2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 13:44:01 +08:00
linux-next/arch/sparc/kernel/mdesc.c
Michal Hocko dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00

1348 lines
30 KiB
C

/* mdesc.c: Sun4V machine description handling.
*
* Copyright (C) 2007, 2008 David S. Miller <davem@davemloft.net>
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/memblock.h>
#include <linux/log2.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <asm/cpudata.h>
#include <asm/hypervisor.h>
#include <asm/mdesc.h>
#include <asm/prom.h>
#include <linux/uaccess.h>
#include <asm/oplib.h>
#include <asm/smp.h>
/* Unlike the OBP device tree, the machine description is a full-on
* DAG. An arbitrary number of ARCs are possible from one
* node to other nodes and thus we can't use the OBP device_node
* data structure to represent these nodes inside of the kernel.
*
* Actually, it isn't even a DAG, because there are back pointers
* which create cycles in the graph.
*
* mdesc_hdr and mdesc_elem describe the layout of the data structure
* we get from the Hypervisor.
*/
struct mdesc_hdr {
u32 version; /* Transport version */
u32 node_sz; /* node block size */
u32 name_sz; /* name block size */
u32 data_sz; /* data block size */
} __attribute__((aligned(16)));
struct mdesc_elem {
u8 tag;
#define MD_LIST_END 0x00
#define MD_NODE 0x4e
#define MD_NODE_END 0x45
#define MD_NOOP 0x20
#define MD_PROP_ARC 0x61
#define MD_PROP_VAL 0x76
#define MD_PROP_STR 0x73
#define MD_PROP_DATA 0x64
u8 name_len;
u16 resv;
u32 name_offset;
union {
struct {
u32 data_len;
u32 data_offset;
} data;
u64 val;
} d;
};
struct mdesc_mem_ops {
struct mdesc_handle *(*alloc)(unsigned int mdesc_size);
void (*free)(struct mdesc_handle *handle);
};
struct mdesc_handle {
struct list_head list;
struct mdesc_mem_ops *mops;
void *self_base;
atomic_t refcnt;
unsigned int handle_size;
struct mdesc_hdr mdesc;
};
typedef int (*mdesc_node_info_get_f)(struct mdesc_handle *, u64,
union md_node_info *);
typedef void (*mdesc_node_info_rel_f)(union md_node_info *);
typedef bool (*mdesc_node_match_f)(union md_node_info *, union md_node_info *);
struct md_node_ops {
char *name;
mdesc_node_info_get_f get_info;
mdesc_node_info_rel_f rel_info;
mdesc_node_match_f node_match;
};
static int get_vdev_port_node_info(struct mdesc_handle *md, u64 node,
union md_node_info *node_info);
static void rel_vdev_port_node_info(union md_node_info *node_info);
static bool vdev_port_node_match(union md_node_info *a_node_info,
union md_node_info *b_node_info);
static int get_ds_port_node_info(struct mdesc_handle *md, u64 node,
union md_node_info *node_info);
static void rel_ds_port_node_info(union md_node_info *node_info);
static bool ds_port_node_match(union md_node_info *a_node_info,
union md_node_info *b_node_info);
/* supported node types which can be registered */
static struct md_node_ops md_node_ops_table[] = {
{"virtual-device-port", get_vdev_port_node_info,
rel_vdev_port_node_info, vdev_port_node_match},
{"domain-services-port", get_ds_port_node_info,
rel_ds_port_node_info, ds_port_node_match},
{NULL, NULL, NULL, NULL}
};
static void mdesc_get_node_ops(const char *node_name,
mdesc_node_info_get_f *get_info_f,
mdesc_node_info_rel_f *rel_info_f,
mdesc_node_match_f *match_f)
{
int i;
if (get_info_f)
*get_info_f = NULL;
if (rel_info_f)
*rel_info_f = NULL;
if (match_f)
*match_f = NULL;
if (!node_name)
return;
for (i = 0; md_node_ops_table[i].name != NULL; i++) {
if (strcmp(md_node_ops_table[i].name, node_name) == 0) {
if (get_info_f)
*get_info_f = md_node_ops_table[i].get_info;
if (rel_info_f)
*rel_info_f = md_node_ops_table[i].rel_info;
if (match_f)
