mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 06:34:11 +08:00
478dc89cf3
On CONFIG_CONTEXT_TRACKING kernels that have context tracking disabled at runtime (which includes most distro kernels), we still have the overhead of a call to enter_from_user_mode in interrupt and exception entries. If jump labels are available, this uses the jump label infrastructure to skip the call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/73ee804fff48cd8c66b65b724f9f728a11a8c686.1447361906.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
1489 lines
42 KiB
ArmAsm
1489 lines
42 KiB
ArmAsm
/*
|
|
* linux/arch/x86_64/entry.S
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
|
|
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
|
|
*
|
|
* entry.S contains the system-call and fault low-level handling routines.
|
|
*
|
|
* Some of this is documented in Documentation/x86/entry_64.txt
|
|
*
|
|
* A note on terminology:
|
|
* - iret frame: Architecture defined interrupt frame from SS to RIP
|
|
* at the top of the kernel process stack.
|
|
*
|
|
* Some macro usage:
|
|
* - ENTRY/END: Define functions in the symbol table.
|
|
* - TRACE_IRQ_*: Trace hardirq state for lock debugging.
|
|
* - idtentry: Define exception entry points.
|
|
*/
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/errno.h>
|
|
#include "calling.h"
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/smap.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <linux/err.h>
|
|
|
|
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
|
|
#include <linux/elf-em.h>
|
|
#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
|
|
#define __AUDIT_ARCH_64BIT 0x80000000
|
|
#define __AUDIT_ARCH_LE 0x40000000
|
|
|
|
.code64
|
|
.section .entry.text, "ax"
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
ENTRY(native_usergs_sysret64)
|
|
swapgs
|
|
sysretq
|
|
ENDPROC(native_usergs_sysret64)
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
.macro TRACE_IRQS_IRETQ
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
bt $9, EFLAGS(%rsp) /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON
|
|
1:
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* When dynamic function tracer is enabled it will add a breakpoint
|
|
* to all locations that it is about to modify, sync CPUs, update
|
|
* all the code, sync CPUs, then remove the breakpoints. In this time
|
|
* if lockdep is enabled, it might jump back into the debug handler
|
|
* outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
|
|
*
|
|
* We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
|
|
* make sure the stack pointer does not get reset back to the top
|
|
* of the debug stack, and instead just reuses the current stack.
|
|
*/
|
|
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
|
|
|
|
.macro TRACE_IRQS_OFF_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_OFF
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_ON_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_ON
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_IRETQ_DEBUG
|
|
bt $9, EFLAGS(%rsp) /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON_DEBUG
|
|
1:
|
|
.endm
|
|
|
|
#else
|
|
# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
|
|
# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
|
|
# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
|
|
#endif
|
|
|
|
/*
|
|
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
|
|
*
|
|
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
|
|
* then loads new ss, cs, and rip from previously programmed MSRs.
|
|
* rflags gets masked by a value from another MSR (so CLD and CLAC
|
|
* are not needed). SYSCALL does not save anything on the stack
|
|
* and does not change rsp.
|
|
*
|
|
* Registers on entry:
|
|
* rax system call number
|
|
* rcx return address
|
|
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
|
|
* rdi arg0
|
|
* rsi arg1
|
|
* rdx arg2
|
|
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
|
|
* r8 arg4
|
|
* r9 arg5
|
|
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
|
|
*
|
|
* Only called from user space.
|
|
*
|
|
* When user can change pt_regs->foo always force IRET. That is because
|
|
* it deals with uncanonical addresses better. SYSRET has trouble
|
|
* with them due to bugs in both AMD and Intel CPUs.
|
|
*/
|
|
|
|
ENTRY(entry_SYSCALL_64)
|
|
/*
|
|
* Interrupts are off on entry.
|
|
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
|
|
* it is too small to ever cause noticeable irq latency.
|
|
*/
|
|
SWAPGS_UNSAFE_STACK
|
|
/*
|
|
* A hypervisor implementation might want to use a label
|
|
* after the swapgs, so that it can do the swapgs
|
|
* for the guest and jump here on syscall.
|
|
*/
|
|
GLOBAL(entry_SYSCALL_64_after_swapgs)
|
|
|
|
movq %rsp, PER_CPU_VAR(rsp_scratch)
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
|
|
/* Construct struct pt_regs on stack */
|
|
pushq $__USER_DS /* pt_regs->ss */
|
|
pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
|
|
/*
|
|
* Re-enable interrupts.
|
|
* We use 'rsp_scratch' as a scratch space, hence irq-off block above
|
|
* must execute atomically in the face of possible interrupt-driven
|
|
* task preemption. We must enable interrupts only after we're done
|
|
* with using rsp_scratch:
|
|
*/
|
|
ENABLE_INTERRUPTS(CLBR_NONE)
|
|
pushq %r11 /* pt_regs->flags */
|
|
pushq $__USER_CS /* pt_regs->cs */
|
|
pushq %rcx /* pt_regs->ip */
|
|
pushq %rax /* pt_regs->orig_ax */
|
|
pushq %rdi /* pt_regs->di */
|
|
pushq %rsi /* pt_regs->si */
|
|
pushq %rdx /* pt_regs->dx */
|
|
pushq %rcx /* pt_regs->cx */
|
|
pushq $-ENOSYS /* pt_regs->ax */
|
|
pushq %r8 /* pt_regs->r8 */
|
|
pushq %r9 /* pt_regs->r9 */
|
|
pushq %r10 /* pt_regs->r10 */
|
|
pushq %r11 /* pt_regs->r11 */
|
|
sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
|
|
|
|
testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
|
|
jnz tracesys
|
|
entry_SYSCALL_64_fastpath:
|
|
#if __SYSCALL_MASK == ~0
|
|
cmpq $__NR_syscall_max, %rax
|
|
#else
|
|
andl $__SYSCALL_MASK, %eax
|
|
cmpl $__NR_syscall_max, %eax
|
|
#endif
|
|
ja 1f /* return -ENOSYS (already in pt_regs->ax) */
|
|
movq %r10, %rcx
|
|
call *sys_call_table(, %rax, 8)
|
|
movq %rax, RAX(%rsp)
|
|
1:
|
|
/*
|
|
* Syscall return path ending with SYSRET (fast path).
|
|
* Has incompletely filled pt_regs.
|
|
*/
|
|
LOCKDEP_SYS_EXIT
|
|
/*
|
|
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
|
|
* it is too small to ever cause noticeable irq latency.
|
|
*/
|
|
DISABLE_INTERRUPTS(CLBR_NONE)
|
|
|
|
/*
|
|
* We must check ti flags with interrupts (or at least preemption)
|
|
* off because we must *never* return to userspace without
|
|
* processing exit work that is enqueued if we're preempted here.
