2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 12:14:01 +08:00
linux-next/drivers/net/ethernet/freescale/gianfar.c
Claudiu Manoil f5b720b859 gianfar: Add FCS to rx buffer size (fix)
For each Rx frame the eTSEC writes its FCS (Frame Check Sequence)
to the Rx buffer.

The eTSEC h/w manual states in the "Receive Buffer Descriptor Field
Descriptions" table:
"Data length is the number of octets written by the eTSEC into this BD's
data buffer if L is cleared (the value is equal to MRBLR), or, if L is
set, the length of the frame including *CRC*, FCB (if RCTRL[PRSDEP > 00),
preamble (if MACCFG2[PreAmRxEn]=1), time stamp (if RCTRL[TS] = 1) and
any padding (RCTRL[PAL])."

Though the FCS bytes are removed by the driver before passing the skb
to the net stack, the Rx buffer size computation does not currently
take into account the FCS bytes (4 bytes).
Because the Rx buffer size is multiple of 512 bytes, leaving out the
FCS is not a problem for the default MTU of 1500, as the Rx buffer size
is 1536 in this case.  However, for custom MTUs, where the difference
between the MTU size and the Rx buffer size is less, this can be a
problem as the computed Rx buffer size won't be enough to accomodate
the FCS for a received frame that is big enough (close to MTU size).
In such case the received frame is considered to be incomplete (L flag
not set in the RxBD status) and silently dropped.

Note that the driver does not currently support S/G on Rx, so it has to
compute its Rx buffer size based on the MTU of the device.

Reported-by: Kristian Otnes <kotnes@cisco.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@freescale.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-15 16:53:50 -04:00

3484 lines
90 KiB
C

/* drivers/net/ethernet/freescale/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
* Copyright 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/net_tstamp.h>
#include <asm/io.h>
#ifdef CONFIG_PPC
#include <asm/reg.h>
#include <asm/mpc85xx.h>
#endif
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include "gianfar.h"
#define TX_TIMEOUT (1*HZ)
const char gfar_driver_version[] = "1.3";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_reset_task(struct work_struct *work);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev);
static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
struct sk_buff *skb);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static noinline void gfar_update_link_state(struct gfar_private *priv);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct platform_device *ofdev);
static int gfar_remove(struct platform_device *ofdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
static int gfar_poll_rx(struct napi_struct *napi, int budget);
static int gfar_poll_tx(struct napi_struct *napi, int budget);
static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull, struct napi_struct *napi);
static void gfar_halt_nodisable(struct gfar_private *priv);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num,
const u8 *addr);
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
dma_addr_t buf)
{
u32 lstatus;
bdp->bufPtr = buf;
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
lstatus |= BD_LFLAG(RXBD_WRAP);
gfar_wmb();
bdp->lstatus = lstatus;
}
static int gfar_init_bds(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
int i, j;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
/* Initialize some variables in our dev structure */
tx_queue->num_txbdfree = tx_queue->tx_ring_size;
tx_queue->dirty_tx = tx_queue->tx_bd_base;
tx_queue->cur_tx = tx_queue->tx_bd_base;
tx_queue->skb_curtx = 0;
tx_queue->skb_dirtytx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = tx_queue->tx_bd_base;
for (j = 0; j < tx_queue->tx_ring_size; j++) {
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->cur_rx = rx_queue->rx_bd_base;
rx_queue->skb_currx = 0;
rxbdp = rx_queue->rx_bd_base;
for (j = 0; j < rx_queue->rx_ring_size; j++) {
struct sk_buff *skb = rx_queue->rx_skbuff[j];
if (skb) {
gfar_init_rxbdp(rx_queue, rxbdp,
rxbdp->bufPtr);
} else {
skb = gfar_new_skb(ndev);
if (!skb) {
netdev_err(ndev, "Can't allocate RX buffers\n");
return -ENOMEM;
}
rx_queue->rx_skbuff[j] = skb;
gfar_new_rxbdp(rx_queue, rxbdp, skb);
}
rxbdp++;
}
}
return 0;
}
static int gfar_alloc_skb_resources(struct net_device *ndev)
{
void *vaddr;
dma_addr_t addr;
int i, j, k;
struct gfar_private *priv = netdev_priv(ndev);
struct device *dev = priv->dev;
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
priv->total_tx_ring_size = 0;
for (i = 0; i < priv->num_tx_queues; i++)
priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
priv->total_rx_ring_size = 0;
for (i = 0; i < priv->num_rx_queues; i++)
priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
/* Allocate memory for the buffer descriptors */
vaddr = dma_alloc_coherent(dev,
(priv->total_tx_ring_size *
sizeof(struct txbd8)) +
(priv->total_rx_ring_size *
sizeof(struct rxbd8)),
&addr, GFP_KERNEL);
if (!vaddr)
return -ENOMEM;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_bd_base = vaddr;
tx_queue->tx_bd_dma_base = addr;
tx_queue->dev = ndev;
/* enet DMA only understands physical addresses */
addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
}
/* Start the rx descriptor ring where the tx ring leaves off */
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_bd_base = vaddr;
rx_queue->rx_bd_dma_base = addr;
rx_queue->dev = ndev;
addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
}
/* Setup the skbuff rings */
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_skbuff =
kmalloc_array(tx_queue->tx_ring_size,
sizeof(*tx_queue->tx_skbuff),
GFP_KERNEL);
if (!tx_queue->tx_skbuff)
goto cleanup;
for (k = 0; k < tx_queue->tx_ring_size; k++)
tx_queue->tx_skbuff[k] = NULL;
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_skbuff =
kmalloc_array(rx_queue->rx_ring_size,
sizeof(*rx_queue->rx_skbuff),
GFP_KERNEL);
if (!rx_queue->rx_skbuff)
goto cleanup;
for (j = 0; j < rx_queue->rx_ring_size; j++)
rx_queue->rx_skbuff[j] = NULL;
}
if (gfar_init_bds(ndev))
goto cleanup;
return 0;
cleanup:
free_skb_resources(priv);
return -ENOMEM;
}
static void gfar_init_tx_rx_base(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
int i;
baddr = &regs->tbase0;
for (i = 0; i < priv->num_tx_queues; i++) {
gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
baddr += 2;
}
baddr = &regs->rbase0;
for (i = 0; i < priv->num_rx_queues; i++) {
gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
baddr += 2;
}
}
static void gfar_rx_buff_size_config(struct gfar_private *priv)
{
int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
/* set this when rx hw offload (TOE) functions are being used */
priv->uses_rxfcb = 0;