*match_f = md_node_ops_table[i].node_match;
break;
}
}
}
static void mdesc_handle_init(struct mdesc_handle *hp,
unsigned int handle_size,
void *base)
{
BUG_ON(((unsigned long)&hp->mdesc) & (16UL - 1));
memset(hp, 0, handle_size);
INIT_LIST_HEAD(&hp->list);
hp->self_base = base;
atomic_set(&hp->refcnt, 1);
hp->handle_size = handle_size;
}
static struct mdesc_handle * __init mdesc_memblock_alloc(unsigned int mdesc_size)
{
unsigned int handle_size, alloc_size;
struct mdesc_handle *hp;
unsigned long paddr;
handle_size = (sizeof(struct mdesc_handle) -
sizeof(struct mdesc_hdr) +
mdesc_size);
alloc_size = PAGE_ALIGN(handle_size);
paddr = memblock_alloc(alloc_size, PAGE_SIZE);
hp = NULL;
if (paddr) {
hp = __va(paddr);
mdesc_handle_init(hp, handle_size, hp);
}
return hp;
}
static void __init mdesc_memblock_free(struct mdesc_handle *hp)
{
unsigned int alloc_size;
unsigned long start;
BUG_ON(atomic_read(&hp->refcnt) != 0);
BUG_ON(!list_empty(&hp->list));
alloc_size = PAGE_ALIGN(hp->handle_size);
start = __pa(hp);
free_bootmem_late(start, alloc_size);
}
static struct mdesc_mem_ops memblock_mdesc_ops = {
.alloc = mdesc_memblock_alloc,
.free = mdesc_memblock_free,
};
static struct mdesc_handle *mdesc_kmalloc(unsigned int mdesc_size)
{
unsigned int handle_size;
struct mdesc_handle *hp;
unsigned long addr;
void *base;
handle_size = (sizeof(struct mdesc_handle) -
sizeof(struct mdesc_hdr) +
mdesc_size);
base = kmalloc(handle_size + 15, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
if (!base)
return NULL;
addr = (unsigned long)base;
addr = (addr + 15UL) & ~15UL;
hp = (struct mdesc_handle *) addr;
mdesc_handle_init(hp, handle_size, base);
return hp;
}
static void mdesc_kfree(struct mdesc_handle *hp)
{
BUG_ON(atomic_read(&hp->refcnt) != 0);
BUG_ON(!list_empty(&hp->list));
kfree(hp->self_base);
}
static struct mdesc_mem_ops kmalloc_mdesc_memops = {
.alloc = mdesc_kmalloc,
.free = mdesc_kfree,
};
static struct mdesc_handle *mdesc_alloc(unsigned int mdesc_size,
struct mdesc_mem_ops *mops)
{
struct mdesc_handle *hp = mops->alloc(mdesc_size);
if (hp)
hp->mops = mops;
return hp;
}
static void mdesc_free(struct mdesc_handle *hp)
{
hp->mops->free(hp);
}
static struct mdesc_handle *cur_mdesc;
static LIST_HEAD(mdesc_zombie_list);
static DEFINE_SPINLOCK(mdesc_lock);
struct mdesc_handle *mdesc_grab(void)
{
struct mdesc_handle *hp;
unsigned long flags;
spin_lock_irqsave(&mdesc_lock, flags);
hp = cur_mdesc;
if (hp)
atomic_inc(&hp->refcnt);
spin_unlock_irqrestore(&mdesc_lock, flags);
return hp;
}
EXPORT_SYMBOL(mdesc_grab);
void mdesc_release(struct mdesc_handle *hp)
{
unsigned long flags;
spin_lock_irqsave(&mdesc_lock, flags);
if (atomic_dec_and_test(&hp->refcnt)) {
list_del_init(&hp->list);
hp->mops->free(hp);
}
spin_unlock_irqrestore(&mdesc_lock, flags);
}
EXPORT_SYMBOL(mdesc_release);
static DEFINE_MUTEX(mdesc_mutex);
static struct mdesc_notifier_client *client_list;
void mdesc_register_notifier(struct mdesc_notifier_client *client)
{
bool supported = false;
u64 node;
int i;
mutex_lock(&mdesc_mutex);
/* check to see if the node is supported for registration */
for (i = 0; md_node_ops_table[i].name != NULL; i++) {
if (strcmp(md_node_ops_table[i].name, client->node_name) == 0) {
supported = true;
break;
}
}
if (!supported) {
pr_err("MD: %s node not supported\n", client->node_name);
mutex_unlock(&mdesc_mutex);
return;
}
client->next = client_list;
client_list = client;
mdesc_for_each_node_by_name(cur_mdesc, node, client->node_name)
client->add(cur_mdesc, node, client->node_name);
mutex_unlock(&mdesc_mutex);
}
static const u64 *parent_cfg_handle(struct mdesc_handle *hp, u64 node)
{
const u64 *id;