|
|
* In particular, returning to userspace with any of the one-shot
|
|
* flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
|
|
* very bad.
|
|
*/
|
|
testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
|
|
jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
|
|
|
|
RESTORE_C_REGS_EXCEPT_RCX_R11
|
|
movq RIP(%rsp), %rcx
|
|
movq EFLAGS(%rsp), %r11
|
|
movq RSP(%rsp), %rsp
|
|
/*
|
|
* 64-bit SYSRET restores rip from rcx,
|
|
* rflags from r11 (but RF and VM bits are forced to 0),
|
|
* cs and ss are loaded from MSRs.
|
|
* Restoration of rflags re-enables interrupts.
|
|
*
|
|
* NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
|
|
* descriptor is not reinitialized. This means that we should
|
|
* avoid SYSRET with SS == NULL, which could happen if we schedule,
|
|
* exit the kernel, and re-enter using an interrupt vector. (All
|
|
* interrupt entries on x86_64 set SS to NULL.) We prevent that
|
|
* from happening by reloading SS in __switch_to. (Actually
|
|
* detecting the failure in 64-bit userspace is tricky but can be
|
|
* done.)
|
|
*/
|
|
USERGS_SYSRET64
|
|
|
|
GLOBAL(int_ret_from_sys_call_irqs_off)
|
|
TRACE_IRQS_ON
|
|
ENABLE_INTERRUPTS(CLBR_NONE)
|
|
jmp int_ret_from_sys_call
|
|
|
|
/* Do syscall entry tracing */
|
|
tracesys:
|
|
movq %rsp, %rdi
|
|
movl $AUDIT_ARCH_X86_64, %esi
|
|
call syscall_trace_enter_phase1
|
|
test %rax, %rax
|
|
jnz tracesys_phase2 /* if needed, run the slow path */
|
|
RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
|
|
movq ORIG_RAX(%rsp), %rax
|
|
jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
|
|
|
|
tracesys_phase2:
|
|
SAVE_EXTRA_REGS
|
|
movq %rsp, %rdi
|
|
movl $AUDIT_ARCH_X86_64, %esi
|
|
movq %rax, %rdx
|
|
call syscall_trace_enter_phase2
|
|
|
|
/*
|
|
* Reload registers from stack in case ptrace changed them.
|
|
* We don't reload %rax because syscall_trace_entry_phase2() returned
|
|
* the value it wants us to use in the table lookup.
|
|
*/
|
|
RESTORE_C_REGS_EXCEPT_RAX
|
|
RESTORE_EXTRA_REGS
|
|
#if __SYSCALL_MASK == ~0
|
|
cmpq $__NR_syscall_max, %rax
|
|
#else
|
|
andl $__SYSCALL_MASK, %eax
|
|
cmpl $__NR_syscall_max, %eax
|
|
#endif
|
|
ja 1f /* return -ENOSYS (already in pt_regs->ax) */
|
|
movq %r10, %rcx /* fixup for C */
|
|
call *sys_call_table(, %rax, 8)
|
|
movq %rax, RAX(%rsp)
|
|
1:
|
|
/* Use IRET because user could have changed pt_regs->foo */
|
|
|
|
/*
|
|
* Syscall return path ending with IRET.
|
|
* Has correct iret frame.
|
|
*/
|
|
GLOBAL(int_ret_from_sys_call)
|
|
SAVE_EXTRA_REGS
|
|
movq %rsp, %rdi
|
|
call syscall_return_slowpath /* returns with IRQs disabled */
|
|
RESTORE_EXTRA_REGS
|
|
TRACE_IRQS_IRETQ /* we're about to change IF */
|
|
|
|
/*
|
|
* Try to use SYSRET instead of IRET if we're returning to
|
|
* a completely clean 64-bit userspace context.
|
|
*/
|
|
movq RCX(%rsp), %rcx
|
|
movq RIP(%rsp), %r11
|
|
cmpq %rcx, %r11 /* RCX == RIP */
|
|
jne opportunistic_sysret_failed
|
|
|
|
/*
|
|
* On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
|
|
* in kernel space. This essentially lets the user take over
|
|
* the kernel, since userspace controls RSP.
|
|
*
|
|
* If width of "canonical tail" ever becomes variable, this will need
|
|
* to be updated to remain correct on both old and new CPUs.
|
|
*/
|
|
.ifne __VIRTUAL_MASK_SHIFT - 47
|
|
.error "virtual address width changed -- SYSRET checks need update"
|
|
.endif
|
|
|
|
/* Change top 16 bits to be the sign-extension of 47th bit */
|
|
shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
|
|
/* If this changed %rcx, it was not canonical */
|
|
cmpq %rcx, %r11
|
|
jne opportunistic_sysret_failed
|
|
|
|
cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
|
|
jne opportunistic_sysret_failed
|
|
|
|
movq R11(%rsp), %r11
|
|
cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
|
|
jne opportunistic_sysret_failed
|
|
|
|
/*
|
|
* SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
|
|
* restoring TF results in a trap from userspace immediately after
|
|
* SYSRET. This would cause an infinite loop whenever #DB happens
|
|
* with register state that satisfies the opportunistic SYSRET
|
|
* conditions. For example, single-stepping this user code:
|
|
*
|
|
* movq $stuck_here, %rcx
|
|
* pushfq
|
|
* popq %r11
|
|
* stuck_here:
|
|
*
|
|
* would never get past 'stuck_here'.
|
|
*/
|
|
testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
|
|
jnz opportunistic_sysret_failed
|
|
|
|
/* nothing to check for RSP */
|
|
|
|
cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
|
|
jne opportunistic_sysret_failed
|
|
|
|
/*
|
|
* We win! This label is here just for ease of understanding
|
|
* perf profiles. Nothing jumps here.
|
|
*/
|
|
syscall_return_via_sysret:
|
|
/* rcx and r11 are already restored (see code above) */
|
|
RESTORE_C_REGS_EXCEPT_RCX_R11
|
|
movq RSP(%rsp), %rsp
|
|
USERGS_SYSRET64
|
|
|
|
opportunistic_sysret_failed:
|
|
SWAPGS
|
|
jmp restore_c_regs_and_iret
|
|
END(entry_SYSCALL_64)
|
|
|
|
|
|
.macro FORK_LIKE func
|
|
ENTRY(stub_\func)
|
|
SAVE_EXTRA_REGS 8
|
|
jmp sys_\func
|
|
END(stub_\func)
|
|
.endm
|
|
|
|
FORK_LIKE clone
|
|
FORK_LIKE fork
|
|
FORK_LIKE vfork
|
|
|
|
ENTRY(stub_execve)
|
|
call sys_execve
|
|
return_from_execve:
|
|
testl %eax, %eax
|
|
jz 1f
|
|
/* exec failed, can use fast SYSRET code path in this case */
|
|
ret
|
|
1:
|
|
/* must use IRET code path (pt_regs->cs may have changed) */
|
|
addq $8, %rsp
|
|
ZERO_EXTRA_REGS
|
|
movq %rax, RAX(%rsp)
|
|
jmp int_ret_from_sys_call
|
|
END(stub_execve)
|
|
/*
|
|
* Remaining execve stubs are only 7 bytes long.
