2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/net/tc35815.c
Ralf Baechle c8d64f8a05 jmr3927: do not call tc35815_killall().
No need to stop tc35815 before resetting the board.  This fixes the
build of tc35815 as a module.  This also means there is no caller of
tc35815_killall left, so remove that function also.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-03-02 19:55:07 -05:00

1741 lines
53 KiB
C

/* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ahennessy@mvista.com
*
* Based on skelton.c by Donald Becker.
* Copyright (C) 2000-2001 Toshiba Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
static const char *version =
"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/byteorder.h>
/*
* The name of the card. Is used for messages and in the requests for
* io regions, irqs and dma channels
*/
static const char* cardname = "TC35815CF";
#define TC35815_PROC_ENTRY "net/tc35815"
#define TC35815_MODULE_NAME "TC35815CF"
#define TX_TIMEOUT (4*HZ)
/* First, a few definitions that the brave might change. */
/* use 0 for production, 1 for verification, >2 for debug */
#ifndef TC35815_DEBUG
#define TC35815_DEBUG 1
#endif
static unsigned int tc35815_debug = TC35815_DEBUG;
#define GATHER_TXINT /* On-Demand Tx Interrupt */
#define vtonocache(p) KSEG1ADDR(virt_to_phys(p))
/*
* Registers
*/
struct tc35815_regs {
volatile __u32 DMA_Ctl; /* 0x00 */
volatile __u32 TxFrmPtr;
volatile __u32 TxThrsh;
volatile __u32 TxPollCtr;
volatile __u32 BLFrmPtr;
volatile __u32 RxFragSize;
volatile __u32 Int_En;
volatile __u32 FDA_Bas;
volatile __u32 FDA_Lim; /* 0x20 */
volatile __u32 Int_Src;
volatile __u32 unused0[2];
volatile __u32 PauseCnt;
volatile __u32 RemPauCnt;
volatile __u32 TxCtlFrmStat;
volatile __u32 unused1;
volatile __u32 MAC_Ctl; /* 0x40 */
volatile __u32 CAM_Ctl;
volatile __u32 Tx_Ctl;
volatile __u32 Tx_Stat;
volatile __u32 Rx_Ctl;
volatile __u32 Rx_Stat;
volatile __u32 MD_Data;
volatile __u32 MD_CA;
volatile __u32 CAM_Adr; /* 0x60 */
volatile __u32 CAM_Data;
volatile __u32 CAM_Ena;
volatile __u32 PROM_Ctl;
volatile __u32 PROM_Data;
volatile __u32 Algn_Cnt;
volatile __u32 CRC_Cnt;
volatile __u32 Miss_Cnt;
};
/*
* Bit assignments
*/
/* DMA_Ctl bit asign ------------------------------------------------------- */
#define DMA_IntMask 0x00040000 /* 1:Interupt mask */
#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
#define DMA_TestMode 0x00002000 /* 1:Test Mode */
#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
/* RxFragSize bit asign ---------------------------------------------------- */
#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
/* MAC_Ctl bit asign ------------------------------------------------------- */
#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
#define MAC_Reset 0x00000004 /* 1:Software Reset */
#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
#define MAC_HaltReq 0x00000001 /* 1:Halt request */
/* PROM_Ctl bit asign ------------------------------------------------------ */
#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
#define PROM_Read 0x00004000 /*10:Read operation */
#define PROM_Write 0x00002000 /*01:Write operation */
#define PROM_Erase 0x00006000 /*11:Erase operation */
/*00:Enable or Disable Writting, */
/* as specified in PROM_Addr. */
#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
/*00xxxx: disable */
/* CAM_Ctl bit asign ------------------------------------------------------- */
#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
/* accept other */
#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
/* CAM_Ena bit asign ------------------------------------------------------- */