u64 a;
id = NULL;
mdesc_for_each_arc(a, hp, node, MDESC_ARC_TYPE_BACK) {
u64 target;
target = mdesc_arc_target(hp, a);
id = mdesc_get_property(hp, target,
"cfg-handle", NULL);
if (id)
break;
}
return id;
}
static int get_vdev_port_node_info(struct mdesc_handle *md, u64 node,
union md_node_info *node_info)
{
const u64 *parent_cfg_hdlp;
const char *name;
const u64 *idp;
/*
* Virtual device nodes are distinguished by:
* 1. "id" property
* 2. "name" property
* 3. parent node "cfg-handle" property
*/
idp = mdesc_get_property(md, node, "id", NULL);
name = mdesc_get_property(md, node, "name", NULL);
parent_cfg_hdlp = parent_cfg_handle(md, node);
if (!idp || !name || !parent_cfg_hdlp)
return -1;
node_info->vdev_port.id = *idp;
node_info->vdev_port.name = kstrdup_const(name, GFP_KERNEL);
node_info->vdev_port.parent_cfg_hdl = *parent_cfg_hdlp;
return 0;
}
static void rel_vdev_port_node_info(union md_node_info *node_info)
{
if (node_info && node_info->vdev_port.name) {
kfree_const(node_info->vdev_port.name);
node_info->vdev_port.name = NULL;
}
}
static bool vdev_port_node_match(union md_node_info *a_node_info,
union md_node_info *b_node_info)
{
if (a_node_info->vdev_port.id != b_node_info->vdev_port.id)
return false;
if (a_node_info->vdev_port.parent_cfg_hdl !=
b_node_info->vdev_port.parent_cfg_hdl)
return false;
if (strncmp(a_node_info->vdev_port.name,
b_node_info->vdev_port.name, MDESC_MAX_STR_LEN) != 0)
return false;
return true;
}
static int get_ds_port_node_info(struct mdesc_handle *md, u64 node,
union md_node_info *node_info)
{
const u64 *idp;
/* DS port nodes use the "id" property to distinguish them */
idp = mdesc_get_property(md, node, "id", NULL);
if (!idp)
return -1;
node_info->ds_port.id = *idp;
return 0;
}
static void rel_ds_port_node_info(union md_node_info *node_info)
{
}
static bool ds_port_node_match(union md_node_info *a_node_info,
union md_node_info *b_node_info)
{
if (a_node_info->ds_port.id != b_node_info->ds_port.id)
return false;
return true;
}
/* Run 'func' on nodes which are in A but not in B. */
static void invoke_on_missing(const char *name,
struct mdesc_handle *a,
struct mdesc_handle *b,
void (*func)(struct mdesc_handle *, u64,
const char *node_name))
{
mdesc_node_info_get_f get_info_func;
mdesc_node_info_rel_f rel_info_func;
mdesc_node_match_f node_match_func;
union md_node_info a_node_info;
union md_node_info b_node_info;
bool found;
u64 a_node;
u64 b_node;
int rv;
/*
* Find the get_info, rel_info and node_match ops for the given
* node name
*/
mdesc_get_node_ops(name, &get_info_func, &rel_info_func,
&node_match_func);
/* If we didn't find a match, the node type is not supported */
if (!get_info_func || !rel_info_func || !node_match_func) {
pr_err("MD: %s node type is not supported\n", name);
return;
}
mdesc_for_each_node_by_name(a, a_node, name) {
found = false;
rv = get_info_func(a, a_node, &a_node_info);
if (rv != 0) {
pr_err("MD: Cannot find 1 or more required match properties for %s node.\n",
name);
continue;
}
/* Check each node in B for node matching a_node */
mdesc_for_each_node_by_name(b, b_node, name) {
rv = get_info_func(b, b_node, &b_node_info);
if (rv != 0)
continue;
if (node_match_func(&a_node_info, &b_node_info)) {
found = true;
rel_info_func(&b_node_info);
break;
}
rel_info_func(&b_node_info);
}
rel_info_func(&a_node_info);
if (!found)
func(a, a_node, name);
}
}
static void notify_one(struct mdesc_notifier_client *p,
struct mdesc_handle *old_hp,
struct mdesc_handle *new_hp)
{
invoke_on_missing(p->node_name, old_hp, new_hp, p->remove);
invoke_on_missing(p->node_name, new_hp, old_hp, p->add);
}
static void mdesc_notify_clients(struct mdesc_handle *old_hp,
