2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/arch/powerpc/kvm/e500_mmu.c
Tudor Laurentiu f5ffe330f5 KVM: PPC: fix suspicious use of conditional operator
This was signaled by a static code analysis tool.

Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Reviewed-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-08-22 11:16:16 +02:00

963 lines
24 KiB
C

/*
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
* Alexander Graf, agraf@suse.de
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include "e500.h"
#include "trace_booke.h"
#include "timing.h"
#include "e500_mmu_host.h"
static inline unsigned int gtlb0_get_next_victim(
struct kvmppc_vcpu_e500 *vcpu_e500)
{
unsigned int victim;
victim = vcpu_e500->gtlb_nv[0]++;
if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
vcpu_e500->gtlb_nv[0] = 0;
return victim;
}
static int tlb0_set_base(gva_t addr, int sets, int ways)
{
int set_base;
set_base = (addr >> PAGE_SHIFT) & (sets - 1);
set_base *= ways;
return set_base;
}
static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
{
return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
vcpu_e500->gtlb_params[0].ways);
}
static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel = get_tlb_esel_bit(vcpu);
if (tlbsel == 0) {
esel &= vcpu_e500->gtlb_params[0].ways - 1;
esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
} else {
esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
}
return esel;
}
/* Search the guest TLB for a matching entry. */
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
gva_t eaddr, int tlbsel, unsigned int pid, int as)
{
int size = vcpu_e500->gtlb_params[tlbsel].entries;
unsigned int set_base, offset;
int i;
if (tlbsel == 0) {
set_base = gtlb0_set_base(vcpu_e500, eaddr);
size = vcpu_e500->gtlb_params[0].ways;
} else {
if (eaddr < vcpu_e500->tlb1_min_eaddr ||
eaddr > vcpu_e500->tlb1_max_eaddr)
return -1;
set_base = 0;
}
offset = vcpu_e500->gtlb_offset[tlbsel];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + set_base + i];
unsigned int tid;
if (eaddr < get_tlb_eaddr(tlbe))
continue;
if (eaddr > get_tlb_end(tlbe))
continue;
tid = get_tlb_tid(tlbe);
if (tid && (tid != pid))
continue;
if (!get_tlb_v(tlbe))
continue;
if (get_tlb_ts(tlbe) != as && as != -1)
continue;
return set_base + i;
}
return -1;
}
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
gva_t eaddr, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int victim, tsized;
int tlbsel;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
| MAS1_TID(get_tlbmiss_tid(vcpu))
| MAS1_TSIZE(tsized);
vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
| (get_cur_pid(vcpu) << 16)
| (as ? MAS6_SAS : 0);
}
static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int size = vcpu_e500->gtlb_params[1].entries;
unsigned int offset;
gva_t eaddr;
int i;
vcpu_e500->tlb1_min_eaddr = ~0UL;
vcpu_e500->tlb1_max_eaddr = 0;
offset = vcpu_e500->gtlb_offset[1];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + i];
if (!get_tlb_v(tlbe))
continue;
eaddr = get_tlb_eaddr(tlbe);
vcpu_e500->tlb1_min_eaddr =
min(vcpu_e500->tlb1_min_eaddr, eaddr);
eaddr = get_tlb_end(tlbe);
vcpu_e500->tlb1_max_eaddr =
max(vcpu_e500->tlb1_max_eaddr, eaddr);
}
}
static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
return vcpu_e500->tlb1_min_eaddr == start ||
vcpu_e500->tlb1_max_eaddr == end;
}
/* This function is supposed to be called for a adding a new valid tlb entry */
static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (!get_tlb_v(gtlbe))
return;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
}
static inline int kvmppc_e500_gtlbe_invalidate(
struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
if (unlikely(get_tlb_iprot(gtlbe)))
return -1;
if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
kvmppc_recalc_tlb1map_range(vcpu_e500);
gtlbe->mas1 = 0;
return 0;
}
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
{
int esel;
if (value & MMUCSR0_TLB0FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
if (value & MMUCSR0_TLB1FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
/* Invalidate all host shadow mappings */
kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int ia;
int esel, tlbsel;
ia = (ea >> 2) & 0x1;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (ea >> 3) & 0x1;
if (ia) {
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