|
|
* ENTRY() often aligns to 16 bytes, which in this case has no benefits.
|
|
*/
|
|
.align 8
|
|
GLOBAL(stub_execveat)
|
|
call sys_execveat
|
|
jmp return_from_execve
|
|
END(stub_execveat)
|
|
|
|
#if defined(CONFIG_X86_X32_ABI)
|
|
.align 8
|
|
GLOBAL(stub_x32_execve)
|
|
call compat_sys_execve
|
|
jmp return_from_execve
|
|
END(stub_x32_execve)
|
|
.align 8
|
|
GLOBAL(stub_x32_execveat)
|
|
call compat_sys_execveat
|
|
jmp return_from_execve
|
|
END(stub_x32_execveat)
|
|
#endif
|
|
|
|
/*
|
|
* sigreturn is special because it needs to restore all registers on return.
|
|
* This cannot be done with SYSRET, so use the IRET return path instead.
|
|
*/
|
|
ENTRY(stub_rt_sigreturn)
|
|
/*
|
|
* SAVE_EXTRA_REGS result is not normally needed:
|
|
* sigreturn overwrites all pt_regs->GPREGS.
|
|
* But sigreturn can fail (!), and there is no easy way to detect that.
|
|
* To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
|
|
* we SAVE_EXTRA_REGS here.
|
|
*/
|
|
SAVE_EXTRA_REGS 8
|
|
call sys_rt_sigreturn
|
|
return_from_stub:
|
|
addq $8, %rsp
|
|
RESTORE_EXTRA_REGS
|
|
movq %rax, RAX(%rsp)
|
|
jmp int_ret_from_sys_call
|
|
END(stub_rt_sigreturn)
|
|
|
|
#ifdef CONFIG_X86_X32_ABI
|
|
ENTRY(stub_x32_rt_sigreturn)
|
|
SAVE_EXTRA_REGS 8
|
|
call sys32_x32_rt_sigreturn
|
|
jmp return_from_stub
|
|
END(stub_x32_rt_sigreturn)
|
|
#endif
|
|
|
|
/*
|
|
* A newly forked process directly context switches into this address.
|
|
*
|
|
* rdi: prev task we switched from
|
|
*/
|
|
ENTRY(ret_from_fork)
|
|
|
|
LOCK ; btr $TIF_FORK, TI_flags(%r8)
|
|
|
|
pushq $0x0002
|
|
popfq /* reset kernel eflags */
|
|
|
|
call schedule_tail /* rdi: 'prev' task parameter */
|
|
|
|
RESTORE_EXTRA_REGS
|
|
|
|
testb $3, CS(%rsp) /* from kernel_thread? */
|
|
|
|
/*
|
|
* By the time we get here, we have no idea whether our pt_regs,
|
|
* ti flags, and ti status came from the 64-bit SYSCALL fast path,
|
|
* the slow path, or one of the 32-bit compat paths.
|
|
* Use IRET code path to return, since it can safely handle
|
|
* all of the above.
|
|
*/
|
|
jnz int_ret_from_sys_call
|
|
|
|
/*
|
|
* We came from kernel_thread
|
|
* nb: we depend on RESTORE_EXTRA_REGS above
|
|
*/
|
|
movq %rbp, %rdi
|
|
call *%rbx
|
|
movl $0, RAX(%rsp)
|
|
RESTORE_EXTRA_REGS
|
|
jmp int_ret_from_sys_call
|
|
END(ret_from_fork)
|
|
|
|
/*
|
|
* Build the entry stubs with some assembler magic.
|
|
* We pack 1 stub into every 8-byte block.
|
|
*/
|
|
.align 8
|
|
ENTRY(irq_entries_start)
|
|
vector=FIRST_EXTERNAL_VECTOR
|
|
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
|
|
pushq $(~vector+0x80) /* Note: always in signed byte range */
|
|
vector=vector+1
|
|
jmp common_interrupt
|
|
.align 8
|
|
.endr
|
|
END(irq_entries_start)
|
|
|
|
/*
|
|
* Interrupt entry/exit.
|
|
*
|
|
* Interrupt entry points save only callee clobbered registers in fast path.
|
|
*
|
|
* Entry runs with interrupts off.
|
|
*/
|
|
|
|
/* 0(%rsp): ~(interrupt number) */
|
|
.macro interrupt func
|
|
cld
|
|
ALLOC_PT_GPREGS_ON_STACK
|
|
SAVE_C_REGS
|
|
SAVE_EXTRA_REGS
|
|
|
|
testb $3, CS(%rsp)
|
|
jz 1f
|
|
|
|
/*
|
|
* IRQ from user mode. Switch to kernel gsbase and inform context
|
|
* tracking that we're in kernel mode.
|
|
*/
|
|
SWAPGS
|
|
|
|
/*
|
|
* We need to tell lockdep that IRQs are off. We can't do this until
|
|
* we fix gsbase, and we should do it before enter_from_user_mode
|
|
* (which can take locks). Since TRACE_IRQS_OFF idempotent,
|
|
* the simplest way to handle it is to just call it twice if
|
|
* we enter from user mode. There's no reason to optimize this since
|
|
* TRACE_IRQS_OFF is a no-op if lockdep is off.
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
|
|
CALL_enter_from_user_mode
|
|
|
|
1:
|
|
/*
|
|
* Save previous stack pointer, optionally switch to interrupt stack.
|
|
* irq_count is used to check if a CPU is already on an interrupt stack
|
|
* or not. While this is essentially redundant with preempt_count it is
|
|
* a little cheaper to use a separate counter in the PDA (short of
|
|
* moving irq_enter into assembly, which would be too much work)
|
|
*/
|
|
movq %rsp, %rdi
|
|
incl PER_CPU_VAR(irq_count)
|
|
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
|
|
pushq %rdi
|
|
/* We entered an interrupt context - irqs are off: */
|
|
TRACE_IRQS_OFF
|
|
|
|
call \func /* rdi points to pt_regs */
|
|
.endm
|
|
|
|
/*
|
|
* The interrupt stubs push (~vector+0x80) onto the stack and
|
|
* then jump to common_interrupt.