struct mdesc_handle *new_hp)
{
struct mdesc_notifier_client *p = client_list;
while (p) {
notify_one(p, old_hp, new_hp);
p = p->next;
}
}
void mdesc_update(void)
{
unsigned long len, real_len, status;
struct mdesc_handle *hp, *orig_hp;
unsigned long flags;
mutex_lock(&mdesc_mutex);
(void) sun4v_mach_desc(0UL, 0UL, &len);
hp = mdesc_alloc(len, &kmalloc_mdesc_memops);
if (!hp) {
printk(KERN_ERR "MD: mdesc alloc fails\n");
goto out;
}
status = sun4v_mach_desc(__pa(&hp->mdesc), len, &real_len);
if (status != HV_EOK || real_len > len) {
printk(KERN_ERR "MD: mdesc reread fails with %lu\n",
status);
atomic_dec(&hp->refcnt);
mdesc_free(hp);
goto out;
}
spin_lock_irqsave(&mdesc_lock, flags);
orig_hp = cur_mdesc;
cur_mdesc = hp;
spin_unlock_irqrestore(&mdesc_lock, flags);
mdesc_notify_clients(orig_hp, hp);
spin_lock_irqsave(&mdesc_lock, flags);
if (atomic_dec_and_test(&orig_hp->refcnt))
mdesc_free(orig_hp);
else
list_add(&orig_hp->list, &mdesc_zombie_list);
spin_unlock_irqrestore(&mdesc_lock, flags);
out:
mutex_unlock(&mdesc_mutex);
}
u64 mdesc_get_node(struct mdesc_handle *hp, const char *node_name,
union md_node_info *node_info)
{
mdesc_node_info_get_f get_info_func;
mdesc_node_info_rel_f rel_info_func;
mdesc_node_match_f node_match_func;
union md_node_info hp_node_info;
u64 hp_node;
int rv;
if (hp == NULL || node_name == NULL || node_info == NULL)
return MDESC_NODE_NULL;
/* Find the ops for the given node name */
mdesc_get_node_ops(node_name, &get_info_func, &rel_info_func,
&node_match_func);
/* If we didn't find ops for the given node name, it is not supported */
if (!get_info_func || !rel_info_func || !node_match_func) {
pr_err("MD: %s node is not supported\n", node_name);
return -EINVAL;
}
mdesc_for_each_node_by_name(hp, hp_node, node_name) {
rv = get_info_func(hp, hp_node, &hp_node_info);
if (rv != 0)
continue;
if (node_match_func(node_info, &hp_node_info))
break;
rel_info_func(&hp_node_info);
}
rel_info_func(&hp_node_info);
return hp_node;
}
EXPORT_SYMBOL(mdesc_get_node);
int mdesc_get_node_info(struct mdesc_handle *hp, u64 node,
const char *node_name, union md_node_info *node_info)
{
mdesc_node_info_get_f get_info_func;
int rv;
if (hp == NULL || node == MDESC_NODE_NULL ||
node_name == NULL || node_info == NULL)
return -EINVAL;
/* Find the get_info op for the given node name */
mdesc_get_node_ops(node_name, &get_info_func, NULL, NULL);
/* If we didn't find a get_info_func, the node name is not supported */
if (get_info_func == NULL) {
pr_err("MD: %s node is not supported\n", node_name);
return -EINVAL;
}
rv = get_info_func(hp, node, node_info);
if (rv != 0) {
pr_err("MD: Cannot find 1 or more required match properties for %s node.\n",
node_name);
return -1;
}
return 0;
}
EXPORT_SYMBOL(mdesc_get_node_info);
static struct mdesc_elem *node_block(struct mdesc_hdr *mdesc)
{
return (struct mdesc_elem *) (mdesc + 1);
}
static void *name_block(struct mdesc_hdr *mdesc)
{
return ((void *) node_block(mdesc)) + mdesc->node_sz;
}
static void *data_block(struct mdesc_hdr *mdesc)
{
return ((void *) name_block(mdesc)) + mdesc->name_sz;
}
u64 mdesc_node_by_name(struct mdesc_handle *hp,
u64 from_node, const char *name)
{
struct mdesc_elem *ep = node_block(&hp->mdesc);
const char *names = name_block(&hp->mdesc);
u64 last_node = hp->mdesc.node_sz / 16;
u64 ret;
if (from_node == MDESC_NODE_NULL) {
ret = from_node = 0;
} else if (from_node >= last_node) {
return MDESC_NODE_NULL;
} else {
ret = ep[from_node].d.val;
}
while (ret < last_node) {
if (ep[ret].tag != MD_NODE)
return MDESC_NODE_NULL;
if (!strcmp(names + ep[ret].name_offset, name))
break;
ret = ep[ret].d.val;
}
