mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-28 15:13:55 +08:00
6fef4fc71e
add separate ts2020 tuner driver Signed-off-by: Konstantin Dimitrov <kosio.dimitrov@gmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
324 lines
7.5 KiB
C
324 lines
7.5 KiB
C
/*
|
|
Montage Technology TS2020 - Silicon Tuner driver
|
|
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
|
|
|
|
Copyright (C) 2009-2012 TurboSight.com
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "ts2020.h"
|
|
|
|
#define TS2020_XTAL_FREQ 27000 /* in kHz */
|
|
|
|
struct ts2020_state {
|
|
u8 tuner_address;
|
|
struct i2c_adapter *i2c;
|
|
};
|
|
|
|
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
|
|
{
|
|
struct ts2020_state *state = fe->tuner_priv;
|
|
|
|
int ret;
|
|
u8 b0[] = { reg };
|
|
u8 b1[] = { 0 };
|
|
struct i2c_msg msg[] = {
|
|
{
|
|
.addr = state->tuner_address,
|
|
.flags = 0,
|
|
.buf = b0,
|
|
.len = 1
|
|
}, {
|
|
.addr = state->tuner_address,
|
|
.flags = I2C_M_RD,
|
|
.buf = b1,
|
|
.len = 1
|
|
}
|
|
};
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
ret = i2c_transfer(state->i2c, msg, 2);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
if (ret != 2) {
|
|
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret);
|
|
return ret;
|
|
}
|
|
|
|
return b1[0];
|
|
}
|
|
|
|
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
|
|
{
|
|
struct ts2020_state *state = fe->tuner_priv;
|
|
|
|
u8 buf[] = { reg, data };
|
|
struct i2c_msg msg = { .addr = state->tuner_address,
|
|
.flags = 0, .buf = buf, .len = 2 };
|
|
int err;
|
|
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
err = i2c_transfer(state->i2c, &msg, 1);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
if (err != 1) {
|
|
printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x,"
|
|
" value == 0x%02x)\n", __func__, err, reg, data);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_init(struct dvb_frontend *fe)
|
|
{
|
|
ts2020_writereg(fe, 0x42, 0x73);
|
|
ts2020_writereg(fe, 0x05, 0x01);
|
|
ts2020_writereg(fe, 0x62, 0xf5);
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
{
|
|
u16 ndiv, div4;
|
|
|
|
div4 = (ts2020_readreg(fe, 0x10) & 0x10) >> 4;
|
|
|
|
ndiv = ts2020_readreg(fe, 0x01);
|
|
ndiv &= 0x0f;
|
|
ndiv <<= 8;
|
|
ndiv |= ts2020_readreg(fe, 0x02);
|
|
|
|
/* actual tuned frequency, i.e. including the offset */
|
|
*frequency = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
|
|
/ (6 + 8) / (div4 + 1) / 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_set_params(struct dvb_frontend *fe)
|
|
{
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
|
|
u8 mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf, div4;
|
|
u16 value, ndiv;
|
|
u32 srate = 0, f3db;
|
|
|
|
ts2020_init(fe);
|
|
|
|
/* unknown */
|
|
ts2020_writereg(fe, 0x07, 0x02);
|
|
ts2020_writereg(fe, 0x10, 0x00);
|
|
ts2020_writereg(fe, 0x60, 0x79);
|
|
ts2020_writereg(fe, 0x08, 0x01);
|
|
ts2020_writereg(fe, 0x00, 0x01);
|
|
div4 = 0;
|
|
|
|
/* calculate and set freq divider */
|
|
if (c->frequency < 1146000) {
|
|
ts2020_writereg(fe, 0x10, 0x11);
|
|
div4 = 1;
|
|
ndiv = ((c->frequency * (6 + 8) * 4) +
|
|
(TS2020_XTAL_FREQ / 2)) /
|
|
TS2020_XTAL_FREQ - 1024;
|
|
} else {
|
|
ts2020_writereg(fe, 0x10, 0x01);
|
|
ndiv = ((c->frequency * (6 + 8) * 2) +
|
|
(TS2020_XTAL_FREQ / 2)) /
|
|
TS2020_XTAL_FREQ - 1024;
|
|
}
|
|
|
|
ts2020_writereg(fe, 0x01, (ndiv & 0x0f00) >> 8);
|
|
ts2020_writereg(fe, 0x02, ndiv & 0x00ff);
|
|
|
|
/* set pll */
|
|
ts2020_writereg(fe, 0x03, 0x06);
|
|
ts2020_writereg(fe, 0x51, 0x0f);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x10);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(5);
|
|
|
|
/* unknown */
|
|
ts2020_writereg(fe, 0x51, 0x17);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x08);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(5);
|
|
|
|
value = ts2020_readreg(fe, 0x3d);
|
|
value &= 0x0f;
|
|