} else {
ea &= 0xfffff000;
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
get_cur_pid(vcpu), -1);
if (esel >= 0)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
/* Invalidate all host shadow mappings */
kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
return EMULATE_DONE;
}
static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int pid, int type)
{
struct kvm_book3e_206_tlb_entry *tlbe;
int tid, esel;
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
tlbe = get_entry(vcpu_e500, tlbsel, esel);
tid = get_tlb_tid(tlbe);
if (type == 0 || tid == pid) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
}
}
static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
gva_t ea)
{
int tlbsel, esel;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
if (esel >= 0) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
break;
}
}
}
int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int pid = get_cur_spid(vcpu);
if (type == 0 || type == 1) {
tlbilx_all(vcpu_e500, 0, pid, type);
tlbilx_all(vcpu_e500, 1, pid, type);
} else if (type == 3) {
tlbilx_one(vcpu_e500, pid, ea);
}
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int tlbsel, esel;
struct kvm_book3e_206_tlb_entry *gtlbe;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int as = !!get_cur_sas(vcpu);
unsigned int pid = get_cur_spid(vcpu);
int esel, tlbsel;
struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
if (esel >= 0) {
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
break;
}
}
if (gtlbe) {
esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
} else {
int victim;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
| MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 =
(vcpu->arch.shared->mas6 & MAS6_SPID0)
| ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0)
| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
vcpu->arch.shared->mas2 &= MAS2_EPN;
vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
MAS2_ATTRIB_MASK;
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
MAS3_U2 | MAS3_U3;
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe;
int tlbsel, esel;
int recal = 0;
int idx;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
if (get_tlb_v(gtlbe)) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
if ((tlbsel == 1) &&
kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
recal = 1;
}
gtlbe->mas1 = vcpu->arch.shared->mas1;
gtlbe->mas2 = vcpu->arch.shared->mas2;
if (!(vcpu->arch.shared->msr & MSR_CM))
gtlbe->mas2 &= 0xffffffffUL;
gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
gtlbe->mas2, gtlbe->mas7_3);
if (tlbsel == 1) {
/*
* If a valid tlb1 entry is overwritten then recalculate the
* min/max TLB1 map address range otherwise no need to look
* in tlb1 array.
*/
if (recal)
kvmppc_recalc_tlb1map_range(vcpu_e500);
else
kvmppc_set_tlb1map_range(vcpu, gtlbe);
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
if (tlbe_is_host_safe(vcpu, gtlbe)) {
u64 eaddr = get_tlb_eaddr(gtlbe);
u64 raddr = get_tlb_raddr(gtlbe);
if (tlbsel == 0) {
gtlbe->mas1 &= ~MAS1_TSIZE(~0);
gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
}
/* Premap the faulting page */
kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel));
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
return EMULATE_DONE;
}
static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
gva_t eaddr, unsigned int pid, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel, tlbsel;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
if (esel >= 0)
return index_of(tlbsel, esel);
}
return -1;
}
/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int index;
gva_t eaddr;
u8 pid;
u8 as;
eaddr = tr->linear_address;
pid = (tr->linear_address >> 32) & 0xff;
as = (tr->linear_address >> 40) & 0x1;
index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
if (index < 0) {
tr->valid = 0;
return 0;
}
tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
/* XXX what does "writeable" and "usermode" even mean? */
tr->valid = 1;
return 0;
}
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
}
void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
}
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
gva_t eaddr)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe;
u64 pgmask;
gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