if (ret >= last_node)
ret = MDESC_NODE_NULL;
return ret;
}
EXPORT_SYMBOL(mdesc_node_by_name);
const void *mdesc_get_property(struct mdesc_handle *hp, u64 node,
const char *name, int *lenp)
{
const char *names = name_block(&hp->mdesc);
u64 last_node = hp->mdesc.node_sz / 16;
void *data = data_block(&hp->mdesc);
struct mdesc_elem *ep;
if (node == MDESC_NODE_NULL || node >= last_node)
return NULL;
ep = node_block(&hp->mdesc) + node;
ep++;
for (; ep->tag != MD_NODE_END; ep++) {
void *val = NULL;
int len = 0;
switch (ep->tag) {
case MD_PROP_VAL:
val = &ep->d.val;
len = 8;
break;
case MD_PROP_STR:
case MD_PROP_DATA:
val = data + ep->d.data.data_offset;
len = ep->d.data.data_len;
break;
default:
break;
}
if (!val)
continue;
if (!strcmp(names + ep->name_offset, name)) {
if (lenp)
*lenp = len;
return val;
}
}
return NULL;
}
EXPORT_SYMBOL(mdesc_get_property);
u64 mdesc_next_arc(struct mdesc_handle *hp, u64 from, const char *arc_type)
{
struct mdesc_elem *ep, *base = node_block(&hp->mdesc);
const char *names = name_block(&hp->mdesc);
u64 last_node = hp->mdesc.node_sz / 16;
if (from == MDESC_NODE_NULL || from >= last_node)
return MDESC_NODE_NULL;
ep = base + from;
ep++;
for (; ep->tag != MD_NODE_END; ep++) {
if (ep->tag != MD_PROP_ARC)
continue;
if (strcmp(names + ep->name_offset, arc_type))
continue;
return ep - base;
}
return MDESC_NODE_NULL;
}
EXPORT_SYMBOL(mdesc_next_arc);
u64 mdesc_arc_target(struct mdesc_handle *hp, u64 arc)
{
struct mdesc_elem *ep, *base = node_block(&hp->mdesc);
ep = base + arc;
return ep->d.val;
}
EXPORT_SYMBOL(mdesc_arc_target);
const char *mdesc_node_name(struct mdesc_handle *hp, u64 node)
{
struct mdesc_elem *ep, *base = node_block(&hp->mdesc);
const char *names = name_block(&hp->mdesc);
u64 last_node = hp->mdesc.node_sz / 16;
if (node == MDESC_NODE_NULL || node >= last_node)
return NULL;
ep = base + node;
if (ep->tag != MD_NODE)
return NULL;
return names + ep->name_offset;
}
EXPORT_SYMBOL(mdesc_node_name);
static u64 max_cpus = 64;
static void __init report_platform_properties(void)
{
struct mdesc_handle *hp = mdesc_grab();
u64 pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "platform");
const char *s;
const u64 *v;
if (pn == MDESC_NODE_NULL) {
prom_printf("No platform node in machine-description.\n");
prom_halt();
}
s = mdesc_get_property(hp, pn, "banner-name", NULL);
printk("PLATFORM: banner-name [%s]\n", s);
s = mdesc_get_property(hp, pn, "name", NULL);
printk("PLATFORM: name [%s]\n", s);
v = mdesc_get_property(hp, pn, "hostid", NULL);
if (v)
printk("PLATFORM: hostid [%08llx]\n", *v);
v = mdesc_get_property(hp, pn, "serial#", NULL);
if (v)
printk("PLATFORM: serial# [%08llx]\n", *v);
v = mdesc_get_property(hp, pn, "stick-frequency", NULL);
printk("PLATFORM: stick-frequency [%08llx]\n", *v);
v = mdesc_get_property(hp, pn, "mac-address", NULL);
if (v)
printk("PLATFORM: mac-address [%llx]\n", *v);
v = mdesc_get_property(hp, pn, "watchdog-resolution", NULL);
if (v)
printk("PLATFORM: watchdog-resolution [%llu ms]\n", *v);
v = mdesc_get_property(hp, pn, "watchdog-max-timeout", NULL);
if (v)
printk("PLATFORM: watchdog-max-timeout [%llu ms]\n", *v);
v = mdesc_get_property(hp, pn, "max-cpus", NULL);
if (v) {
max_cpus = *v;
printk("PLATFORM: max-cpus [%llu]\n", max_cpus);
}
#ifdef CONFIG_SMP
{
int max_cpu, i;
if (v) {
max_cpu = *v;
if (max_cpu > NR_CPUS)
max_cpu = NR_CPUS;
} else {
max_cpu = NR_CPUS;
}
for (i = 0; i < max_cpu; i++)
set_cpu_possible(i, true);
}
#endif
mdesc_release(hp);
}
static void fill_in_one_cache(cpuinfo_sparc *c, struct mdesc_handle *hp, u64 mp)
{
const u64 *level = mdesc_get_property(hp, mp, "level", NULL);