if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
priv->uses_rxfcb = 1;
if (priv->hwts_rx_en)
priv->uses_rxfcb = 1;
if (priv->uses_rxfcb)
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
priv->rx_buffer_size = frame_size;
}
static void gfar_mac_rx_config(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 rctrl = 0;
if (priv->rx_filer_enable) {
rctrl |= RCTRL_FILREN;
/* Program the RIR0 reg with the required distribution */
if (priv->poll_mode == GFAR_SQ_POLLING)
gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
else /* GFAR_MQ_POLLING */
gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
}
/* Restore PROMISC mode */
if (priv->ndev->flags & IFF_PROMISC)
rctrl |= RCTRL_PROM;
if (priv->ndev->features & NETIF_F_RXCSUM)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash)
rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Enable HW time stamping if requested from user space */
if (priv->hwts_rx_en)
rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
/* Init rctrl based on our settings */
gfar_write(&regs->rctrl, rctrl);
}
static void gfar_mac_tx_config(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tctrl = 0;
if (priv->ndev->features & NETIF_F_IP_CSUM)
tctrl |= TCTRL_INIT_CSUM;
if (priv->prio_sched_en)
tctrl |= TCTRL_TXSCHED_PRIO;
else {
tctrl |= TCTRL_TXSCHED_WRRS;
gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
}
if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
tctrl |= TCTRL_VLINS;
gfar_write(&regs->tctrl, tctrl);
}
static void gfar_configure_coalescing(struct gfar_private *priv,
unsigned long tx_mask, unsigned long rx_mask)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
if (priv->mode == MQ_MG_MODE) {
int i = 0;
baddr = &regs->txic0;
for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
gfar_write(baddr + i, 0);
if (likely(priv->tx_queue[i]->txcoalescing))
gfar_write(baddr + i, priv->tx_queue[i]->txic);
}
baddr = &regs->rxic0;
for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
gfar_write(baddr + i, 0);
if (likely(priv->rx_queue[i]->rxcoalescing))
gfar_write(baddr + i, priv->rx_queue[i]->rxic);
}
} else {
/* Backward compatible case -- even if we enable
* multiple queues, there's only single reg to program
*/
gfar_write(&regs->txic, 0);
if (likely(priv->tx_queue[0]->txcoalescing))
gfar_write(&regs->txic, priv->tx_queue[0]->txic);
gfar_write(&regs->rxic, 0);
if (unlikely(priv->rx_queue[0]->rxcoalescing))
gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
}
}
void gfar_configure_coalescing_all(struct gfar_private *priv)
{
gfar_configure_coalescing(priv, 0xFF, 0xFF);
}
static struct net_device_stats *gfar_get_stats(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
unsigned long tx_packets = 0, tx_bytes = 0;
int i;
for (i = 0; i < priv->num_rx_queues; i++) {
rx_packets += priv->rx_queue[i]->stats.rx_packets;
rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
}
dev->stats.rx_packets = rx_packets;
dev->stats.rx_bytes = rx_bytes;
dev->stats.rx_dropped = rx_dropped;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
tx_packets += priv->tx_queue[i]->stats.tx_packets;
}
dev->stats.tx_bytes = tx_bytes;
dev->stats.tx_packets = tx_packets;
return &dev->stats;
}
static const struct net_device_ops gfar_netdev_ops = {
.ndo_open = gfar_enet_open,
.ndo_start_xmit = gfar_start_xmit,
.ndo_stop = gfar_close,
.ndo_change_mtu = gfar_change_mtu,
.ndo_set_features = gfar_set_features,
.ndo_set_rx_mode = gfar_set_multi,
.ndo_tx_timeout = gfar_timeout,
.ndo_do_ioctl = gfar_ioctl,
.ndo_get_stats = gfar_get_stats,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = gfar_netpoll,
#endif
};
static void gfar_ints_disable(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
struct gfar __iomem *regs = priv->gfargrp[i].regs;
/* Clear IEVENT */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
}
static void gfar_ints_enable(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
struct gfar __iomem *regs = priv->gfargrp[i].regs;
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
}
void lock_tx_qs(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++)
spin_lock(&priv->tx_queue[i]->txlock);
}
void unlock_tx_qs(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++)
spin_unlock(&priv->tx_queue[i]->txlock);
}
static int gfar_alloc_tx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
GFP_KERNEL);
if (!priv->tx_queue[i])
return -ENOMEM;
priv->tx_queue[i]->tx_skbuff = NULL;
priv->tx_queue[i]->qindex = i;
priv->tx_queue[i]->dev = priv->ndev;
spin_lock_init(&(priv->tx_queue[i]->txlock));
}
return 0;
}
static int gfar_alloc_rx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
GFP_KERNEL);
if (!priv->rx_queue[i])
return -ENOMEM;
priv->rx_queue[i]->rx_skbuff = NULL;
priv->rx_queue[i]->qindex = i;
priv->rx_queue[i]->dev = priv->ndev;
}
return 0;
}
static void gfar_free_tx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++)
kfree(priv->tx_queue[i]);
}
static void gfar_free_rx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_rx_queues; i++)
kfree(priv->rx_queue[i]);
}
static void unmap_group_regs(struct gfar_private *priv)
{
int i;
for (i = 0; i < MAXGROUPS; i++)
if (priv->gfargrp[i].regs)
iounmap(priv->gfargrp[i].regs);
}
static void free_gfar_dev(struct gfar_private *priv)
{
int i, j;
for (i = 0; i < priv->num_grps; i++)
for (j = 0; j < GFAR_NUM_IRQS; j++) {
kfree(priv->gfargrp[i].irqinfo[j]);
priv->gfargrp[i].irqinfo[j] = NULL;
}
free_netdev(priv->ndev);
}
static void disable_napi(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
napi_disable(&priv->gfargrp[i].napi_rx);
napi_disable(&priv->gfargrp[i].napi_tx);
}
}
static void enable_napi(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
napi_enable(&priv->gfargrp[i].napi_rx);
napi_enable(&priv->gfargrp[i].napi_tx);
}
}
static int gfar_parse_group(struct device_node *np,
struct gfar_private *priv, const char *model)
{
struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
int i;
for (i = 0; i < GFAR_NUM_IRQS; i++) {
grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
GFP_KERNEL);
if (!grp->irqinfo[i])
return -ENOMEM;
}
grp->regs = of_iomap(np, 0);
if (!grp->regs)
return -ENOMEM;
gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
if (gfar_irq(grp, TX)->irq == NO_IRQ ||
gfar_irq(grp, RX)->irq == NO_IRQ ||
gfar_irq(grp, ER)->irq == NO_IRQ)
return -EINVAL;
}
grp->priv = priv;
spin_lock_init(&grp->grplock);
if (priv->mode == MQ_MG_MODE) {
u32 *rxq_mask, *txq_mask;
rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
if (priv->poll_mode == GFAR_SQ_POLLING) {
/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
} else { /* GFAR_MQ_POLLING */
grp->rx_bit_map = rxq_mask ?
*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
grp->tx_bit_map = txq_mask ?