|
|
*/
|
|
.p2align CONFIG_X86_L1_CACHE_SHIFT
|
|
common_interrupt:
|
|
ASM_CLAC
|
|
addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
|
|
interrupt do_IRQ
|
|
/* 0(%rsp): old RSP */
|
|
ret_from_intr:
|
|
DISABLE_INTERRUPTS(CLBR_NONE)
|
|
TRACE_IRQS_OFF
|
|
decl PER_CPU_VAR(irq_count)
|
|
|
|
/* Restore saved previous stack */
|
|
popq %rsp
|
|
|
|
testb $3, CS(%rsp)
|
|
jz retint_kernel
|
|
|
|
/* Interrupt came from user space */
|
|
GLOBAL(retint_user)
|
|
mov %rsp,%rdi
|
|
call prepare_exit_to_usermode
|
|
TRACE_IRQS_IRETQ
|
|
SWAPGS
|
|
jmp restore_regs_and_iret
|
|
|
|
/* Returning to kernel space */
|
|
retint_kernel:
|
|
#ifdef CONFIG_PREEMPT
|
|
/* Interrupts are off */
|
|
/* Check if we need preemption */
|
|
bt $9, EFLAGS(%rsp) /* were interrupts off? */
|
|
jnc 1f
|
|
0: cmpl $0, PER_CPU_VAR(__preempt_count)
|
|
jnz 1f
|
|
call preempt_schedule_irq
|
|
jmp 0b
|
|
1:
|
|
#endif
|
|
/*
|
|
* The iretq could re-enable interrupts:
|
|
*/
|
|
TRACE_IRQS_IRETQ
|
|
|
|
/*
|
|
* At this label, code paths which return to kernel and to user,
|
|
* which come from interrupts/exception and from syscalls, merge.
|
|
*/
|
|
GLOBAL(restore_regs_and_iret)
|
|
RESTORE_EXTRA_REGS
|
|
restore_c_regs_and_iret:
|
|
RESTORE_C_REGS
|
|
REMOVE_PT_GPREGS_FROM_STACK 8
|
|
INTERRUPT_RETURN
|
|
|
|
ENTRY(native_iret)
|
|
/*
|
|
* Are we returning to a stack segment from the LDT? Note: in
|
|
* 64-bit mode SS:RSP on the exception stack is always valid.
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
testb $4, (SS-RIP)(%rsp)
|
|
jnz native_irq_return_ldt
|
|
#endif
|
|
|
|
.global native_irq_return_iret
|
|
native_irq_return_iret:
|
|
/*
|
|
* This may fault. Non-paranoid faults on return to userspace are
|
|
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
|
|
* Double-faults due to espfix64 are handled in do_double_fault.
|
|
* Other faults here are fatal.
|
|
*/
|
|
iretq
|
|
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
native_irq_return_ldt:
|
|
pushq %rax
|
|
pushq %rdi
|
|
SWAPGS
|
|
movq PER_CPU_VAR(espfix_waddr), %rdi
|
|
movq %rax, (0*8)(%rdi) /* RAX */
|
|
movq (2*8)(%rsp), %rax /* RIP */
|
|
movq %rax, (1*8)(%rdi)
|
|
movq (3*8)(%rsp), %rax /* CS */
|
|
movq %rax, (2*8)(%rdi)
|
|
movq (4*8)(%rsp), %rax /* RFLAGS */
|
|
movq %rax, (3*8)(%rdi)
|
|
movq (6*8)(%rsp), %rax /* SS */
|
|
movq %rax, (5*8)(%rdi)
|
|
movq (5*8)(%rsp), %rax /* RSP */
|
|
movq %rax, (4*8)(%rdi)
|
|
andl $0xffff0000, %eax
|
|
popq %rdi
|
|
orq PER_CPU_VAR(espfix_stack), %rax
|
|
SWAPGS
|
|
movq %rax, %rsp
|
|
popq %rax
|
|
jmp native_irq_return_iret
|
|
#endif
|
|
END(common_interrupt)
|
|
|
|
/*
|
|
* APIC interrupts.
|
|
*/
|
|
.macro apicinterrupt3 num sym do_sym
|
|
ENTRY(\sym)
|
|
ASM_CLAC
|
|
pushq $~(\num)
|
|
.Lcommon_\sym:
|
|
interrupt \do_sym
|
|
jmp ret_from_intr
|
|
END(\sym)
|
|
.endm
|
|
|
|
#ifdef CONFIG_TRACING
|
|
#define trace(sym) trace_##sym
|
|
#define smp_trace(sym) smp_trace_##sym
|
|
|
|
.macro trace_apicinterrupt num sym
|
|
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
|
|
.endm
|
|
#else
|
|
.macro trace_apicinterrupt num sym do_sym
|
|
.endm
|
|
#endif
|
|
|
|
.macro apicinterrupt num sym do_sym
|
|
apicinterrupt3 \num \sym \do_sym
|
|
trace_apicinterrupt \num \sym
|
|
.endm
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
|
|
apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_UV
|
|
apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
|
|
#endif
|
|
|
|
apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
|
|
apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
|
|
|
|
#ifdef CONFIG_HAVE_KVM
|
|
apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
|
|
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_THRESHOLD
|
|
apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_AMD
|
|
apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_THERMAL_VECTOR
|
|
apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
|
|
apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
|
|
apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
|
|
#endif
|
|
|
|
apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
|
|
apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
|
|
#endif
|
|
|
|
/*
|
|
* Exception entry points.
|
|
*/
|
|
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
|
|
|
|
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
|
|
ENTRY(\sym)
|
|
/* Sanity check */
|
|
.if \shift_ist != -1 && \paranoid == 0
|
|
.error "using shift_ist requires paranoid=1"
|
|
.endif
|
|
|
|
ASM_CLAC
|
|
PARAVIRT_ADJUST_EXCEPTION_FRAME
|
|
|
|
.ifeq \has_error_code
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
.endif
|
|
|
|
ALLOC_PT_GPREGS_ON_STACK
|
|
|
|
.if \paranoid
|
|
.if \paranoid == 1
|
|
testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
|
|
jnz 1f
|
|
.endif
|
|
call paranoid_entry
|
|
.else
|
|
call error_entry
|
|
.endif
|
|
/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
|
|
|
|
.if \paranoid
|
|
.if \shift_ist != -1
|
|
TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
|
|
.else
|
|
TRACE_IRQS_OFF
|
|
.endif
|
|
.endif
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
|
|
.if \has_error_code
|
|
movq ORIG_RAX(%rsp), %rsi /* get error code */
|
|
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
|
|
.else
|
|
xorl %esi, %esi /* no error code */
|
|
.endif
|
|
|
|
.if \shift_ist != -1
|
|
subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
call \do_sym
|
|
|
|
.if \shift_ist != -1
|
|
addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
/* these procedures expect "no swapgs" flag in ebx */
|
|
.if \paranoid
|
|
jmp paranoid_exit
|
|
.else
|
|
jmp error_exit
|
|
.endif
|
|
|
|
.if \paranoid == 1
|
|
/*
|
|
* Paranoid entry from userspace. Switch stacks and treat it
|
|
* as a normal entry. This means that paranoid handlers
|
|
* run in real process context if user_mode(regs).
