx = lance_tx_pio;
} else {
lp->init_block_mem =
dma_alloc_coherent(&op->dev,
sizeof(struct lance_init_block),
&lp->init_block_dvma, GFP_ATOMIC);
if (!lp->init_block_mem) {
printk(KERN_ERR "SunLance: Cannot allocate consistent DMA memory.\n");
goto fail;
}
lp->pio_buffer = 0;
lp->init_ring = lance_init_ring_dvma;
lp->rx = lance_rx_dvma;
lp->tx = lance_tx_dvma;
}
lp->busmaster_regval = of_getintprop_default(dp, "busmaster-regval",
(LE_C3_BSWP |
LE_C3_ACON |
LE_C3_BCON));
lp->name = lancestr;
lp->burst_sizes = 0;
if (lp->ledma) {
struct device_node *ledma_dp = ledma->node;
struct device_node *sbus_dp;
unsigned int sbmask;
const char *prop;
u32 csr;
/* Find burst-size property for ledma */
lp->burst_sizes = of_getintprop_default(ledma_dp,
"burst-sizes", 0);
/* ledma may be capable of fast bursts, but sbus may not. */
sbus_dp = ledma_dp->parent;
sbmask = of_getintprop_default(sbus_dp, "burst-sizes",
DMA_BURSTBITS);
lp->burst_sizes &= sbmask;
/* Get the cable-selection property */
prop = of_get_property(ledma_dp, "cable-selection", NULL);
if (!prop || prop[0] == '\0') {
struct device_node *nd;
printk(KERN_INFO "SunLance: using "
"auto-carrier-detection.\n");
nd = of_find_node_by_path("/options");
if (!nd)
goto no_link_test;
prop = of_get_property(nd, "tpe-link-test?", NULL);
if (!prop)
goto no_link_test;
if (strcmp(prop, "true")) {
printk(KERN_NOTICE "SunLance: warning: overriding option "
"'tpe-link-test?'\n");
printk(KERN_NOTICE "SunLance: warning: mail any problems "
"to ecd@skynet.be\n");
auxio_set_lte(AUXIO_LTE_ON);
}
no_link_test:
lp->auto_select = 1;
lp->tpe = 0;
} else if (!strcmp(prop, "aui")) {
lp->auto_select = 0;
lp->tpe = 0;
} else {
lp->auto_select = 0;
lp->tpe = 1;
}
/* Reset ledma */
csr = sbus_readl(lp->dregs + DMA_CSR);
sbus_writel(csr | DMA_RST_ENET, lp->dregs + DMA_CSR);
udelay(200);
sbus_writel(csr & ~DMA_RST_ENET, lp->dregs + DMA_CSR);
} else
lp->dregs = NULL;
lp->dev = dev;
SET_NETDEV_DEV(dev, &op->dev);
dev->watchdog_timeo = 5*HZ;
dev->ethtool_ops = &sparc_lance_ethtool_ops;
dev->netdev_ops = &sparc_lance_ops;
dev->irq = op->irqs[0];
/* We cannot sleep if the chip is busy during a
* multicast list update event, because such events
* can occur from interrupts (ex. IPv6). So we
* use a timer to try again later when necessary. -DaveM
*/
init_timer(&lp->multicast_timer);
lp->multicast_timer.data = (unsigned long) dev;
lp->multicast_timer.function = &lance_set_multicast_retry;
if (register_netdev(dev)) {
printk(KERN_ERR "SunLance: Cannot register device.\n");
goto fail;
}
dev_set_drvdata(&op->dev, lp);
printk(KERN_INFO "%s: LANCE %pM\n",
dev->name, dev->dev_addr);
return 0;
fail:
lance_free_hwresources(lp);
free_netdev(dev);
return -ENODEV;
}
static int __devinit sunlance_sbus_probe(struct of_device *op, const struct of_device_id *match)
{
struct of_device *parent = to_of_device(op->dev.parent);
struct device_node *parent_dp = parent->node;
int err;
if (!strcmp(parent_dp->name, "ledma")) {
err = sparc_lance_probe_one(op, parent, NULL);
} else if (!strcmp(parent_dp->name, "lebuffer")) {
err = sparc_lance_probe_one(op, NULL, parent);
} else
err = sparc_lance_probe_one(op, NULL, NULL);
return err;
}
static int __devexit sunlance_sbus_remove(struct of_device *op)
{
struct lance_private *lp = dev_get_drvdata(&op->dev);
struct net_device *net_dev = lp->dev;
unregister_netdev(net_dev);
lance_free_hwresources(lp);
free_netdev(net_dev);
dev_set_drvdata(&op->dev, NULL);
return 0;
}
static const struct of_device_id sunlance_sbus_match[] = {
{
.name = "le",
},
{},
};
MODULE_DEVICE_TABLE(of, sunlance_sbus_match);
static struct of_platform_driver sunlance_sbus_driver = {
.name = "sunlance",
.match_table = sunlance_sbus_match,
.probe = sunlance_sbus_probe,
.remove = __devexit_p(sunlance_sbus_remove),
};
/* Find all the lance cards on the system and initialize them */
static int __init sparc_lance_init(void)
{
return of_register_driver(&sunlance_sbus_driver, &of_bus_type);
}
static void __exit sparc_lance_exit(void)
{
of_unregister_driver(&sunlance_sbus_driver);
}
module_init(sparc_lance_init);
module_exit(sparc_lance_exit);