*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
}
} else {
grp->rx_bit_map = 0xFF;
grp->tx_bit_map = 0xFF;
}
/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
* right to left, so we need to revert the 8 bits to get the q index
*/
grp->rx_bit_map = bitrev8(grp->rx_bit_map);
grp->tx_bit_map = bitrev8(grp->tx_bit_map);
/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
* also assign queues to groups
*/
for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
if (!grp->rx_queue)
grp->rx_queue = priv->rx_queue[i];
grp->num_rx_queues++;
grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
priv->rx_queue[i]->grp = grp;
}
for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
if (!grp->tx_queue)
grp->tx_queue = priv->tx_queue[i];
grp->num_tx_queues++;
grp->tstat |= (TSTAT_CLEAR_THALT >> i);
priv->tqueue |= (TQUEUE_EN0 >> i);
priv->tx_queue[i]->grp = grp;
}
priv->num_grps++;
return 0;
}
static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
{
const char *model;
const char *ctype;
const void *mac_addr;
int err = 0, i;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct device_node *np = ofdev->dev.of_node;
struct device_node *child = NULL;
const u32 *stash;
const u32 *stash_len;
const u32 *stash_idx;
unsigned int num_tx_qs, num_rx_qs;
u32 *tx_queues, *rx_queues;
unsigned short mode, poll_mode;
if (!np || !of_device_is_available(np))
return -ENODEV;
if (of_device_is_compatible(np, "fsl,etsec2")) {
mode = MQ_MG_MODE;
poll_mode = GFAR_SQ_POLLING;
} else {
mode = SQ_SG_MODE;
poll_mode = GFAR_SQ_POLLING;
}
/* parse the num of HW tx and rx queues */
tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
if (mode == SQ_SG_MODE) {
num_tx_qs = 1;
num_rx_qs = 1;
} else { /* MQ_MG_MODE */
/* get the actual number of supported groups */
unsigned int num_grps = of_get_available_child_count(np);
if (num_grps == 0 || num_grps > MAXGROUPS) {
dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
num_grps);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
if (poll_mode == GFAR_SQ_POLLING) {
num_tx_qs = num_grps; /* one txq per int group */
num_rx_qs = num_grps; /* one rxq per int group */
} else { /* GFAR_MQ_POLLING */
num_tx_qs = tx_queues ? *tx_queues : 1;
num_rx_qs = rx_queues ? *rx_queues : 1;
}
}
if (num_tx_qs > MAX_TX_QS) {
pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
if (num_rx_qs > MAX_RX_QS) {
pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
num_rx_qs, MAX_RX_QS);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
dev = *pdev;
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->mode = mode;
priv->poll_mode = poll_mode;
priv->num_tx_queues = num_tx_qs;
netif_set_real_num_rx_queues(dev, num_rx_qs);
priv->num_rx_queues = num_rx_qs;
err = gfar_alloc_tx_queues(priv);
if (err)
goto tx_alloc_failed;
err = gfar_alloc_rx_queues(priv);
if (err)
goto rx_alloc_failed;
/* Init Rx queue filer rule set linked list */
INIT_LIST_HEAD(&priv->rx_list.list);
priv->rx_list.count = 0;
mutex_init(&priv->rx_queue_access);
model = of_get_property(np, "model", NULL);
for (i = 0; i < MAXGROUPS; i++)
priv->gfargrp[i].regs = NULL;
/* Parse and initialize group specific information */
if (priv->mode == MQ_MG_MODE) {
for_each_child_of_node(np, child) {
err = gfar_parse_group(child, priv, model);
if (err)
goto err_grp_init;
}
} else { /* SQ_SG_MODE */
err = gfar_parse_group(np, priv, model);
if (err)
goto err_grp_init;
}
stash = of_get_property(np, "bd-stash", NULL);
if (stash) {
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
priv->bd_stash_en = 1;
}
stash_len = of_get_property(np, "rx-stash-len", NULL);
if (stash_len)
priv->rx_stash_size = *stash_len;
stash_idx = of_get_property(np, "rx-stash-idx", NULL);
if (stash_idx)
priv->rx_stash_index = *stash_idx;
if (stash_len || stash_idx)
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
if (model && !strcasecmp(model, "TSEC"))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
FSL_GIANFAR_DEV_HAS_TIMER;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
else
priv->interface = PHY_INTERFACE_MODE_MII;
if (of_get_property(np, "fsl,magic-packet", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
if (!priv->phy_node && of_phy_is_fixed_link(np)) {
err = of_phy_register_fixed_link(np);
if (err)
goto err_grp_init;
priv->phy_node = of_node_get(np);
}
/* Find the TBI PHY. If it's not there, we don't support SGMII */
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
return 0;
err_grp_init:
unmap_group_regs(priv);
rx_alloc_failed:
gfar_free_rx_queues(priv);
tx_alloc_failed:
gfar_free_tx_queues(priv);
free_gfar_dev(priv);
return err;
}
static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config config;
struct gfar_private *priv = netdev_priv(netdev);
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
/* reserved for future extensions */
if (config.flags)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
priv->hwts_tx_en = 0;
break;
case HWTSTAMP_TX_ON:
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
return -ERANGE;
priv->hwts_tx_en = 1;
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
if (priv->hwts_rx_en) {
priv->hwts_rx_en = 0;
reset_gfar(netdev);
}
break;
default:
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
return -ERANGE;
if (!priv->hwts_rx_en) {
priv->hwts_rx_en = 1;
reset_gfar(netdev);
}
config.rx_filter = HWTSTAMP_FILTER_ALL;
break;
}
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config config;
struct gfar_private *priv = netdev_priv(netdev);
config.flags = 0;
config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
config.rx_filter = (priv->hwts_rx_en ?
HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct gfar_private *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (cmd == SIOCSHWTSTAMP)
return gfar_hwtstamp_set(dev, rq);
if (cmd == SIOCGHWTSTAMP)
return gfar_hwtstamp_get(dev, rq);
if (!priv->phydev)
return -ENODEV;
return phy_mii_ioctl(priv->phydev, rq, cmd);
}
static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
u32 class)
{
u32 rqfpr = FPR_FILER_MASK;
u32 rqfcr = 0x0;
rqfar--;
rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_NOMATCH;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
return rqfar;
}
static void gfar_init_filer_table(struct gfar_private *priv)
{
int i = 0x0;
u32 rqfar = MAX_FILER_IDX;
u32 rqfcr = 0x0;
u32 rqfpr = FPR_FILER_MASK;
/* Default rule */
rqfcr = RQFCR_CMP_MATCH;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
/* cur_filer_idx indicated the first non-masked rule */
priv->cur_filer_idx = rqfar;
/* Rest are masked rules */
rqfcr = RQFCR_CMP_NOMATCH;
for (i = 0; i < rqfar; i++) {
priv->ftp_rqfcr[i] = rqfcr;
priv->ftp_rqfpr[i] = rqfpr;
gfar_write_filer(priv, i, rqfcr, rqfpr);
}
}
#ifdef CONFIG_PPC
static void __gfar_detect_errata_83xx(struct gfar_private *priv)
{
unsigned int pvr = mfspr(SPRN_PVR);
unsigned int svr = mfspr(SPRN_SVR);
unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
unsigned int rev = svr & 0xffff;
/* MPC8313 Rev 2.0 and higher; All MPC837x */
if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
priv->errata |= GFAR_ERRATA_74;
/* MPC8313 and MPC837x all rev */
if ((pvr == 0x80850010 && mod == 0x80b0) ||
(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
priv->errata |= GFAR_ERRATA_76;
/* MPC8313 Rev < 2.0 */
if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
priv->errata |= GFAR_ERRATA_12;
}
static void __gfar_detect_errata_85xx(struct gfar_private *priv)
{
unsigned int svr = mfspr(SPRN_SVR);
if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
priv->errata |= GFAR_ERRATA_12;
if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
}
#endif
static void gfar_detect_errata(struct gfar_private *priv)
{
struct device *dev = &priv->ofdev->dev;
/* no plans to fix */
priv->errata |= GFAR_ERRATA_A002;
#ifdef CONFIG_PPC
if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
__gfar_detect_errata_85xx(priv);
else /* non-mpc85xx parts, i.e. e300 core based */
__gfar_detect_errata_83xx(priv);
#endif
if (priv->errata)
dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
priv->errata);
}
void gfar_mac_reset(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
/* Reset MAC layer */
gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(3);
/* the soft reset bit is not self-resetting, so we need to
* clear it before resuming normal operation
*/
gfar_write(&regs->maccfg1, 0);
udelay(3);
/* Compute rx_buff_size based on config flags */
gfar_rx_buff_size_config(priv);
/* Initialize the max receive frame/buffer lengths */
gfar_write(&regs->maxfrm, priv->rx_buffer_size);
gfar_write(&regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
/* Initialize MACCFG2. */
tempval = MACCFG2_INIT_SETTINGS;
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length
*/
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
gfar_has_errata(priv, GFAR_ERRATA_74))
tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
gfar_write(&regs->maccfg2, tempval);
/* Clear mac addr hash registers */
gfar_write(&regs->igaddr0, 0);
gfar_write(&regs->igaddr1, 0);
gfar_write(&regs->igaddr2, 0);
gfar_write(&regs->igaddr3, 0);
gfar_write(&regs->igaddr4, 0);
gfar_write(&regs->igaddr5, 0);
gfar_write(&regs->igaddr6, 0);
gfar_write(&regs->igaddr7, 0);
gfar_write(&regs->gaddr0, 0);
gfar_write(&regs->gaddr1, 0);
gfar_write(&regs->gaddr2, 0);
gfar_write(&regs->gaddr3, 0);
gfar_write(&regs->gaddr4, 0);
gfar_write(&regs->gaddr5, 0);
gfar_write(&regs->gaddr6, 0);
gfar_write(&regs->gaddr7, 0);
if (priv->extended_hash)
gfar_clear_exact_match(priv->ndev);
gfar_mac_rx_config(priv);
gfar_mac_tx_config(priv);
gfar_set_mac_address(priv->ndev);
gfar_set_multi(priv->ndev);
/* clear ievent and imask before configuring coalescing */
gfar_ints_disable(priv);
/* Configure the coalescing support */
gfar_configure_coalescing_all(priv);
}
static void gfar_hw_init(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 attrs;
/* Stop the DMA engine now, in case it was running before
* (The firmware could have used it, and left it running).