|
|
*/
|
|
1:
|
|
call error_entry
|
|
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
call sync_regs
|
|
movq %rax, %rsp /* switch stack */
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
|
|
.if \has_error_code
|
|
movq ORIG_RAX(%rsp), %rsi /* get error code */
|
|
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
|
|
.else
|
|
xorl %esi, %esi /* no error code */
|
|
.endif
|
|
|
|
call \do_sym
|
|
|
|
jmp error_exit /* %ebx: no swapgs flag */
|
|
.endif
|
|
END(\sym)
|
|
.endm
|
|
|
|
#ifdef CONFIG_TRACING
|
|
.macro trace_idtentry sym do_sym has_error_code:req
|
|
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
|
|
idtentry \sym \do_sym has_error_code=\has_error_code
|
|
.endm
|
|
#else
|
|
.macro trace_idtentry sym do_sym has_error_code:req
|
|
idtentry \sym \do_sym has_error_code=\has_error_code
|
|
.endm
|
|
#endif
|
|
|
|
idtentry divide_error do_divide_error has_error_code=0
|
|
idtentry overflow do_overflow has_error_code=0
|
|
idtentry bounds do_bounds has_error_code=0
|
|
idtentry invalid_op do_invalid_op has_error_code=0
|
|
idtentry device_not_available do_device_not_available has_error_code=0
|
|
idtentry double_fault do_double_fault has_error_code=1 paranoid=2
|
|
idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
|
|
idtentry invalid_TSS do_invalid_TSS has_error_code=1
|
|
idtentry segment_not_present do_segment_not_present has_error_code=1
|
|
idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
|
|
idtentry coprocessor_error do_coprocessor_error has_error_code=0
|
|
idtentry alignment_check do_alignment_check has_error_code=1
|
|
idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
|
|
|
|
|
|
/*
|
|
* Reload gs selector with exception handling
|
|
* edi: new selector
|
|
*/
|
|
ENTRY(native_load_gs_index)
|
|
pushfq
|
|
DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
|
|
SWAPGS
|
|
gs_change:
|
|
movl %edi, %gs
|
|
2: mfence /* workaround */
|
|
SWAPGS
|
|
popfq
|
|
ret
|
|
END(native_load_gs_index)
|
|
|
|
_ASM_EXTABLE(gs_change, bad_gs)
|
|
.section .fixup, "ax"
|
|
/* running with kernelgs */
|
|
bad_gs:
|
|
SWAPGS /* switch back to user gs */
|
|
xorl %eax, %eax
|
|
movl %eax, %gs
|
|
jmp 2b
|
|
.previous
|
|
|
|
/* Call softirq on interrupt stack. Interrupts are off. */
|
|
ENTRY(do_softirq_own_stack)
|
|
pushq %rbp
|
|
mov %rsp, %rbp
|
|
incl PER_CPU_VAR(irq_count)
|
|
cmove PER_CPU_VAR(irq_stack_ptr), %rsp
|
|
push %rbp /* frame pointer backlink */
|
|
call __do_softirq
|
|
leaveq
|
|
decl PER_CPU_VAR(irq_count)
|
|
ret
|
|
END(do_softirq_own_stack)
|
|
|
|
#ifdef CONFIG_XEN
|
|
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
|
|
|
|
/*
|
|
* A note on the "critical region" in our callback handler.
|
|
* We want to avoid stacking callback handlers due to events occurring
|
|
* during handling of the last event. To do this, we keep events disabled
|
|
* until we've done all processing. HOWEVER, we must enable events before
|
|
* popping the stack frame (can't be done atomically) and so it would still
|
|
* be possible to get enough handler activations to overflow the stack.
|
|
* Although unlikely, bugs of that kind are hard to track down, so we'd
|
|
* like to avoid the possibility.
|
|
* So, on entry to the handler we detect whether we interrupted an
|
|
* existing activation in its critical region -- if so, we pop the current
|
|
* activation and restart the handler using the previous one.
|
|
*/
|
|
ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
|
|
|
|
/*
|
|
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
|
|
* see the correct pointer to the pt_regs
|
|
*/
|
|
movq %rdi, %rsp /* we don't return, adjust the stack frame */
|
|
11: incl PER_CPU_VAR(irq_count)
|
|
movq %rsp, %rbp
|
|
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
|
|
pushq %rbp /* frame pointer backlink */
|
|
call xen_evtchn_do_upcall
|
|
popq %rsp
|
|
decl PER_CPU_VAR(irq_count)
|
|
#ifndef CONFIG_PREEMPT
|
|
call xen_maybe_preempt_hcall
|
|
#endif
|
|
jmp error_exit
|
|
END(xen_do_hypervisor_callback)
|
|
|
|
/*
|
|
* Hypervisor uses this for application faults while it executes.
|
|
* We get here for two reasons:
|
|
* 1. Fault while reloading DS, ES, FS or GS
|
|
* 2. Fault while executing IRET
|
|
* Category 1 we do not need to fix up as Xen has already reloaded all segment
|
|
* registers that could be reloaded and zeroed the others.
|
|
* Category 2 we fix up by killing the current process. We cannot use the
|
|
* normal Linux return path in this case because if we use the IRET hypercall
|
|
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
|
|
* We distinguish between categories by comparing each saved segment register
|
|
* with its current contents: any discrepancy means we in category 1.
|
|
*/
|
|
ENTRY(xen_failsafe_callback)
|
|
movl %ds, %ecx
|
|
cmpw %cx, 0x10(%rsp)
|
|
jne 1f
|
|
movl %es, %ecx
|
|
cmpw %cx, 0x18(%rsp)
|
|
jne 1f
|
|
movl %fs, %ecx
|
|
cmpw %cx, 0x20(%rsp)
|
|
jne 1f
|
|
movl %gs, %ecx
|
|
cmpw %cx, 0x28(%rsp)
|
|
jne 1f
|
|
/* All segments match their saved values => Category 2 (Bad IRET). */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
pushq $0 /* RIP */
|
|
pushq %r11
|
|
pushq %rcx
|
|
jmp general_protection
|
|
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
pushq $-1 /* orig_ax = -1 => not a system call */
|
|
ALLOC_PT_GPREGS_ON_STACK
|
|
SAVE_C_REGS
|
|
SAVE_EXTRA_REGS
|
|
jmp error_exit
|
|
END(xen_failsafe_callback)
|
|
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
xen_hvm_callback_vector xen_evtchn_do_upcall
|
|
|
|
#endif /* CONFIG_XEN */
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
hyperv_callback_vector hyperv_vector_handler
|
|
#endif /* CONFIG_HYPERV */
|
|
|
|
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
|
|
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
|
|
idtentry stack_segment do_stack_segment has_error_code=1
|
|
|
|
#ifdef CONFIG_XEN
|
|
idtentry xen_debug do_debug has_error_code=0
|
|
idtentry xen_int3 do_int3 has_error_code=0
|
|
idtentry xen_stack_segment do_stack_segment has_error_code=1
|
|
#endif
|
|
|
|
idtentry general_protection do_general_protection has_error_code=1
|
|
trace_idtentry page_fault do_page_fault has_error_code=1
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
idtentry async_page_fault do_async_page_fault has_error_code=1
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
|
|
#endif
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch gs if needed.