#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
#define CAM_Ena_Bit(index) (1<<(index))
#define CAM_ENTRY_DESTINATION 0
#define CAM_ENTRY_SOURCE 1
#define CAM_ENTRY_MACCTL 20
/* Tx_Ctl bit asign -------------------------------------------------------- */
#define Tx_En 0x00000001 /* 1:Transmit enable */
#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
/* Tx_Stat bit asign ------------------------------------------------------- */
#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
#define Tx_ExColl 0x00000010 /* Excessive Collision */
#define Tx_TXDefer 0x00000020 /* Transmit Defered */
#define Tx_Paused 0x00000040 /* Transmit Paused */
#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
#define Tx_Under 0x00000100 /* Underrun */
#define Tx_Defer 0x00000200 /* Deferral */
#define Tx_NCarr 0x00000400 /* No Carrier */
#define Tx_10Stat 0x00000800 /* 10Mbps Status */
#define Tx_LateColl 0x00001000 /* Late Collision */
#define Tx_TxPar 0x00002000 /* Tx Parity Error */
#define Tx_Comp 0x00004000 /* Completion */
#define Tx_Halted 0x00008000 /* Tx Halted */
#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
/* Rx_Ctl bit asign -------------------------------------------------------- */
#define Rx_EnGood 0x00004000 /* 1:Enable Good */
#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
#define Rx_LongEn 0x00000004 /* 1:Long Enable */
#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
/* Rx_Stat bit asign ------------------------------------------------------- */
#define Rx_Halted 0x00008000 /* Rx Halted */
#define Rx_Good 0x00004000 /* Rx Good */
#define Rx_RxPar 0x00002000 /* Rx Parity Error */
/* 0x00001000 not use */
#define Rx_LongErr 0x00000800 /* Rx Long Error */
#define Rx_Over 0x00000400 /* Rx Overflow */
#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
#define Rx_Align 0x00000100 /* Rx Alignment Error */
#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
#define Rx_IntRx 0x00000040 /* Rx Interrupt */
#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
#define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */
/* Int_En bit asign -------------------------------------------------------- */
#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Control Complete Enable */
#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
/* Exhausted Enable */
/* Int_Src bit asign ------------------------------------------------------- */
#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
/* MD_CA bit asign --------------------------------------------------------- */
#define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
/* MII register offsets */
#define MII_CONTROL 0x0000
#define MII_STATUS 0x0001
#define MII_PHY_ID0 0x0002
#define MII_PHY_ID1 0x0003
#define MII_ANAR 0x0004
#define MII_ANLPAR 0x0005
#define MII_ANER 0x0006
/* MII Control register bit definitions. */
#define MIICNTL_FDX 0x0100
#define MIICNTL_RST_AUTO 0x0200
#define MIICNTL_ISOLATE 0x0400
#define MIICNTL_PWRDWN 0x0800
#define MIICNTL_AUTO 0x1000
#define MIICNTL_SPEED 0x2000
#define MIICNTL_LPBK 0x4000
#define MIICNTL_RESET 0x8000
/* MII Status register bit significance. */
#define MIISTAT_EXT 0x0001
#define MIISTAT_JAB 0x0002
#define MIISTAT_LINK 0x0004
#define MIISTAT_CAN_AUTO 0x0008
#define MIISTAT_FAULT 0x0010
#define MIISTAT_AUTO_DONE 0x0020
#define MIISTAT_CAN_T 0x0800
#define MIISTAT_CAN_T_FDX 0x1000
#define MIISTAT_CAN_TX 0x2000
#define MIISTAT_CAN_TX_FDX 0x4000
#define MIISTAT_CAN_T4 0x8000
/* MII Auto-Negotiation Expansion/RemoteEnd Register Bits */
#define MII_AN_TX_FDX 0x0100
#define MII_AN_TX_HDX 0x0080
#define MII_AN_10_FDX 0x0040
#define MII_AN_10_HDX 0x0020
/*