*/
gfar_halt(priv);
gfar_mac_reset(priv);
/* Zero out the rmon mib registers if it has them */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&regs->rmon.cam1, 0xffffffff);
gfar_write(&regs->rmon.cam2, 0xffffffff);
}
/* Initialize ECNTRL */
gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&regs->attreli, attrs);
/* Start with defaults, and add stashing
* depending on driver parameters
*/
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&regs->attr, attrs);
/* FIFO configs */
gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
/* Program the interrupt steering regs, only for MG devices */
if (priv->num_grps > 1)
gfar_write_isrg(priv);
}
static void gfar_init_addr_hash_table(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &regs->igaddr0;
priv->hash_regs[1] = &regs->igaddr1;
priv->hash_regs[2] = &regs->igaddr2;
priv->hash_regs[3] = &regs->igaddr3;
priv->hash_regs[4] = &regs->igaddr4;
priv->hash_regs[5] = &regs->igaddr5;
priv->hash_regs[6] = &regs->igaddr6;
priv->hash_regs[7] = &regs->igaddr7;
priv->hash_regs[8] = &regs->gaddr0;
priv->hash_regs[9] = &regs->gaddr1;
priv->hash_regs[10] = &regs->gaddr2;
priv->hash_regs[11] = &regs->gaddr3;
priv->hash_regs[12] = &regs->gaddr4;
priv->hash_regs[13] = &regs->gaddr5;
priv->hash_regs[14] = &regs->gaddr6;
priv->hash_regs[15] = &regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &regs->gaddr0;
priv->hash_regs[1] = &regs->gaddr1;
priv->hash_regs[2] = &regs->gaddr2;
priv->hash_regs[3] = &regs->gaddr3;
priv->hash_regs[4] = &regs->gaddr4;
priv->hash_regs[5] = &regs->gaddr5;
priv->hash_regs[6] = &regs->gaddr6;
priv->hash_regs[7] = &regs->gaddr7;
}
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start
*/
static int gfar_probe(struct platform_device *ofdev)
{
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
int err = 0, i;
err = gfar_of_init(ofdev, &dev);
if (err)
return err;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->ofdev = ofdev;
priv->dev = &ofdev->dev;
SET_NETDEV_DEV(dev, &ofdev->dev);
spin_lock_init(&priv->bflock);
INIT_WORK(&priv->reset_task, gfar_reset_task);
platform_set_drvdata(ofdev, priv);
gfar_detect_errata(priv);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
/* Fill in the dev structure */
dev->watchdog_timeo = TX_TIMEOUT;
dev->mtu = 1500;
dev->netdev_ops = &gfar_netdev_ops;
dev->ethtool_ops = &gfar_ethtool_ops;
/* Register for napi ...We are registering NAPI for each grp */
for (i = 0; i < priv->num_grps; i++) {
if (priv->poll_mode == GFAR_SQ_POLLING) {
netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
gfar_poll_tx_sq, 2);
} else {
netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
gfar_poll_rx, GFAR_DEV_WEIGHT);
netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
gfar_poll_tx, 2);
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_RXCSUM;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
}
gfar_init_addr_hash_table(priv);
/* Insert receive time stamps into padding alignment bytes */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
priv->padding = 8;
if (dev->features & NETIF_F_IP_CSUM ||
priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
dev->needed_headroom = GMAC_FCB_LEN;
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
/* Initializing some of the rx/tx queue level parameters */
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
priv->tx_queue[i]->txic = DEFAULT_TXIC;
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rx_queue[i]->rxic = DEFAULT_RXIC;
}
/* always enable rx filer */
priv->rx_filer_enable = 1;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
/* use pritority h/w tx queue scheduling for single queue devices */
if (priv->num_tx_queues == 1)
priv->prio_sched_en = 1;
set_bit(GFAR_DOWN, &priv->state);
gfar_hw_init(priv);
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
pr_err("%s: Cannot register net device, aborting\n", dev->name);
goto register_fail;
}
device_init_wakeup(&dev->dev,
priv->device_flags &
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
/* fill out IRQ number and name fields */
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_tx");
sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_rx");
sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_er");
} else
strcpy(gfar_irq(grp, TX)->name, dev->name);
}
/* Initialize the filer table */
gfar_init_filer_table(priv);
/* Print out the device info */
netdev_info(dev, "mac: %pM\n", dev->dev_addr);
/* Even more device info helps when determining which kernel
* provided which set of benchmarks.
*/
netdev_info(dev, "Running with NAPI enabled\n");
for (i = 0; i < priv->num_rx_queues; i++)
netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
i, priv->rx_queue[i]->rx_ring_size);
for (i = 0; i < priv->num_tx_queues; i++)
netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
i, priv->tx_queue[i]->tx_ring_size);
return 0;
register_fail:
unmap_group_regs(priv);
gfar_free_rx_queues(priv);
gfar_free_tx_queues(priv);
of_node_put(priv->phy_node);
of_node_put(priv->tbi_node);
free_gfar_dev(priv);
return err;
}
static int gfar_remove(struct platform_device *ofdev)
{
struct gfar_private *priv = platform_get_drvdata(ofdev);
of_node_put(priv->phy_node);
of_node_put(priv->tbi_node);
unregister_netdev(priv->ndev);
unmap_group_regs(priv);
gfar_free_rx_queues(priv);
gfar_free_tx_queues(priv);
free_gfar_dev(priv);
return 0;
}
#ifdef CONFIG_PM
static int gfar_suspend(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags &
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
netif_device_detach(ndev);
if (netif_running(ndev)) {
local_irq_save(flags);
lock_tx_qs(priv);
gfar_halt_nodisable(priv);
/* Disable Tx, and Rx if wake-on-LAN is disabled. */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~MACCFG1_TX_EN;
if (!magic_packet)
tempval &= ~MACCFG1_RX_EN;
gfar_write(&regs->maccfg1, tempval);
unlock_tx_qs(priv);
local_irq_restore(flags);
disable_napi(priv);
if (magic_packet) {
/* Enable interrupt on Magic Packet */
gfar_write(&regs->imask, IMASK_MAG);
/* Enable Magic Packet mode */
tempval = gfar_read(&regs->maccfg2);
tempval |= MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
} else {
phy_stop(priv->phydev);
}
}
return 0;
}
static int gfar_resume(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags &
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
if (!netif_running(ndev)) {
netif_device_attach(ndev);
return 0;
}
if (!magic_packet && priv->phydev)
phy_start(priv->phydev);
/* Disable Magic Packet mode, in case something
* else woke us up.