|
|
* Use slow, but surefire "are we in kernel?" check.
|
|
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
|
|
*/
|
|
ENTRY(paranoid_entry)
|
|
cld
|
|
SAVE_C_REGS 8
|
|
SAVE_EXTRA_REGS 8
|
|
movl $1, %ebx
|
|
movl $MSR_GS_BASE, %ecx
|
|
rdmsr
|
|
testl %edx, %edx
|
|
js 1f /* negative -> in kernel */
|
|
SWAPGS
|
|
xorl %ebx, %ebx
|
|
1: ret
|
|
END(paranoid_entry)
|
|
|
|
/*
|
|
* "Paranoid" exit path from exception stack. This is invoked
|
|
* only on return from non-NMI IST interrupts that came
|
|
* from kernel space.
|
|
*
|
|
* We may be returning to very strange contexts (e.g. very early
|
|
* in syscall entry), so checking for preemption here would
|
|
* be complicated. Fortunately, we there's no good reason
|
|
* to try to handle preemption here.
|
|
*
|
|
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
|
|
*/
|
|
ENTRY(paranoid_exit)
|
|
DISABLE_INTERRUPTS(CLBR_NONE)
|
|
TRACE_IRQS_OFF_DEBUG
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz paranoid_exit_no_swapgs
|
|
TRACE_IRQS_IRETQ
|
|
SWAPGS_UNSAFE_STACK
|
|
jmp paranoid_exit_restore
|
|
paranoid_exit_no_swapgs:
|
|
TRACE_IRQS_IRETQ_DEBUG
|
|
paranoid_exit_restore:
|
|
RESTORE_EXTRA_REGS
|
|
RESTORE_C_REGS
|
|
REMOVE_PT_GPREGS_FROM_STACK 8
|
|
INTERRUPT_RETURN
|
|
END(paranoid_exit)
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch gs if needed.
|
|
* Return: EBX=0: came from user mode; EBX=1: otherwise
|
|
*/
|
|
ENTRY(error_entry)
|
|
cld
|
|
SAVE_C_REGS 8
|
|
SAVE_EXTRA_REGS 8
|
|
xorl %ebx, %ebx
|
|
testb $3, CS+8(%rsp)
|
|
jz .Lerror_kernelspace
|
|
|
|
.Lerror_entry_from_usermode_swapgs:
|
|
/*
|
|
* We entered from user mode or we're pretending to have entered
|
|
* from user mode due to an IRET fault.
|
|
*/
|
|
SWAPGS
|
|
|
|
.Lerror_entry_from_usermode_after_swapgs:
|
|
/*
|
|
* We need to tell lockdep that IRQs are off. We can't do this until
|
|
* we fix gsbase, and we should do it before enter_from_user_mode
|
|
* (which can take locks).
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
CALL_enter_from_user_mode
|
|
ret
|
|
|
|
.Lerror_entry_done:
|
|
TRACE_IRQS_OFF
|
|
ret
|
|
|
|
/*
|
|
* There are two places in the kernel that can potentially fault with
|
|
* usergs. Handle them here. B stepping K8s sometimes report a
|
|
* truncated RIP for IRET exceptions returning to compat mode. Check
|
|
* for these here too.
|
|
*/
|
|
.Lerror_kernelspace:
|
|
incl %ebx
|
|
leaq native_irq_return_iret(%rip), %rcx
|
|
cmpq %rcx, RIP+8(%rsp)
|
|
je .Lerror_bad_iret
|
|
movl %ecx, %eax /* zero extend */
|
|
cmpq %rax, RIP+8(%rsp)
|
|
je .Lbstep_iret
|
|
cmpq $gs_change, RIP+8(%rsp)
|
|
jne .Lerror_entry_done
|
|
|
|
/*
|
|
* hack: gs_change can fail with user gsbase. If this happens, fix up
|
|
* gsbase and proceed. We'll fix up the exception and land in
|
|
* gs_change's error handler with kernel gsbase.
|
|
*/
|
|
jmp .Lerror_entry_from_usermode_swapgs
|
|
|
|
.Lbstep_iret:
|
|
/* Fix truncated RIP */
|
|
movq %rcx, RIP+8(%rsp)
|
|
/* fall through */
|
|
|
|
.Lerror_bad_iret:
|
|
/*
|
|
* We came from an IRET to user mode, so we have user gsbase.
|
|
* Switch to kernel gsbase:
|
|
*/
|
|
SWAPGS
|
|
|
|
/*
|
|
* Pretend that the exception came from user mode: set up pt_regs
|
|
* as if we faulted immediately after IRET and clear EBX so that
|
|
* error_exit knows that we will be returning to user mode.
|
|
*/
|
|
mov %rsp, %rdi
|
|
call fixup_bad_iret
|
|
mov %rax, %rsp
|
|
decl %ebx
|
|
jmp .Lerror_entry_from_usermode_after_swapgs
|
|
END(error_entry)
|
|
|
|
|
|
/*
|
|
* On entry, EBS is a "return to kernel mode" flag:
|
|
* 1: already in kernel mode, don't need SWAPGS
|
|
* 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
|
|
*/
|
|
ENTRY(error_exit)
|
|
movl %ebx, %eax
|
|
DISABLE_INTERRUPTS(CLBR_NONE)
|
|
TRACE_IRQS_OFF
|
|
testl %eax, %eax
|
|
jnz retint_kernel
|
|
jmp retint_user
|
|
END(error_exit)
|
|
|
|
/* Runs on exception stack */
|
|
ENTRY(nmi)
|
|
/*
|
|
* Fix up the exception frame if we're on Xen.
|
|
* PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
|
|
* one value to the stack on native, so it may clobber the rdx
|
|
* scratch slot, but it won't clobber any of the important
|
|
* slots past it.
|
|
*
|
|
* Xen is a different story, because the Xen frame itself overlaps
|
|
* the "NMI executing" variable.