const u64 *size = mdesc_get_property(hp, mp, "size", NULL);
const u64 *line_size = mdesc_get_property(hp, mp, "line-size", NULL);
const char *type;
int type_len;
type = mdesc_get_property(hp, mp, "type", &type_len);
switch (*level) {
case 1:
if (of_find_in_proplist(type, "instn", type_len)) {
c->icache_size = *size;
c->icache_line_size = *line_size;
} else if (of_find_in_proplist(type, "data", type_len)) {
c->dcache_size = *size;
c->dcache_line_size = *line_size;
}
break;
case 2:
c->ecache_size = *size;
c->ecache_line_size = *line_size;
break;
default:
break;
}
if (*level == 1) {
u64 a;
mdesc_for_each_arc(a, hp, mp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(hp, a);
const char *name = mdesc_node_name(hp, target);
if (!strcmp(name, "cache"))
fill_in_one_cache(c, hp, target);
}
}
}
static void find_back_node_value(struct mdesc_handle *hp, u64 node,
char *srch_val,
void (*func)(struct mdesc_handle *, u64, int),
u64 val, int depth)
{
u64 arc;
/* Since we have an estimate of recursion depth, do a sanity check. */
if (depth == 0)
return;
mdesc_for_each_arc(arc, hp, node, MDESC_ARC_TYPE_BACK) {
u64 n = mdesc_arc_target(hp, arc);
const char *name = mdesc_node_name(hp, n);
if (!strcmp(srch_val, name))
(*func)(hp, n, val);
find_back_node_value(hp, n, srch_val, func, val, depth-1);
}
}
static void __mark_core_id(struct mdesc_handle *hp, u64 node,
int core_id)
{
const u64 *id = mdesc_get_property(hp, node, "id", NULL);
if (*id < num_possible_cpus())
cpu_data(*id).core_id = core_id;
}
static void __mark_max_cache_id(struct mdesc_handle *hp, u64 node,
int max_cache_id)
{
const u64 *id = mdesc_get_property(hp, node, "id", NULL);
if (*id < num_possible_cpus()) {
cpu_data(*id).max_cache_id = max_cache_id;
/**
* On systems without explicit socket descriptions socket
* is max_cache_id
*/
cpu_data(*id).sock_id = max_cache_id;
}
}
static void mark_core_ids(struct mdesc_handle *hp, u64 mp,
int core_id)
{
find_back_node_value(hp, mp, "cpu", __mark_core_id, core_id, 10);
}
static void mark_max_cache_ids(struct mdesc_handle *hp, u64 mp,
int max_cache_id)
{
find_back_node_value(hp, mp, "cpu", __mark_max_cache_id,
max_cache_id, 10);
}
static void set_core_ids(struct mdesc_handle *hp)
{
int idx;
u64 mp;
idx = 1;
/* Identify unique cores by looking for cpus backpointed to by
* level 1 instruction caches.
*/
mdesc_for_each_node_by_name(hp, mp, "cache") {
const u64 *level;
const char *type;
int len;
level = mdesc_get_property(hp, mp, "level", NULL);
if (*level != 1)
continue;
type = mdesc_get_property(hp, mp, "type", &len);
if (!of_find_in_proplist(type, "instn", len))
continue;
mark_core_ids(hp, mp, idx);
idx++;
}
}
static int set_max_cache_ids_by_cache(struct mdesc_handle *hp, int level)
{
u64 mp;
int idx = 1;
int fnd = 0;
/**
* Identify unique highest level of shared cache by looking for cpus
* backpointed to by shared level N caches.
*/
mdesc_for_each_node_by_name(hp, mp, "cache") {
const u64 *cur_lvl;
cur_lvl = mdesc_get_property(hp, mp, "level", NULL);
if (*cur_lvl != level)
continue;
mark_max_cache_ids(hp, mp, idx);
idx++;
fnd = 1;
}
return fnd;
}
static void set_sock_ids_by_socket(struct mdesc_handle *hp, u64 mp)
{
int idx = 1;
mdesc_for_each_node_by_name(hp, mp, "socket") {
u64 a;
mdesc_for_each_arc(a, hp, mp, MDESC_ARC_TYPE_FWD) {
u64 t = mdesc_arc_target(hp, a);
const char *name;
const u64 *id;
name = mdesc_node_name(hp, t);
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(hp, t, "id", NULL);
if (*id < num_possible_cpus())
cpu_data(*id).sock_id = idx;
}
idx++;
}
}
static void set_sock_ids(struct mdesc_handle *hp)
{
u64 mp;
/**
* Find the highest level of shared cache which pre-T7 is also
* the socket.