if ((value > 4) && (value < 15)) {
|
|
value -= 3;
|
|
if (value < 4)
|
|
value = 4;
|
|
value = ((value << 3) | 0x01) & 0x79;
|
|
}
|
|
|
|
ts2020_writereg(fe, 0x60, value);
|
|
ts2020_writereg(fe, 0x51, 0x17);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x08);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
|
|
/* set low-pass filter period */
|
|
ts2020_writereg(fe, 0x04, 0x2e);
|
|
ts2020_writereg(fe, 0x51, 0x1b);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x04);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(5);
|
|
|
|
srate = c->symbol_rate / 1000;
|
|
|
|
f3db = (srate << 2) / 5 + 2000;
|
|
if (srate < 5000)
|
|
f3db += 3000;
|
|
if (f3db < 7000)
|
|
f3db = 7000;
|
|
if (f3db > 40000)
|
|
f3db = 40000;
|
|
|
|
/* set low-pass filter baseband */
|
|
value = ts2020_readreg(fe, 0x26);
|
|
mlpf = 0x2e * 207 / ((value << 1) + 151);
|
|
mlpf_max = mlpf * 135 / 100;
|
|
mlpf_min = mlpf * 78 / 100;
|
|
if (mlpf_max > 63)
|
|
mlpf_max = 63;
|
|
|
|
/* rounded to the closest integer */
|
|
nlpf = ((mlpf * f3db * 1000) + (2766 * TS2020_XTAL_FREQ / 2))
|
|
/ (2766 * TS2020_XTAL_FREQ);
|
|
if (nlpf > 23)
|
|
nlpf = 23;
|
|
if (nlpf < 1)
|
|
nlpf = 1;
|
|
|
|
/* rounded to the closest integer */
|
|
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
|
|
(1000 * f3db / 2)) / (1000 * f3db);
|
|
|
|
if (mlpf_new < mlpf_min) {
|
|
nlpf++;
|
|
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
|
|
(1000 * f3db / 2)) / (1000 * f3db);
|
|
}
|
|
|
|
if (mlpf_new > mlpf_max)
|
|
mlpf_new = mlpf_max;
|
|
|
|
ts2020_writereg(fe, 0x04, mlpf_new);
|
|
ts2020_writereg(fe, 0x06, nlpf);
|
|
ts2020_writereg(fe, 0x51, 0x1b);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x04);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(5);
|
|
|
|
/* unknown */
|
|
ts2020_writereg(fe, 0x51, 0x1e);
|
|
ts2020_writereg(fe, 0x51, 0x1f);
|
|
ts2020_writereg(fe, 0x50, 0x01);
|
|
ts2020_writereg(fe, 0x50, 0x00);
|
|
msleep(60);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ts2020_release(struct dvb_frontend *fe)
|
|
{
|
|
struct ts2020_state *state = fe->tuner_priv;
|
|
|
|
fe->tuner_priv = NULL;
|
|
kfree(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ts2020_get_signal_strength(struct dvb_frontend *fe,
|
|
u16 *signal_strength)
|
|
{
|
|
u16 sig_reading, sig_strength;
|
|
u8 rfgain, bbgain;
|
|
|
|
rfgain = ts2020_readreg(fe, 0x3d) & 0x1f;
|
|
bbgain = ts2020_readreg(fe, 0x21) & 0x1f;
|
|
|
|
if (rfgain > 15)
|
|
rfgain = 15;
|
|
if (bbgain > 13)
|
|
bbgain = 13;
|
|
|
|
sig_reading = rfgain * 2 + bbgain * 3;
|
|
|
|
sig_strength = 40 + (64 - sig_reading) * 50 / 64 ;
|
|
|
|
/* cook the value to be suitable for szap-s2 human readable output */
|
|
*signal_strength = sig_strength * 1000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dvb_tuner_ops ts2020_ops = {
|
|
.info = {
|
|
.name = "Montage Technology TS2020 Silicon Tuner",
|
|
.frequency_min = 950000,
|
|
.frequency_max = 2150000,
|
|
},
|
|
|
|
.init = ts2020_init,
|
|
.release = ts2020_release,
|
|
.set_params = ts2020_set_params,
|
|
.get_frequency = ts2020_get_frequency,
|
|
.get_rf_strength = ts2020_get_signal_strength
|
|
};
|
|
|
|
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
|
|
const struct ts2020_config *config, struct i2c_adapter *i2c)
|
|
{
|
|
struct ts2020_state *state = NULL;
|
|
|
|
/* allocate memory for the internal state */
|
|
state = kzalloc(sizeof(struct ts2020_state), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
/* setup the state */
|
|
state->tuner_address = config->tuner_address;
|
|
state->i2c = i2c;
|
|
fe->tuner_priv = state;
|
|
fe->ops.tuner_ops = ts2020_ops;
|
|
fe->ops.read_signal_strength = fe->ops.tuner_ops.get_rf_strength;
|
|
|
|
return fe;
|
|
}
|
|
EXPORT_SYMBOL(ts2020_attach);
|
|
|
|
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
|
|
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
|
|
MODULE_LICENSE("GPL");
|