pgmask = get_tlb_bytes(gtlbe) - 1;
return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}
void kvmppc_mmu_destroy_e500(struct kvm_vcpu *vcpu)
{
}
/*****************************************/
static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int i;
kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
kfree(vcpu_e500->g2h_tlb1_map);
kfree(vcpu_e500->gtlb_priv[0]);
kfree(vcpu_e500->gtlb_priv[1]);
if (vcpu_e500->shared_tlb_pages) {
vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
PAGE_SIZE)));
for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
put_page(vcpu_e500->shared_tlb_pages[i]);
}
vcpu_e500->num_shared_tlb_pages = 0;
kfree(vcpu_e500->shared_tlb_pages);
vcpu_e500->shared_tlb_pages = NULL;
} else {
kfree(vcpu_e500->gtlb_arch);
}
vcpu_e500->gtlb_arch = NULL;
}
void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = vcpu->arch.mmucfg;
sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
sregs->u.e.tlbcfg[2] = 0;
sregs->u.e.tlbcfg[3] = 0;
}
int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
vcpu->arch.shared->mas0 = sregs->u.e.mas0;
vcpu->arch.shared->mas1 = sregs->u.e.mas1;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
return 0;
}
int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
long int i;
switch (id) {
case KVM_REG_PPC_MAS0:
*val = get_reg_val(id, vcpu->arch.shared->mas0);
break;
case KVM_REG_PPC_MAS1:
*val = get_reg_val(id, vcpu->arch.shared->mas1);
break;
case KVM_REG_PPC_MAS2:
*val = get_reg_val(id, vcpu->arch.shared->mas2);
break;
case KVM_REG_PPC_MAS7_3:
*val = get_reg_val(id, vcpu->arch.shared->mas7_3);
break;
case KVM_REG_PPC_MAS4:
*val = get_reg_val(id, vcpu->arch.shared->mas4);
break;
case KVM_REG_PPC_MAS6:
*val = get_reg_val(id, vcpu->arch.shared->mas6);
break;
case KVM_REG_PPC_MMUCFG:
*val = get_reg_val(id, vcpu->arch.mmucfg);
break;
case KVM_REG_PPC_EPTCFG:
*val = get_reg_val(id, vcpu->arch.eptcfg);
break;
case KVM_REG_PPC_TLB0CFG:
case KVM_REG_PPC_TLB1CFG:
case KVM_REG_PPC_TLB2CFG:
case KVM_REG_PPC_TLB3CFG:
i = id - KVM_REG_PPC_TLB0CFG;
*val = get_reg_val(id, vcpu->arch.tlbcfg[i]);
break;
case KVM_REG_PPC_TLB0PS:
case KVM_REG_PPC_TLB1PS:
case KVM_REG_PPC_TLB2PS:
case KVM_REG_PPC_TLB3PS:
i = id - KVM_REG_PPC_TLB0PS;
*val = get_reg_val(id, vcpu->arch.tlbps[i]);
break;
default:
r = -EINVAL;
break;
}
return r;
}
int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
long int i;
switch (id) {
case KVM_REG_PPC_MAS0:
vcpu->arch.shared->mas0 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MAS1:
vcpu->arch.shared->mas1 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MAS2:
vcpu->arch.shared->mas2 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MAS7_3:
vcpu->arch.shared->mas7_3 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MAS4:
vcpu->arch.shared->mas4 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_MAS6:
vcpu->arch.shared->mas6 = set_reg_val(id, *val);
break;
/* Only allow MMU registers to be set to the config supported by KVM */
case KVM_REG_PPC_MMUCFG: {
u32 reg = set_reg_val(id, *val);
if (reg != vcpu->arch.mmucfg)
r = -EINVAL;
break;
}
case KVM_REG_PPC_EPTCFG: {
u32 reg = set_reg_val(id, *val);
if (reg != vcpu->arch.eptcfg)
r = -EINVAL;
break;
}
case KVM_REG_PPC_TLB0CFG:
case KVM_REG_PPC_TLB1CFG:
case KVM_REG_PPC_TLB2CFG:
case KVM_REG_PPC_TLB3CFG: {
/* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */
u32 reg = set_reg_val(id, *val);
i = id - KVM_REG_PPC_TLB0CFG;
if (reg != vcpu->arch.tlbcfg[i])
r = -EINVAL;
break;
}
case KVM_REG_PPC_TLB0PS:
case KVM_REG_PPC_TLB1PS:
case KVM_REG_PPC_TLB2PS:
case KVM_REG_PPC_TLB3PS: {
u32 reg = set_reg_val(id, *val);
i = id - KVM_REG_PPC_TLB0PS;
if (reg != vcpu->arch.tlbps[i])
r = -EINVAL;
break;
}
default:
r = -EINVAL;
break;
}
return r;
}
static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_params *params)
{
vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
if (params->tlb_sizes[0] <= 2048)
vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0];
vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1];
vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
return 0;
}
int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
struct kvm_config_tlb *cfg)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_params params;
char *virt;
struct page **pages;
struct tlbe_priv *privs[2] = {};
u64 *g2h_bitmap = NULL;
size_t array_len;