|
|
*/
|
|
PARAVIRT_ADJUST_EXCEPTION_FRAME
|
|
|
|
/*
|
|
* We allow breakpoints in NMIs. If a breakpoint occurs, then
|
|
* the iretq it performs will take us out of NMI context.
|
|
* This means that we can have nested NMIs where the next
|
|
* NMI is using the top of the stack of the previous NMI. We
|
|
* can't let it execute because the nested NMI will corrupt the
|
|
* stack of the previous NMI. NMI handlers are not re-entrant
|
|
* anyway.
|
|
*
|
|
* To handle this case we do the following:
|
|
* Check the a special location on the stack that contains
|
|
* a variable that is set when NMIs are executing.
|
|
* The interrupted task's stack is also checked to see if it
|
|
* is an NMI stack.
|
|
* If the variable is not set and the stack is not the NMI
|
|
* stack then:
|
|
* o Set the special variable on the stack
|
|
* o Copy the interrupt frame into an "outermost" location on the
|
|
* stack
|
|
* o Copy the interrupt frame into an "iret" location on the stack
|
|
* o Continue processing the NMI
|
|
* If the variable is set or the previous stack is the NMI stack:
|
|
* o Modify the "iret" location to jump to the repeat_nmi
|
|
* o return back to the first NMI
|
|
*
|
|
* Now on exit of the first NMI, we first clear the stack variable
|
|
* The NMI stack will tell any nested NMIs at that point that it is
|
|
* nested. Then we pop the stack normally with iret, and if there was
|
|
* a nested NMI that updated the copy interrupt stack frame, a
|
|
* jump will be made to the repeat_nmi code that will handle the second
|
|
* NMI.
|
|
*
|
|
* However, espfix prevents us from directly returning to userspace
|
|
* with a single IRET instruction. Similarly, IRET to user mode
|
|
* can fault. We therefore handle NMIs from user space like
|
|
* other IST entries.
|
|
*/
|
|
|
|
/* Use %rdx as our temp variable throughout */
|
|
pushq %rdx
|
|
|
|
testb $3, CS-RIP+8(%rsp)
|
|
jz .Lnmi_from_kernel
|
|
|
|
/*
|
|
* NMI from user mode. We need to run on the thread stack, but we
|
|
* can't go through the normal entry paths: NMIs are masked, and
|
|
* we don't want to enable interrupts, because then we'll end
|
|
* up in an awkward situation in which IRQs are on but NMIs
|
|
* are off.
|
|
*
|
|
* We also must not push anything to the stack before switching
|
|
* stacks lest we corrupt the "NMI executing" variable.
|
|
*/
|
|
|
|
SWAPGS_UNSAFE_STACK
|
|
cld
|
|
movq %rsp, %rdx
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
pushq 5*8(%rdx) /* pt_regs->ss */
|
|
pushq 4*8(%rdx) /* pt_regs->rsp */
|
|
pushq 3*8(%rdx) /* pt_regs->flags */
|
|
pushq 2*8(%rdx) /* pt_regs->cs */
|
|
pushq 1*8(%rdx) /* pt_regs->rip */
|
|
pushq $-1 /* pt_regs->orig_ax */
|
|
pushq %rdi /* pt_regs->di */
|
|
pushq %rsi /* pt_regs->si */
|
|
pushq (%rdx) /* pt_regs->dx */
|
|
pushq %rcx /* pt_regs->cx */
|
|
pushq %rax /* pt_regs->ax */
|
|
pushq %r8 /* pt_regs->r8 */
|
|
pushq %r9 /* pt_regs->r9 */
|
|
pushq %r10 /* pt_regs->r10 */
|
|
pushq %r11 /* pt_regs->r11 */
|
|
pushq %rbx /* pt_regs->rbx */
|
|
pushq %rbp /* pt_regs->rbp */
|
|
pushq %r12 /* pt_regs->r12 */
|
|
pushq %r13 /* pt_regs->r13 */
|
|
pushq %r14 /* pt_regs->r14 */
|
|
pushq %r15 /* pt_regs->r15 */
|
|
|
|
/*
|
|
* At this point we no longer need to worry about stack damage
|
|
* due to nesting -- we're on the normal thread stack and we're
|
|
* done with the NMI stack.
|
|
*/
|
|
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
/*
|
|
* Return back to user mode. We must *not* do the normal exit
|
|
* work, because we don't want to enable interrupts. Fortunately,
|
|
* do_nmi doesn't modify pt_regs.
|
|
*/
|
|
SWAPGS
|
|
jmp restore_c_regs_and_iret
|
|
|
|
.Lnmi_from_kernel:
|
|
/*
|
|
* Here's what our stack frame will look like:
|
|
* +---------------------------------------------------------+
|
|
* | original SS |
|
|
* | original Return RSP |
|
|
* | original RFLAGS |
|
|
* | original CS |
|
|
* | original RIP |
|
|
* +---------------------------------------------------------+
|
|
* | temp storage for rdx |
|
|
* +---------------------------------------------------------+
|
|
* | "NMI executing" variable |
|
|
* +---------------------------------------------------------+
|
|
* | iret SS } Copied from "outermost" frame |
|
|
* | iret Return RSP } on each loop iteration; overwritten |
|
|
* | iret RFLAGS } by a nested NMI to force another |
|
|
* | iret CS } iteration if needed. |
|
|
* | iret RIP } |
|
|
* +---------------------------------------------------------+
|
|
* | outermost SS } initialized in first_nmi; |
|
|
* | outermost Return RSP } will not be changed before |
|
|
* | outermost RFLAGS } NMI processing is done. |
|
|
* | outermost CS } Copied to "iret" frame on each |
|
|
* | outermost RIP } iteration. |
|
|
* +---------------------------------------------------------+
|
|
* | pt_regs |
|
|
* +---------------------------------------------------------+
|
|
*
|
|
* The "original" frame is used by hardware. Before re-enabling
|
|
* NMIs, we need to be done with it, and we need to leave enough
|
|
* space for the asm code here.
|
|
*
|
|
* We return by executing IRET while RSP points to the "iret" frame.
|
|
* That will either return for real or it will loop back into NMI
|
|
* processing.
|
|
*
|
|
* The "outermost" frame is copied to the "iret" frame on each
|
|
* iteration of the loop, so each iteration starts with the "iret"
|
|
* frame pointing to the final return target.
|
|
*/
|
|
|
|
/*
|
|
* Determine whether we're a nested NMI.
|
|
*
|
|
* If we interrupted kernel code between repeat_nmi and
|
|
* end_repeat_nmi, then we are a nested NMI. We must not
|
|
* modify the "iret" frame because it's being written by
|
|
* the outer NMI. That's okay; the outer NMI handler is
|
|
* about to about to call do_nmi anyway, so we can just
|
|
* resume the outer NMI.
