2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-20 03:24:03 +08:00
linux-next/fs/ext4/readpage.c
Eric Biggers 0cb8dae4a0 fscrypt: allow synchronous bio decryption
Currently, fscrypt provides fscrypt_decrypt_bio_pages() which decrypts a
bio's pages asynchronously, then unlocks them afterwards.  But, this
assumes that decryption is the last "postprocessing step" for the bio,
so it's incompatible with additional postprocessing steps such as
authenticity verification after decryption.

Therefore, rename the existing fscrypt_decrypt_bio_pages() to
fscrypt_enqueue_decrypt_bio().  Then, add fscrypt_decrypt_bio() which
decrypts the pages in the bio synchronously without unlocking the pages,
nor setting them Uptodate; and add fscrypt_enqueue_decrypt_work(), which
enqueues work on the fscrypt_read_workqueue.  The new functions will be
used by filesystems that support both fscrypt and fs-verity.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-02 14:30:57 -07:00

295 lines
7.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/readpage.c
*
* Copyright (C) 2002, Linus Torvalds.
* Copyright (C) 2015, Google, Inc.
*
* This was originally taken from fs/mpage.c
*
* The intent is the ext4_mpage_readpages() function here is intended
* to replace mpage_readpages() in the general case, not just for
* encrypted files. It has some limitations (see below), where it
* will fall back to read_block_full_page(), but these limitations
* should only be hit when page_size != block_size.
*
* This will allow us to attach a callback function to support ext4
* encryption.
*
* If anything unusual happens, such as:
*
* - encountering a page which has buffers
* - encountering a page which has a non-hole after a hole
* - encountering a page with non-contiguous blocks
*
* then this code just gives up and calls the buffer_head-based read function.
* It does handle a page which has holes at the end - that is a common case:
* the end-of-file on blocksize < PAGE_SIZE setups.
*
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/kdev_t.h>
#include <linux/gfp.h>
#include <linux/bio.h>
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/prefetch.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/cleancache.h>
#include "ext4.h"
static inline bool ext4_bio_encrypted(struct bio *bio)
{
#ifdef CONFIG_EXT4_FS_ENCRYPTION
return unlikely(bio->bi_private != NULL);
#else
return false;
#endif
}
/*
* I/O completion handler for multipage BIOs.
*
* The mpage code never puts partial pages into a BIO (except for end-of-file).
* If a page does not map to a contiguous run of blocks then it simply falls
* back to block_read_full_page().
*
* Why is this? If a page's completion depends on a number of different BIOs
* which can complete in any order (or at the same time) then determining the
* status of that page is hard. See end_buffer_async_read() for the details.
* There is no point in duplicating all that complexity.
*/
static void mpage_end_io(struct bio *bio)
{
struct bio_vec *bv;
int i;
if (ext4_bio_encrypted(bio)) {
if (bio->bi_status) {
fscrypt_release_ctx(bio->bi_private);
} else {
fscrypt_enqueue_decrypt_bio(bio->bi_private, bio);
return;
}
}
bio_for_each_segment_all(bv, bio, i) {
struct page *page = bv->bv_page;
if (!bio->bi_status) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
int ext4_mpage_readpages(struct address_space *mapping,
struct list_head *pages, struct page *page,
unsigned nr_pages)
{
struct bio *bio = NULL;
sector_t last_block_in_bio = 0;
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
const unsigned blocksize = 1 << blkbits;
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t blocks[MAX_BUF_PER_PAGE];
unsigned page_block;
struct block_device *bdev = inode->i_sb->s_bdev;
int length;
unsigned relative_block = 0;
struct ext4_map_blocks map;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
for (; nr_pages; nr_pages--) {
int fully_mapped = 1;
unsigned first_hole = blocks_per_page;
prefetchw(&page->flags);
if (pages) {
page = list_entry(pages->prev, struct page, lru);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping, page->index,
readahead_gfp_mask(mapping)))
goto next_page;
}
if (page_has_buffers(page))
goto confused;
block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
last_block = block_in_file + nr_pages * blocks_per_page;
last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
if (last_block > last_block_in_file)
last_block = last_block_in_file;
page_block = 0;
/*
* Map blocks using the previous result first.