*/
local_irq_save(flags);
lock_tx_qs(priv);
tempval = gfar_read(&regs->maccfg2);
tempval &= ~MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
gfar_start(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static int gfar_restore(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
if (!netif_running(ndev)) {
netif_device_attach(ndev);
return 0;
}
if (gfar_init_bds(ndev)) {
free_skb_resources(priv);
return -ENOMEM;
}
gfar_mac_reset(priv);
gfar_init_tx_rx_base(priv);
gfar_start(priv);
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
if (priv->phydev)
phy_start(priv->phydev);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static struct dev_pm_ops gfar_pm_ops = {
.suspend = gfar_suspend,
.resume = gfar_resume,
.freeze = gfar_suspend,
.thaw = gfar_resume,
.restore = gfar_restore,
};
#define GFAR_PM_OPS (&gfar_pm_ops)
#else
#define GFAR_PM_OPS NULL
#endif
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 ecntrl;
ecntrl = gfar_read(&regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
return PHY_INTERFACE_MODE_RMII;
}
else {
phy_interface_t interface = priv->interface;
/* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
GFAR_SUPPORTED_GBIT : 0;
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
interface);
if (!priv->phydev) {
dev_err(&dev->dev, "could not attach to PHY\n");
return -ENODEV;
}
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
/* Remove any features not supported by the controller */
priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
priv->phydev->advertising = priv->phydev->supported;
return 0;
}
/* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *tbiphy;
if (!priv->tbi_node) {
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a tbi-handle\n");
return;
}
tbiphy = of_phy_find_device(priv->tbi_node);
if (!tbiphy) {
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
return;
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(tbiphy, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
BMCR_SPEED1000);
}
static int __gfar_is_rx_idle(struct gfar_private *priv)
{
u32 res;
/* Normaly TSEC should not hang on GRS commands, so we should
* actually wait for IEVENT_GRSC flag.
*/
if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
return 0;
/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
* the same as bits 23-30, the eTSEC Rx is assumed to be idle
* and the Rx can be safely reset.
*/
res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
res &= 0x7f807f80;
if ((res & 0xffff) == (res >> 16))
return 1;
return 0;
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
unsigned int timeout;
int stopped;
gfar_ints_disable(priv);
if (gfar_is_dma_stopped(priv))
return;
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&regs->dmactrl);
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
retry:
timeout = 1000;
while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
cpu_relax();
timeout--;
}
if (!timeout)
stopped = gfar_is_dma_stopped(priv);
if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
!__gfar_is_rx_idle(priv))
goto retry;
}
/* Halt the receive and transmit queues */
void gfar_halt(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
/* Dissable the Rx/Tx hw queues */
gfar_write(&regs->rqueue, 0);
gfar_write(&regs->tqueue, 0);
mdelay(10);
gfar_halt_nodisable(priv);
/* Disable Rx/Tx DMA */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
netif_tx_stop_all_queues(dev);
smp_mb__before_atomic();
set_bit(GFAR_DOWN, &priv->state);
smp_mb__after_atomic();
disable_napi(priv);
/* disable ints and gracefully shut down Rx/Tx DMA */
gfar_halt(priv);
phy_stop(priv->phydev);
free_skb_resources(priv);
}
static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
{
struct txbd8 *txbdp;
struct gfar_private *priv = netdev_priv(tx_queue->dev);
int i, j;
txbdp = tx_queue->tx_bd_base;
for (i = 0; i < tx_queue->tx_ring_size; i++) {
if (!tx_queue->tx_skbuff[i])
continue;
dma_unmap_single(priv->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
txbdp->lstatus = 0;
for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
j++) {
txbdp++;
dma_unmap_page(priv->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
tx_queue->tx_skbuff[i] = NULL;
}
kfree(tx_queue->tx_skbuff);
tx_queue->tx_skbuff = NULL;
}
static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
{
struct rxbd8 *rxbdp;
struct gfar_private *priv = netdev_priv(rx_queue->dev);
int i;
rxbdp = rx_queue->rx_bd_base;
for (i = 0; i < rx_queue->rx_ring_size; i++) {
if (rx_queue->rx_skbuff[i]) {
dma_unmap_single(priv->dev, rxbdp->bufPtr,
priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
rx_queue->rx_skbuff[i] = NULL;
}
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(rx_queue->rx_skbuff);
rx_queue->rx_skbuff = NULL;
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff
*/
static void free_skb_resources(struct gfar_private *priv)
{
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
int i;
/* Go through all the buffer descriptors and free their data buffers */
for (i = 0; i < priv->num_tx_queues; i++) {
struct netdev_queue *txq;
tx_queue = priv->tx_queue[i];
txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
if (tx_queue->tx_skbuff)
free_skb_tx_queue(tx_queue);
netdev_tx_reset_queue(txq);
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
if (rx_queue->rx_skbuff)
free_skb_rx_queue(rx_queue);
}
dma_free_coherent(priv->dev,
sizeof(struct txbd8) * priv->total_tx_ring_size +
sizeof(struct rxbd8) * priv->total_rx_ring_size,
priv->tx_queue[0]->tx_bd_base,
priv->tx_queue[0]->tx_bd_dma_base);
}
void gfar_start(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
int i = 0;
/* Enable Rx/Tx hw queues */
gfar_write(&regs->rqueue, priv->rqueue);
gfar_write(&regs->tqueue, priv->tqueue);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
}
/* Enable Rx/Tx DMA */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
gfar_ints_enable(priv);
priv->ndev->trans_start = jiffies; /* prevent tx timeout */
}
static void free_grp_irqs(struct gfar_priv_grp *grp)
{
free_irq(gfar_irq(grp, TX)->irq, grp);
free_irq(gfar_irq(grp, RX)->irq, grp);
free_irq(gfar_irq(grp, ER)->irq, grp);
}
static int register_grp_irqs(struct gfar_priv_grp *grp)
{
struct gfar_private *priv = grp->priv;
struct net_device *dev = priv->ndev;
int err;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one
*/
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive
*/
err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
gfar_irq(grp, ER)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, ER)->irq);
goto err_irq_fail;
}
err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
gfar_irq(grp, TX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, TX)->irq);
goto tx_irq_fail;
}
err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
gfar_irq(grp, RX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, RX)->irq);
goto rx_irq_fail;
}
} else {
err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
gfar_irq(grp, TX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, TX)->irq);
goto err_irq_fail;
}
}
return 0;
rx_irq_fail:
free_irq(gfar_irq(grp, TX)->irq, grp);
tx_irq_fail:
free_irq(gfar_irq(grp, ER)->irq, grp);
err_irq_fail:
return err;
}
static void gfar_free_irq(struct gfar_private *priv)
{
int i;
/* Free the IRQs */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++)
free_grp_irqs(&priv->gfargrp[i]);
} else {
for (i = 0; i < priv->num_grps; i++)
free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
&priv->gfargrp[i]);
}
}
static int gfar_request_irq(struct gfar_private *priv)
{
int err, i, j;
for (i = 0; i < priv->num_grps; i++) {
err = register_grp_irqs(&priv->gfargrp[i]);
if (err) {
for (j = 0; j < i; j++)
free_grp_irqs(&priv->gfargrp[j]);
return err;
}
}
return 0;
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
int err;
gfar_mac_reset(priv);
err = gfar_alloc_skb_resources(ndev);
if (err)
return err;
gfar_init_tx_rx_base(priv);
smp_mb__before_atomic();
clear_bit(GFAR_DOWN, &priv->state);
smp_mb__after_atomic();
/* Start Rx/Tx DMA and enable the interrupts */
gfar_start(priv);
phy_start(priv->phydev);
enable_napi(priv);
netif_tx_wake_all_queues(ndev);
return 0;
}
/* Called when something needs to use the ethernet device
* Returns 0 for success.