|
|
*/
|
|
|
|
movq $repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja 1f
|
|
movq $end_repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja nested_nmi_out
|
|
1:
|
|
|
|
/*
|
|
* Now check "NMI executing". If it's set, then we're nested.
|
|
* This will not detect if we interrupted an outer NMI just
|
|
* before IRET.
|
|
*/
|
|
cmpl $1, -8(%rsp)
|
|
je nested_nmi
|
|
|
|
/*
|
|
* Now test if the previous stack was an NMI stack. This covers
|
|
* the case where we interrupt an outer NMI after it clears
|
|
* "NMI executing" but before IRET. We need to be careful, though:
|
|
* there is one case in which RSP could point to the NMI stack
|
|
* despite there being no NMI active: naughty userspace controls
|
|
* RSP at the very beginning of the SYSCALL targets. We can
|
|
* pull a fast one on naughty userspace, though: we program
|
|
* SYSCALL to mask DF, so userspace cannot cause DF to be set
|
|
* if it controls the kernel's RSP. We set DF before we clear
|
|
* "NMI executing".
|
|
*/
|
|
lea 6*8(%rsp), %rdx
|
|
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If the stack pointer is above the NMI stack, this is a normal NMI */
|
|
ja first_nmi
|
|
|
|
subq $EXCEPTION_STKSZ, %rdx
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If it is below the NMI stack, it is a normal NMI */
|
|
jb first_nmi
|
|
|
|
/* Ah, it is within the NMI stack. */
|
|
|
|
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
|
|
jz first_nmi /* RSP was user controlled. */
|
|
|
|
/* This is a nested NMI. */
|
|
|
|
nested_nmi:
|
|
/*
|
|
* Modify the "iret" frame to point to repeat_nmi, forcing another
|
|
* iteration of NMI handling.
|
|
*/
|
|
subq $8, %rsp
|
|
leaq -10*8(%rsp), %rdx
|
|
pushq $__KERNEL_DS
|
|
pushq %rdx
|
|
pushfq
|
|
pushq $__KERNEL_CS
|
|
pushq $repeat_nmi
|
|
|
|
/* Put stack back */
|
|
addq $(6*8), %rsp
|
|
|
|
nested_nmi_out:
|
|
popq %rdx
|
|
|
|
/* We are returning to kernel mode, so this cannot result in a fault. */
|
|
INTERRUPT_RETURN
|
|
|
|
first_nmi:
|
|
/* Restore rdx. */
|
|
movq (%rsp), %rdx
|
|
|
|
/* Make room for "NMI executing". */
|
|
pushq $0
|
|
|
|
/* Leave room for the "iret" frame */
|
|
subq $(5*8), %rsp
|
|
|
|
/* Copy the "original" frame to the "outermost" frame */
|
|
.rept 5
|
|
pushq 11*8(%rsp)
|
|
.endr
|
|
|
|
/* Everything up to here is safe from nested NMIs */
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* For ease of testing, unmask NMIs right away. Disabled by
|
|
* default because IRET is very expensive.
|
|
*/
|
|
pushq $0 /* SS */
|
|
pushq %rsp /* RSP (minus 8 because of the previous push) */
|
|
addq $8, (%rsp) /* Fix up RSP */
|
|
pushfq /* RFLAGS */
|
|
pushq $__KERNEL_CS /* CS */
|
|
pushq $1f /* RIP */
|
|
INTERRUPT_RETURN /* continues at repeat_nmi below */
|
|
1:
|
|
#endif
|
|
|
|
repeat_nmi:
|
|
/*
|
|
* If there was a nested NMI, the first NMI's iret will return
|
|
* here. But NMIs are still enabled and we can take another
|
|
* nested NMI. The nested NMI checks the interrupted RIP to see
|
|
* if it is between repeat_nmi and end_repeat_nmi, and if so
|
|
* it will just return, as we are about to repeat an NMI anyway.
|
|
* This makes it safe to copy to the stack frame that a nested
|
|
* NMI will update.
|
|
*
|
|
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
|
|
* we're repeating an NMI, gsbase has the same value that it had on
|
|
* the first iteration. paranoid_entry will load the kernel
|
|
* gsbase if needed before we call do_nmi. "NMI executing"
|
|
* is zero.
|
|
*/
|
|
movq $1, 10*8(%rsp) /* Set "NMI executing". */
|
|
|
|
/*
|
|
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
|
|
* here must not modify the "iret" frame while we're writing to
|
|
* it or it will end up containing garbage.
|
|
*/
|
|
addq $(10*8), %rsp
|
|
.rept 5
|
|
pushq -6*8(%rsp)
|
|
.endr
|
|
subq $(5*8), %rsp
|
|
end_repeat_nmi:
|
|
|
|
/*
|
|
* Everything below this point can be preempted by a nested NMI.
|
|
* If this happens, then the inner NMI will change the "iret"
|
|
* frame to point back to repeat_nmi.
|
|
*/
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
ALLOC_PT_GPREGS_ON_STACK
|
|
|
|
/*
|
|
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
|
|
* as we should not be calling schedule in NMI context.
|
|
* Even with normal interrupts enabled. An NMI should not be
|
|
* setting NEED_RESCHED or anything that normal interrupts and
|
|
* exceptions might do.
|
|
*/
|
|
call paranoid_entry
|
|
|
|
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz nmi_restore
|
|
nmi_swapgs:
|
|
SWAPGS_UNSAFE_STACK
|
|
nmi_restore:
|
|
RESTORE_EXTRA_REGS
|
|
RESTORE_C_REGS
|
|
|
|
/* Point RSP at the "iret" frame. */
|
|
REMOVE_PT_GPREGS_FROM_STACK 6*8
|
|
|
|
/*
|
|
* Clear "NMI executing". Set DF first so that we can easily
|
|
* distinguish the remaining code between here and IRET from
|
|
* the SYSCALL entry and exit paths. On a native kernel, we
|
|
* could just inspect RIP, but, on paravirt kernels,
|
|
* INTERRUPT_RETURN can translate into a jump into a
|
|
* hypercall page.
|
|
*/
|
|
std
|
|
movq $0, 5*8(%rsp) /* clear "NMI executing" */
|
|
|
|
/*
|
|
* INTERRUPT_RETURN reads the "iret" frame and exits the NMI
|
|
* stack in a single instruction. We are returning to kernel
|
|
* mode, so this cannot result in a fault.
|
|
*/
|
|
INTERRUPT_RETURN
|
|
END(nmi)
|
|
|
|
ENTRY(ignore_sysret)
|
|
mov $-ENOSYS, %eax
|
|
sysret
|
|
END(ignore_sysret)
|