u32 sets;
int num_pages, ret, i;
if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
return -EINVAL;
if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
sizeof(params)))
return -EFAULT;
if (params.tlb_sizes[1] > 64)
return -EINVAL;
if (params.tlb_ways[1] != params.tlb_sizes[1])
return -EINVAL;
if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
return -EINVAL;
if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
return -EINVAL;
if (!is_power_of_2(params.tlb_ways[0]))
return -EINVAL;
sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
if (!is_power_of_2(sets))
return -EINVAL;
array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
if (cfg->array_len < array_len)
return -EINVAL;
num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
cfg->array / PAGE_SIZE;
pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
if (!pages)
return -ENOMEM;
ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
if (ret < 0)
goto err_pages;
if (ret != num_pages) {
num_pages = ret;
ret = -EFAULT;
goto err_put_page;
}
virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
if (!virt) {
ret = -ENOMEM;
goto err_put_page;
}
privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
GFP_KERNEL);
privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
GFP_KERNEL);
if (!privs[0] || !privs[1]) {
ret = -ENOMEM;
goto err_privs;
}
g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
GFP_KERNEL);
if (!g2h_bitmap) {
ret = -ENOMEM;
goto err_privs;
}
free_gtlb(vcpu_e500);
vcpu_e500->gtlb_priv[0] = privs[0];
vcpu_e500->gtlb_priv[1] = privs[1];
vcpu_e500->g2h_tlb1_map = g2h_bitmap;
vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
(virt + (cfg->array & (PAGE_SIZE - 1)));
vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
/* Update vcpu's MMU geometry based on SW_TLB input */
vcpu_mmu_geometry_update(vcpu, &params);
vcpu_e500->shared_tlb_pages = pages;
vcpu_e500->num_shared_tlb_pages = num_pages;
vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
vcpu_e500->gtlb_params[0].sets = sets;
vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
vcpu_e500->gtlb_params[1].sets = 1;
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err_privs:
kfree(privs[0]);
kfree(privs[1]);
err_put_page:
for (i = 0; i < num_pages; i++)
put_page(pages[i]);
err_pages:
kfree(pages);
return ret;
}
int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
struct kvm_dirty_tlb *dirty)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_recalc_tlb1map_range(vcpu_e500);
kvmppc_core_flush_tlb(vcpu);
return 0;
}
/* Vcpu's MMU default configuration */
static int vcpu_mmu_init(struct kvm_vcpu *vcpu,
struct kvmppc_e500_tlb_params *params)
{
/* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/
vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
/* Initialize TLBnCFG fields with host values and SW_TLB geometry*/
vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[0] |= params[0].entries;
vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= params[1].entries;
vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT;
if (has_feature(vcpu, VCPU_FTR_MMU_V2)) {
vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS);
vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS);
vcpu->arch.mmucfg &= ~MMUCFG_LRAT;
/* Guest mmu emulation currently doesn't handle E.PT */
vcpu->arch.eptcfg = 0;
vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT;
vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND;
}
return 0;
}
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
if (e500_mmu_host_init(vcpu_e500))
goto err;
vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[0].sets =
KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[1].sets = 1;
vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
if (!vcpu_e500->gtlb_arch)
return -ENOMEM;
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[0])
goto err;
vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[1])
goto err;
vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(u64) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->g2h_tlb1_map)
goto err;
vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params);
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err:
free_gtlb(vcpu_e500);
return -1;
}
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
free_gtlb(vcpu_e500);
e500_mmu_host_uninit(vcpu_e500);
}