*/
static int gfar_enet_open(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int err;
err = init_phy(dev);
if (err)
return err;
err = gfar_request_irq(priv);
if (err)
return err;
err = startup_gfar(dev);
if (err)
return err;
device_set_wakeup_enable(&dev->dev, priv->wol_en);
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
{
struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
int fcb_length)
{
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
u8 flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is
* And provide the already calculated phcs
*/
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = udp_hdr(skb)->check;
} else
fcb->phcs = tcp_hdr(skb)->check;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr
*/
fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
struct txbd8 *base, int ring_size)
{
struct txbd8 *new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
/* eTSEC12: csum generation not supported for some fcb offsets */
static inline bool gfar_csum_errata_12(struct gfar_private *priv,
unsigned long fcb_addr)
{
return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
(fcb_addr % 0x20) > 0x18);
}
/* eTSEC76: csum generation for frames larger than 2500 may
* cause excess delays before start of transmission
*/
static inline bool gfar_csum_errata_76(struct gfar_private *priv,
unsigned int len)
{
return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
(len > 2500));
}
/* This is called by the kernel when a frame is ready for transmission.
* It is pointed to by the dev->hard_start_xmit function pointer
*/
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct netdev_queue *txq;
struct gfar __iomem *regs = NULL;
struct txfcb *fcb = NULL;
struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
u32 lstatus;
int i, rq = 0;
int do_tstamp, do_csum, do_vlan;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
rq = skb->queue_mapping;
tx_queue = priv->tx_queue[rq];
txq = netdev_get_tx_queue(dev, rq);
base = tx_queue->tx_bd_base;
regs = tx_queue->grp->regs;
do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
do_vlan = vlan_tx_tag_present(skb);
do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en;
if (do_csum || do_vlan)
fcb_len = GMAC_FCB_LEN;
/* check if time stamp should be generated */
if (unlikely(do_tstamp))
fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
/* make space for additional header when fcb is needed */
if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, fcb_len);
if (!skb_new) {
dev->stats.tx_errors++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->sk)
skb_set_owner_w(skb_new, skb->sk);
dev_consume_skb_any(skb);
skb = skb_new;
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
/* calculate the required number of TxBDs for this skb */
if (unlikely(do_tstamp))
nr_txbds = nr_frags + 2;
else
nr_txbds = nr_frags + 1;
/* check if there is space to queue this packet */
if (nr_txbds > tx_queue->num_txbdfree) {
/* no space, stop the queue */
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
bytes_sent = skb->len;
tx_queue->stats.tx_bytes += bytes_sent;
/* keep Tx bytes on wire for BQL accounting */
GFAR_CB(skb)->bytes_sent = bytes_sent;
tx_queue->stats.tx_packets++;
txbdp = txbdp_start = tx_queue->cur_tx;
lstatus = txbdp->lstatus;
/* Time stamp insertion requires one additional TxBD */
if (unlikely(do_tstamp))
txbdp_tstamp = txbdp = next_txbd(txbdp, base,
tx_queue->tx_ring_size);
if (nr_frags == 0) {
if (unlikely(do_tstamp))
txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
TXBD_INTERRUPT);
else
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
} else {
/* Place the fragment addresses and lengths into the TxBDs */
for (i = 0; i < nr_frags; i++) {
unsigned int frag_len;
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
frag_len = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | frag_len |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if (i == nr_frags - 1)
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
bufaddr = skb_frag_dma_map(priv->dev,
&skb_shinfo(skb)->frags[i],
0,
frag_len,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Add TxPAL between FCB and frame if required */
if (unlikely(do_tstamp)) {
skb_push(skb, GMAC_TXPAL_LEN);
memset(skb->data, 0, GMAC_TXPAL_LEN);
}
/* Add TxFCB if required */
if (fcb_len) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
/* Set up checksumming */
if (do_csum) {
gfar_tx_checksum(skb, fcb, fcb_len);
if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
unlikely(gfar_csum_errata_76(priv, skb->len))) {
__skb_pull(skb, GMAC_FCB_LEN);
skb_checksum_help(skb);
if (do_vlan || do_tstamp) {
/* put back a new fcb for vlan/tstamp TOE */
fcb = gfar_add_fcb(skb);
} else {
/* Tx TOE not used */
lstatus &= ~(BD_LFLAG(TXBD_TOE));
fcb = NULL;
}
}
}
if (do_vlan)
gfar_tx_vlan(skb, fcb);
/* Setup tx hardware time stamping if requested */
if (unlikely(do_tstamp)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
fcb->ptp = 1;
}
txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
/* If time stamping is requested one additional TxBD must be set up. The
* first TxBD points to the FCB and must have a data length of
* GMAC_FCB_LEN. The second TxBD points to the actual frame data with
* the full frame length.
*/
if (unlikely(do_tstamp)) {
txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
(skb_headlen(skb) - fcb_len);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
} else {
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
}
netdev_tx_sent_queue(txq, bytes_sent);
/* We can work in parallel with gfar_clean_tx_ring(), except
* when modifying num_txbdfree. Note that we didn't grab the lock
* when we were reading the num_txbdfree and checking for available
* space, that's because outside of this function it can only grow,
* and once we've got needed space, it cannot suddenly disappear.
*
* The lock also protects us from gfar_error(), which can modify
* regs->tstat and thus retrigger the transfers, which is why we
* also must grab the lock before setting ready bit for the first
* to be transmitted BD.
*/
spin_lock_irqsave(&tx_queue->txlock, flags);
gfar_wmb();
txbdp_start->lstatus = lstatus;
gfar_wmb(); /* force lstatus write before tx_skbuff */
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary)
*/
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
/* reduce TxBD free count */
tx_queue->num_txbdfree -= (nr_txbds);
/* If the next BD still needs to be cleaned up, then the bds
* are full. We need to tell the kernel to stop sending us stuff.