*/
if (!set_max_cache_ids_by_cache(hp, 3))
set_max_cache_ids_by_cache(hp, 2);
/* If machine description exposes sockets data use it.*/
mp = mdesc_node_by_name(hp, MDESC_NODE_NULL, "sockets");
if (mp != MDESC_NODE_NULL)
set_sock_ids_by_socket(hp, mp);
}
static void mark_proc_ids(struct mdesc_handle *hp, u64 mp, int proc_id)
{
u64 a;
mdesc_for_each_arc(a, hp, mp, MDESC_ARC_TYPE_BACK) {
u64 t = mdesc_arc_target(hp, a);
const char *name;
const u64 *id;
name = mdesc_node_name(hp, t);
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(hp, t, "id", NULL);
if (*id < NR_CPUS)
cpu_data(*id).proc_id = proc_id;
}
}
static void __set_proc_ids(struct mdesc_handle *hp, const char *exec_unit_name)
{
int idx;
u64 mp;
idx = 0;
mdesc_for_each_node_by_name(hp, mp, exec_unit_name) {
const char *type;
int len;
type = mdesc_get_property(hp, mp, "type", &len);
if (!of_find_in_proplist(type, "int", len) &&
!of_find_in_proplist(type, "integer", len))
continue;
mark_proc_ids(hp, mp, idx);
idx++;
}
}
static void set_proc_ids(struct mdesc_handle *hp)
{
__set_proc_ids(hp, "exec_unit");
__set_proc_ids(hp, "exec-unit");
}
static void get_one_mondo_bits(const u64 *p, unsigned int *mask,
unsigned long def, unsigned long max)
{
u64 val;
if (!p)
goto use_default;
val = *p;
if (!val || val >= 64)
goto use_default;
if (val > max)
val = max;
*mask = ((1U << val) * 64U) - 1U;
return;
use_default:
*mask = ((1U << def) * 64U) - 1U;
}
static void get_mondo_data(struct mdesc_handle *hp, u64 mp,
struct trap_per_cpu *tb)
{
static int printed;
const u64 *val;
val = mdesc_get_property(hp, mp, "q-cpu-mondo-#bits", NULL);
get_one_mondo_bits(val, &tb->cpu_mondo_qmask, 7, ilog2(max_cpus * 2));
val = mdesc_get_property(hp, mp, "q-dev-mondo-#bits", NULL);
get_one_mondo_bits(val, &tb->dev_mondo_qmask, 7, 8);
val = mdesc_get_property(hp, mp, "q-resumable-#bits", NULL);
get_one_mondo_bits(val, &tb->resum_qmask, 6, 7);
val = mdesc_get_property(hp, mp, "q-nonresumable-#bits", NULL);
get_one_mondo_bits(val, &tb->nonresum_qmask, 2, 2);
if (!printed++) {
pr_info("SUN4V: Mondo queue sizes "
"[cpu(%u) dev(%u) r(%u) nr(%u)]\n",
tb->cpu_mondo_qmask + 1,
tb->dev_mondo_qmask + 1,
tb->resum_qmask + 1,
tb->nonresum_qmask + 1);
}
}
static void *mdesc_iterate_over_cpus(void *(*func)(struct mdesc_handle *, u64, int, void *), void *arg, cpumask_t *mask)
{
struct mdesc_handle *hp = mdesc_grab();
void *ret = NULL;
u64 mp;
mdesc_for_each_node_by_name(hp, mp, "cpu") {
const u64 *id = mdesc_get_property(hp, mp, "id", NULL);
int cpuid = *id;
#ifdef CONFIG_SMP
if (cpuid >= NR_CPUS) {
printk(KERN_WARNING "Ignoring CPU %d which is "
">= NR_CPUS (%d)\n",
cpuid, NR_CPUS);
continue;
}
if (!cpumask_test_cpu(cpuid, mask))
continue;
#endif
ret = func(hp, mp, cpuid, arg);
if (ret)
goto out;
}
out:
mdesc_release(hp);
return ret;
}
static void *record_one_cpu(struct mdesc_handle *hp, u64 mp, int cpuid,
void *arg)
{
ncpus_probed++;
#ifdef CONFIG_SMP
set_cpu_present(cpuid, true);
#endif
return NULL;
}
void mdesc_populate_present_mask(cpumask_t *mask)
{
if (tlb_type != hypervisor)
return;
ncpus_probed = 0;
mdesc_iterate_over_cpus(record_one_cpu, NULL, mask);
}
static void * __init check_one_pgsz(struct mdesc_handle *hp, u64 mp, int cpuid, void *arg)
{
const u64 *pgsz_prop = mdesc_get_property(hp, mp, "mmu-page-size-list", NULL);
unsigned long *pgsz_mask = arg;
u64 val;
val = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
if (pgsz_prop)
val = *pgsz_prop;
if (!*pgsz_mask)
*pgsz_mask = val;
else
*pgsz_mask &= val;
return NULL;
}
void __init mdesc_get_page_sizes(cpumask_t *mask, unsigned long *pgsz_mask)
{
*pgsz_mask = 0;
mdesc_iterate_over_cpus(check_one_pgsz, pgsz_mask, mask);
}
static void *fill_in_one_cpu(struct mdesc_handle *hp, u64 mp, int cpuid,
void *arg)
{
const u64 *cfreq = mdesc_get_property(hp, mp, "clock-frequency", NULL);
struct trap_per_cpu *tb;
cpuinfo_sparc *c;
u64 a;
#ifndef CONFIG_SMP
/* On uniprocessor we only want the values for the
* real physical cpu the kernel booted onto, however
* cpu_data() only has one entry at index 0.