*/
if ((map.m_flags & EXT4_MAP_MAPPED) &&
block_in_file > map.m_lblk &&
block_in_file < (map.m_lblk + map.m_len)) {
unsigned map_offset = block_in_file - map.m_lblk;
unsigned last = map.m_len - map_offset;
for (relative_block = 0; ; relative_block++) {
if (relative_block == last) {
/* needed? */
map.m_flags &= ~EXT4_MAP_MAPPED;
break;
}
if (page_block == blocks_per_page)
break;
blocks[page_block] = map.m_pblk + map_offset +
relative_block;
page_block++;
block_in_file++;
}
}
/*
* Then do more ext4_map_blocks() calls until we are
* done with this page.
*/
while (page_block < blocks_per_page) {
if (block_in_file < last_block) {
map.m_lblk = block_in_file;
map.m_len = last_block - block_in_file;
if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
set_error_page:
SetPageError(page);
zero_user_segment(page, 0,
PAGE_SIZE);
unlock_page(page);
goto next_page;
}
}
if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
fully_mapped = 0;
if (first_hole == blocks_per_page)
first_hole = page_block;
page_block++;
block_in_file++;
continue;
}
if (first_hole != blocks_per_page)
goto confused; /* hole -> non-hole */
/* Contiguous blocks? */
if (page_block && blocks[page_block-1] != map.m_pblk-1)
goto confused;
for (relative_block = 0; ; relative_block++) {
if (relative_block == map.m_len) {
/* needed? */
map.m_flags &= ~EXT4_MAP_MAPPED;
break;
} else if (page_block == blocks_per_page)
break;
blocks[page_block] = map.m_pblk+relative_block;
page_block++;
block_in_file++;
}
}
if (first_hole != blocks_per_page) {
zero_user_segment(page, first_hole << blkbits,
PAGE_SIZE);
if (first_hole == 0) {
SetPageUptodate(page);
unlock_page(page);
goto next_page;
}
} else if (fully_mapped) {
SetPageMappedToDisk(page);
}
if (fully_mapped && blocks_per_page == 1 &&
!PageUptodate(page) && cleancache_get_page(page) == 0) {
SetPageUptodate(page);
goto confused;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (last_block_in_bio != blocks[0] - 1)) {
submit_and_realloc:
submit_bio(bio);
bio = NULL;
}
if (bio == NULL) {
struct fscrypt_ctx *ctx = NULL;
if (ext4_encrypted_inode(inode) &&
S_ISREG(inode->i_mode)) {
ctx = fscrypt_get_ctx(inode, GFP_NOFS);
if (IS_ERR(ctx))
goto set_error_page;
}
bio = bio_alloc(GFP_KERNEL,
min_t(int, nr_pages, BIO_MAX_PAGES));
if (!bio) {
if (ctx)
fscrypt_release_ctx(ctx);
goto set_error_page;
}
bio_set_dev(bio, bdev);
bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
bio->bi_end_io = mpage_end_io;
bio->bi_private = ctx;
bio_set_op_attrs(bio, REQ_OP_READ, 0);
}
length = first_hole << blkbits;
if (bio_add_page(bio, page, length, 0) < length)
goto submit_and_realloc;
if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
(relative_block == map.m_len)) ||
(first_hole != blocks_per_page)) {
submit_bio(bio);
bio = NULL;
} else
last_block_in_bio = blocks[blocks_per_page - 1];
goto next_page;
confused:
if (bio) {
submit_bio(bio);
bio = NULL;
}
if (!PageUptodate(page))
block_read_full_page(page, ext4_get_block);
else
unlock_page(page);
next_page:
if (pages)
put_page(page);
}
BUG_ON(pages && !list_empty(pages));
if (bio)
submit_bio(bio);
return 0;
}