*/
if (!tx_queue->num_txbdfree) {
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
}
/* Tell the DMA to go go go */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
/* Unlock priv */
spin_unlock_irqrestore(&tx_queue->txlock, flags);
return NETDEV_TX_OK;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
gfar_free_irq(priv);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
struct gfar_private *priv = netdev_priv(dev);
int frame_size = new_mtu + ETH_HLEN;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
netif_err(priv, drv, dev, "Invalid MTU setting\n");
return -EINVAL;
}
while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
cpu_relax();
if (dev->flags & IFF_UP)
stop_gfar(dev);
dev->mtu = new_mtu;
if (dev->flags & IFF_UP)
startup_gfar(dev);
clear_bit_unlock(GFAR_RESETTING, &priv->state);
return 0;
}
void reset_gfar(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
cpu_relax();
stop_gfar(ndev);
startup_gfar(ndev);
clear_bit_unlock(GFAR_RESETTING, &priv->state);
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct *work)
{
struct gfar_private *priv = container_of(work, struct gfar_private,
reset_task);
reset_gfar(priv->ndev);
}
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
static void gfar_align_skb(struct sk_buff *skb)
{
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb, RXBUF_ALIGNMENT -
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
}
/* Interrupt Handler for Transmit complete */
static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
{
struct net_device *dev = tx_queue->dev;
struct netdev_queue *txq;
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp, *next = NULL;
struct txbd8 *lbdp = NULL;
struct txbd8 *base = tx_queue->tx_bd_base;
struct sk_buff *skb;
int skb_dirtytx;
int tx_ring_size = tx_queue->tx_ring_size;
int frags = 0, nr_txbds = 0;
int i;
int howmany = 0;
int tqi = tx_queue->qindex;
unsigned int bytes_sent = 0;
u32 lstatus;
size_t buflen;
txq = netdev_get_tx_queue(dev, tqi);
bdp = tx_queue->dirty_tx;
skb_dirtytx = tx_queue->skb_dirtytx;
while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
unsigned long flags;
frags = skb_shinfo(skb)->nr_frags;
/* When time stamping, one additional TxBD must be freed.
* Also, we need to dma_unmap_single() the TxPAL.
*/
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
nr_txbds = frags + 2;
else
nr_txbds = frags + 1;
lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
lstatus = lbdp->lstatus;
/* Only clean completed frames */
if ((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
break;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
next = next_txbd(bdp, base, tx_ring_size);
buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
} else
buflen = bdp->length;
dma_unmap_single(priv->dev, bdp->bufPtr,
buflen, DMA_TO_DEVICE);
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
struct skb_shared_hwtstamps shhwtstamps;
u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(*ns);
skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
skb_tstamp_tx(skb, &shhwtstamps);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next;
}
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
for (i = 0; i < frags; i++) {
dma_unmap_page(priv->dev, bdp->bufPtr,
bdp->length, DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
}
bytes_sent += GFAR_CB(skb)->bytes_sent;
dev_kfree_skb_any(skb);
tx_queue->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
spin_lock_irqsave(&tx_queue->txlock, flags);
tx_queue->num_txbdfree += nr_txbds;
spin_unlock_irqrestore(&tx_queue->txlock, flags);
}
/* If we freed a buffer, we can restart transmission, if necessary */
if (tx_queue->num_txbdfree &&
netif_tx_queue_stopped(txq) &&
!(test_bit(GFAR_DOWN, &priv->state)))
netif_wake_subqueue(priv->ndev, tqi);
/* Update dirty indicators */
tx_queue->skb_dirtytx = skb_dirtytx;
tx_queue->dirty_tx = bdp;
netdev_tx_completed_queue(txq, howmany, bytes_sent);
}
static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
struct sk_buff *skb)
{
struct net_device *dev = rx_queue->dev;
struct gfar_private *priv = netdev_priv(dev);
dma_addr_t buf;
buf = dma_map_single(priv->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
gfar_init_rxbdp(rx_queue, bdp, buf);
}
static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb;
skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (!skb)
return NULL;
gfar_align_skb(skb);
return skb;
}
struct sk_buff *gfar_new_skb(struct net_device *dev)
{
return gfar_alloc_skb(dev);
}
static inline void count_errors(unsigned short status, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
atomic64_inc(&estats->rx_trunc);
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
atomic64_inc(&estats->rx_large);
else
atomic64_inc(&estats->rx_short);
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
atomic64_inc(&estats->rx_nonoctet);
}
if (status & RXBD_CRCERR) {
atomic64_inc(&estats->rx_crcerr);
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
atomic64_inc(&estats->rx_overrun);
stats->rx_crc_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *grp_id)
{
struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
unsigned long flags;
u32 imask;
if (likely(napi_schedule_prep(&grp->napi_rx))) {
spin_lock_irqsave(&grp->grplock, flags);
imask = gfar_read(&grp->regs->imask);
imask &= IMASK_RX_DISABLED;
gfar_write(&grp->regs->imask, imask);
spin_unlock_irqrestore(&grp->grplock, flags);
__napi_schedule(&grp->napi_rx);
} else {
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
}
return IRQ_HANDLED;
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *grp_id)
{
struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
unsigned long flags;
u32 imask;
if (likely(napi_schedule_prep(&grp->napi_tx))) {
spin_lock_irqsave(&grp->grplock, flags);
imask = gfar_read(&grp->regs->imask);
imask &= IMASK_TX_DISABLED;
gfar_write(&grp->regs->imask, imask);
spin_unlock_irqrestore(&grp->grplock, flags);
__napi_schedule(&grp->napi_tx);
} else {
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
}
return IRQ_HANDLED;
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is [FIXME]
*/
if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull, struct napi_struct *napi)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb
* Remove the padded bytes, if there are any
*/
if (amount_pull) {
skb_record_rx_queue(skb, fcb->rq);
skb_pull(skb, amount_pull);
}
/* Get receive timestamp from the skb */
if (priv->hwts_rx_en) {
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
u64 *ns = (u64 *) skb->data;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(*ns);
}
if (priv->padding)
skb_pull(skb, priv->padding);
if (dev->features & NETIF_F_RXCSUM)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
* Even if vlan rx accel is disabled, on some chips
* RXFCB_VLN is pseudo randomly set.
*/
if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
fcb->flags & RXFCB_VLN)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
/* Send the packet up the stack */
napi_gro_receive(napi, skb);
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
{
struct net_device *dev = rx_queue->dev;
struct rxbd8 *bdp, *base;
struct sk_buff *skb;
int pkt_len;
int amount_pull;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = rx_queue->cur_rx;
base = rx_queue->rx_bd_base;
amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
struct sk_buff *newskb;
rmb();
/* Add another skb for the future */
newskb = gfar_new_skb(dev);
skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
dma_unmap_single(priv->dev, bdp->bufPtr,
priv->rx_buffer_size, DMA_FROM_DEVICE);
if (unlikely(!(bdp->status & RXBD_ERR) &&
bdp->length > priv->rx_buffer_size))
bdp->status = RXBD_LARGE;
/* We drop the frame if we failed to allocate a new buffer */
if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
bdp->status & RXBD_ERR)) {
count_errors(bdp->status, dev);
if (unlikely(!newskb))
newskb = skb;
else if (skb)
dev_kfree_skb(skb);
} else {
/* Increment the number of packets */
rx_queue->stats.rx_packets++;
howmany++;
if (likely(skb)) {
pkt_len = bdp->length - ETH_FCS_LEN;
/* Remove the FCS from the packet length */
skb_put(skb, pkt_len);
rx_queue->stats.rx_bytes += pkt_len;
skb_record_rx_queue(skb, rx_queue->qindex);
gfar_process_frame(dev, skb, amount_pull,
&rx_queue->grp->napi_rx);
} else {
netif_warn(priv, rx_err, dev, "Missing skb!\n");
rx_queue->stats.rx_dropped++;
atomic64_inc(&priv->extra_stats.rx_skbmissing);
}
}
rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
/* Setup the new bdp */
gfar_new_rxbdp(rx_queue, bdp, newskb);
/* Update to the next pointer */
bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
/* update to point at the next skb */
rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
RX_RING_MOD_MASK(rx_queue->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
rx_queue->cur_rx = bdp;
return howmany;
}
static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_rx);