*/
if (cpuid != real_hard_smp_processor_id())
return NULL;
cpuid = 0;
#endif
c = &cpu_data(cpuid);
c->clock_tick = *cfreq;
tb = &trap_block[cpuid];
get_mondo_data(hp, mp, tb);
mdesc_for_each_arc(a, hp, mp, MDESC_ARC_TYPE_FWD) {
u64 j, t = mdesc_arc_target(hp, a);
const char *t_name;
t_name = mdesc_node_name(hp, t);
if (!strcmp(t_name, "cache")) {
fill_in_one_cache(c, hp, t);
continue;
}
mdesc_for_each_arc(j, hp, t, MDESC_ARC_TYPE_FWD) {
u64 n = mdesc_arc_target(hp, j);
const char *n_name;
n_name = mdesc_node_name(hp, n);
if (!strcmp(n_name, "cache"))
fill_in_one_cache(c, hp, n);
}
}
c->core_id = 0;
c->proc_id = -1;
return NULL;
}
void mdesc_fill_in_cpu_data(cpumask_t *mask)
{
struct mdesc_handle *hp;
mdesc_iterate_over_cpus(fill_in_one_cpu, NULL, mask);
hp = mdesc_grab();
set_core_ids(hp);
set_proc_ids(hp);
set_sock_ids(hp);
mdesc_release(hp);
smp_fill_in_sib_core_maps();
}
/* mdesc_open() - Grab a reference to mdesc_handle when /dev/mdesc is
* opened. Hold this reference until /dev/mdesc is closed to ensure
* mdesc data structure is not released underneath us. Store the
* pointer to mdesc structure in private_data for read and seek to use
*/
static int mdesc_open(struct inode *inode, struct file *file)
{
struct mdesc_handle *hp = mdesc_grab();
if (!hp)
return -ENODEV;
file->private_data = hp;
return 0;
}
static ssize_t mdesc_read(struct file *file, char __user *buf,
size_t len, loff_t *offp)
{
struct mdesc_handle *hp = file->private_data;
unsigned char *mdesc;
int bytes_left, count = len;
if (*offp >= hp->handle_size)
return 0;
bytes_left = hp->handle_size - *offp;
if (count > bytes_left)
count = bytes_left;
mdesc = (unsigned char *)&hp->mdesc;
mdesc += *offp;
if (!copy_to_user(buf, mdesc, count)) {
*offp += count;
return count;
} else {
return -EFAULT;
}
}
static loff_t mdesc_llseek(struct file *file, loff_t offset, int whence)
{
struct mdesc_handle *hp = file->private_data;
return no_seek_end_llseek_size(file, offset, whence, hp->handle_size);
}
/* mdesc_close() - /dev/mdesc is being closed, release the reference to
* mdesc structure.
*/
static int mdesc_close(struct inode *inode, struct file *file)
{
mdesc_release(file->private_data);
return 0;
}
static const struct file_operations mdesc_fops = {
.open = mdesc_open,
.read = mdesc_read,
.llseek = mdesc_llseek,
.release = mdesc_close,
.owner = THIS_MODULE,
};
static struct miscdevice mdesc_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "mdesc",
.fops = &mdesc_fops,
};
static int __init mdesc_misc_init(void)
{
return misc_register(&mdesc_misc);
}
__initcall(mdesc_misc_init);
void __init sun4v_mdesc_init(void)
{
struct mdesc_handle *hp;
unsigned long len, real_len, status;
(void) sun4v_mach_desc(0UL, 0UL, &len);
printk("MDESC: Size is %lu bytes.\n", len);
hp = mdesc_alloc(len, &memblock_mdesc_ops);
if (hp == NULL) {
prom_printf("MDESC: alloc of %lu bytes failed.\n", len);
prom_halt();
}
status = sun4v_mach_desc(__pa(&hp->mdesc), len, &real_len);
if (status != HV_EOK || real_len > len) {
prom_printf("sun4v_mach_desc fails, err(%lu), "
"len(%lu), real_len(%lu)\n",
status, len, real_len);
mdesc_free(hp);
prom_halt();
}
cur_mdesc = hp;
report_platform_properties();
}