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
int work_done = 0;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_RX_MASK);
work_done = gfar_clean_rx_ring(rx_queue, budget);
if (work_done < budget) {
u32 imask;
napi_complete(napi);
/* Clear the halt bit in RSTAT */
gfar_write(&regs->rstat, gfargrp->rstat);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_RX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return work_done;
}
static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_tx);
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
u32 imask;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_TX_MASK);
/* run Tx cleanup to completion */
if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
gfar_clean_tx_ring(tx_queue);
napi_complete(napi);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_TX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
return 0;
}
static int gfar_poll_rx(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_rx);
struct gfar_private *priv = gfargrp->priv;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_rx_q *rx_queue = NULL;
int work_done = 0, work_done_per_q = 0;
int i, budget_per_q = 0;
unsigned long rstat_rxf;
int num_act_queues;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_RX_MASK);
rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
if (num_act_queues)
budget_per_q = budget/num_act_queues;
for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
/* skip queue if not active */
if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
continue;
rx_queue = priv->rx_queue[i];
work_done_per_q =
gfar_clean_rx_ring(rx_queue, budget_per_q);
work_done += work_done_per_q;
/* finished processing this queue */
if (work_done_per_q < budget_per_q) {
/* clear active queue hw indication */
gfar_write(&regs->rstat,
RSTAT_CLEAR_RXF0 >> i);
num_act_queues--;
if (!num_act_queues)
break;
}
}
if (!num_act_queues) {
u32 imask;
napi_complete(napi);
/* Clear the halt bit in RSTAT */
gfar_write(&regs->rstat, gfargrp->rstat);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_RX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return work_done;
}
static int gfar_poll_tx(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_tx);
struct gfar_private *priv = gfargrp->priv;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_tx_q *tx_queue = NULL;
int has_tx_work = 0;
int i;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_TX_MASK);
for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
tx_queue = priv->tx_queue[i];
/* run Tx cleanup to completion */
if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
gfar_clean_tx_ring(tx_queue);
has_tx_work = 1;
}
}
if (!has_tx_work) {
u32 imask;
napi_complete(napi);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_TX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int i;
/* If the device has multiple interrupts, run tx/rx */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
disable_irq(gfar_irq(grp, TX)->irq);
disable_irq(gfar_irq(grp, RX)->irq);
disable_irq(gfar_irq(grp, ER)->irq);
gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
enable_irq(gfar_irq(grp, ER)->irq);
enable_irq(gfar_irq(grp, RX)->irq);
enable_irq(gfar_irq(grp, TX)->irq);
}
} else {
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
disable_irq(gfar_irq(grp, TX)->irq);
gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
enable_irq(gfar_irq(grp, TX)->irq);
}
}
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
/* Save ievent for future reference */
u32 events = gfar_read(&gfargrp->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
gfar_receive(irq, grp_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
gfar_transmit(irq, grp_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, grp_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
if (unlikely(phydev->link != priv->oldlink ||
phydev->duplex != priv->oldduplex ||
phydev->speed != priv->oldspeed))
gfar_update_link_state(priv);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed
*/
static void gfar_set_multi(struct net_device *dev)
{
struct netdev_hw_addr *ha;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
if (dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if (dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them
*/
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if (netdev_mc_empty(dev))
return;
/* Parse the list, and set the appropriate bits */
netdev_for_each_mc_addr(ha, dev) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx, ha->addr);
idx++;
} else
gfar_set_hash_for_addr(dev, ha->addr);
}
}
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception
*/
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
gfar_set_mac_for_addr(dev, idx, zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry.
*/
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(ETH_ALEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num,
const u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
u32 __iomem *macptr = &regs->macstnaddr1;
macptr += num*2;
/* For a station address of 0x12345678ABCD in transmission
* order (BE), MACnADDR1 is set to 0xCDAB7856 and
* MACnADDR2 is set to 0x34120000.
*/
tempval = (addr[5] << 24) | (addr[4] << 16) |
(addr[3] << 8) | addr[2];
gfar_write(macptr, tempval);
tempval = (addr[1] << 24) | (addr[0] << 16);
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_private *priv= gfargrp->priv;
struct net_device *dev = priv->ndev;
/* Save ievent for future reference */
u32 events = gfar_read(&regs->ievent);
/* Clear IEVENT */
gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
/* Magic Packet is not an error. */
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
(events & IEVENT_MAG))
events &= ~IEVENT_MAG;
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
netdev_dbg(dev,
"error interrupt (ievent=0x%08x imask=0x%08x)\n",
events, gfar_read(&regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
unsigned long flags;
netif_dbg(priv, tx_err, dev,
"TX FIFO underrun, packet dropped\n");
dev->stats.tx_dropped++;
atomic64_inc(&priv->extra_stats.tx_underrun);
local_irq_save(flags);
lock_tx_qs(priv);
/* Reactivate the Tx Queues */
gfar_write(&regs->tstat, gfargrp->tstat);
unlock_tx_qs(priv);
local_irq_restore(flags);
}
netif_dbg(priv, tx_err, dev, "Transmit Error\n");
}
if (events & IEVENT_BSY) {
dev->stats.rx_errors++;
atomic64_inc(&priv->extra_stats.rx_bsy);
gfar_receive(irq, grp_id);
netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
gfar_read(&regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
atomic64_inc(&priv->extra_stats.rx_babr);
netif_dbg(priv, rx_err, dev, "babbling RX error\n");
}
if (events & IEVENT_EBERR) {
atomic64_inc(&priv->extra_stats.eberr);
netif_dbg(priv, rx_err, dev, "bus error\n");
}
if (events & IEVENT_RXC)
netif_dbg(priv, rx_status, dev, "control frame\n");
if (events & IEVENT_BABT) {
atomic64_inc(&priv->extra_stats.tx_babt);
netif_dbg(priv, tx_err, dev, "babbling TX error\n");
}
return IRQ_HANDLED;
}
static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
{
struct phy_device *phydev = priv->phydev;
u32 val = 0;
if (!phydev->duplex)
return val;
if (!priv->pause_aneg_en) {
if (priv->tx_pause_en)
val |= MACCFG1_TX_FLOW;
if (priv->rx_pause_en)
val |= MACCFG1_RX_FLOW;
} else {
u16 lcl_adv, rmt_adv;
u8 flowctrl;
/* get link partner capabilities */
rmt_adv = 0;
if (phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
lcl_adv = mii_advertise_flowctrl(phydev->advertising);
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
val |= MACCFG1_TX_FLOW;
if (flowctrl & FLOW_CTRL_RX)
val |= MACCFG1_RX_FLOW;
}
return val;
}
static noinline void gfar_update_link_state(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
struct phy_device *phydev = priv->phydev;
if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
return;
if (phydev->link) {
u32 tempval1 = gfar_read(&regs->maccfg1);
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
if (phydev->duplex != priv->oldduplex) {
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100
*/
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
netif_warn(priv, link, priv->ndev,
"Ack! Speed (%d) is not 10/100/1000!\n",
phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
tempval1 |= gfar_get_flowctrl_cfg(priv);
gfar_write(&regs->maccfg1, tempval1);
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if (!priv->oldlink)
priv->oldlink = 1;
} else if (priv->oldlink) {
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (netif_msg_link(priv))
phy_print_status(phydev);
}
static struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{
.compatible = "fsl,etsec2",
},
{},
};
MODULE_DEVICE_TABLE(of, gfar_match);
/* Structure for a device driver */
static struct platform_driver gfar_driver = {
.driver = {
.name = "fsl-gianfar",
.owner = THIS_MODULE,
.pm = GFAR_PM_OPS,
.of_match_table = gfar_match,
},
.probe = gfar_probe,
.remove = gfar_remove,
};
module_platform_driver(gfar_driver);