* Descriptors
*/
/* Frame descripter */
struct FDesc {
volatile __u32 FDNext;
volatile __u32 FDSystem;
volatile __u32 FDStat;
volatile __u32 FDCtl;
};
/* Buffer descripter */
struct BDesc {
volatile __u32 BuffData;
volatile __u32 BDCtl;
};
#define FD_ALIGN 16
/* Frame Descripter bit asign ---------------------------------------------- */
#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
#define FD_BDCnt_SHIFT 16
/* Buffer Descripter bit asign --------------------------------------------- */
#define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
#define BD_RxBDID_SHIFT 16
#define BD_RxBDSeqN_SHIFT 24
/* Some useful constants. */
#undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */
#ifdef NO_CHECK_CARRIER
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7d01 */
#else
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7f01 */
#endif
#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
#define INT_EN_CMD (Int_NRAbtEn | \
Int_DParDEn | Int_DParErrEn | \
Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
Int_STargAbtEn | \
Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
/* Tuning parameters */
#define DMA_BURST_SIZE 32
#define TX_THRESHOLD 1024
#define FD_PAGE_NUM 2
#define FD_PAGE_ORDER 1
/* 16 + RX_BUF_PAGES * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*2 */
#define RX_BUF_PAGES 8 /* >= 2 */
#define RX_FD_NUM 250 /* >= 32 */
#define TX_FD_NUM 128
struct TxFD {
struct FDesc fd;
struct BDesc bd;
struct BDesc unused;
};
struct RxFD {
struct FDesc fd;
struct BDesc bd[0]; /* variable length */
};
struct FrFD {
struct FDesc fd;
struct BDesc bd[RX_BUF_PAGES];
};
extern unsigned long tc_readl(volatile __u32 *addr);
extern void tc_writel(unsigned long data, volatile __u32 *addr);
dma_addr_t priv_dma_handle;
/* Information that need to be kept for each board. */
struct tc35815_local {
struct net_device *next_module;
/* statistics */
struct net_device_stats stats;
struct {
int max_tx_qlen;
int tx_ints;
int rx_ints;
} lstats;
int tbusy;
int option;
#define TC35815_OPT_AUTO 0x00
#define TC35815_OPT_10M 0x01
#define TC35815_OPT_100M 0x02
#define TC35815_OPT_FULLDUP 0x04
int linkspeed; /* 10 or 100 */
int fullduplex;
/*
* Transmitting: Batch Mode.
* 1 BD in 1 TxFD.
* Receiving: Packing Mode.
* 1 circular FD for Free Buffer List.
* RX_BUG_PAGES BD in Free Buffer FD.
* One Free Buffer BD has PAGE_SIZE data buffer.
*/
struct pci_dev *pdev;
dma_addr_t fd_buf_dma_handle;
void * fd_buf; /* for TxFD, TxFD, FrFD */
struct TxFD *tfd_base;
int tfd_start;
int tfd_end;
struct RxFD *rfd_base;
struct RxFD *rfd_limit;
struct RxFD *rfd_cur;
struct FrFD *fbl_ptr;
unsigned char fbl_curid;
dma_addr_t data_buf_dma_handle[RX_BUF_PAGES];
void * data_buf[RX_BUF_PAGES]; /* packing */
spinlock_t lock;
};
/* Index to functions, as function prototypes. */
static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq);
static int tc35815_open(struct net_device *dev);
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
static void tc35815_rx(struct net_device *dev);
static void tc35815_txdone(struct net_device *dev);
static int tc35815_close(struct net_device *dev);
static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
static void tc35815_set_multicast_list(struct net_device *dev);
static void tc35815_chip_reset(struct net_device *dev);
static void tc35815_chip_init(struct net_device *dev);
static void tc35815_phy_chip_init(struct net_device *dev);
/* A list of all installed tc35815 devices. */
static struct net_device *root_tc35815_dev = NULL;
/*
* PCI device identifiers for "new style" Linux PCI Device Drivers
*/
static struct pci_device_id tc35815_pci_tbl[] = {
{ PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl);
int
tc35815_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err = 0;
int ret;
unsigned long pci_memaddr;
unsigned int pci_irq_line;
printk(KERN_INFO "tc35815_probe: found device %#08x.%#08x\n", ent->vendor, ent->device);
err = pci_enable_device(pdev);
if (err)
return err;
pci_memaddr = pci_resource_start (pdev, 1);
printk(KERN_INFO " pci_memaddr=%#08lx resource_flags=%#08lx\n", pci_memaddr, pci_resource_flags (pdev, 0));
if (!pci_memaddr) {
printk(KERN_WARNING "no PCI MEM resources, aborting\n");
ret = -ENODEV;
goto err_out;
}
pci_irq_line = pdev->irq;
/* irq disabled. */
if (pci_irq_line == 0) {
printk(KERN_WARNING "no PCI irq, aborting\n");
ret = -ENODEV;
goto err_out;
}
ret = tc35815_probe1(pdev, pci_memaddr, pci_irq_line);
if (ret)
goto err_out;
pci_set_master(pdev);
return 0;
err_out:
pci_disable_device(pdev);
return ret;
}
static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq)
{
static unsigned version_printed = 0;
int i, ret;
struct tc35815_local *lp;
struct tc35815_regs *tr;
struct net_device *dev;
/* Allocate a new 'dev' if needed. */
dev = alloc_etherdev(sizeof(struct tc35815_local));
if (dev == NULL)
return -ENOMEM;
/*
* alloc_etherdev allocs and zeros dev->priv
*/
lp = dev->priv;
if (tc35815_debug && version_printed++ == 0)
printk(KERN_DEBUG "%s", version);
/* Fill in the 'dev' fields. */
dev->irq = irq;
dev->base_addr = (unsigned long)ioremap(base_addr,
sizeof(struct tc35815_regs));
if (!dev->base_addr) {
ret = -ENOMEM;
goto err_out;
}
tr = (struct tc35815_regs*)dev->base_addr;
tc35815_chip_reset(dev);
/* Retrieve and print the ethernet address. */
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
for (i = 0; i < 6; i += 2) {
unsigned short data;
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
data = tc_readl(&tr->PROM_Data);
dev->dev_addr[i] = data & 0xff;
dev->dev_addr[i+1] = data >> 8;
}
/* Initialize the device structure. */
lp->pdev = pdev;
lp->next_module = root_tc35815_dev;
root_tc35815_dev = dev;
spin_lock_init(&lp->lock);
if (dev->mem_start > 0) {
lp->option = dev->mem_start;
if ((lp->option & TC35815_OPT_10M) &&
(lp->option & TC35815_OPT_100M)) {
/* if both speed speficied, auto select. */
lp->option &= ~(TC35815_OPT_10M | TC35815_OPT_100M);
}
}
//XXX fixme
lp->option |= TC35815_OPT_10M;
/* do auto negotiation */
tc35815_phy_chip_init(dev);
dev->open = tc35815_open;
dev->stop = tc35815_close;
dev->tx_timeout = tc35815_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->hard_start_xmit = tc35815_send_packet;
dev->get_stats = tc35815_get_stats;
dev->set_multicast_list = tc35815_set_multicast_list;
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
ret = register_netdev(dev);
if (ret)
goto err_out_iounmap;
printk(KERN_INFO "%s: %s found at %#x, irq %d, MAC",
dev->name, cardname, base_addr, irq);
for (i = 0; i < 6; i++)
printk(" %2.2x", dev->dev_addr[i]);
printk("\n");
printk(KERN_INFO "%s: linkspeed %dMbps, %s Duplex\n",
dev->name, lp->linkspeed, lp->fullduplex ? "Full" : "Half");
return 0;
err_out_iounmap:
iounmap((void *) dev->base_addr);
err_out:
free_netdev(dev);
return ret;
}
static int
tc35815_init_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
unsigned long fd_addr;
if (!lp->fd_buf) {
if (sizeof(struct FDesc) +
sizeof(struct BDesc) * RX_BUF_PAGES +
sizeof(struct FDesc) * RX_FD_NUM +
sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM) {
printk(KERN_WARNING "%s: Invalid Queue Size.\n", dev->name);
return -ENOMEM;
}
if ((lp->fd_buf = (void *)__get_free_pages(GFP_KERNEL, FD_PAGE_ORDER)) == 0)
return -ENOMEM;
for (i = 0; i < RX_BUF_PAGES; i++) {
if ((lp->data_buf[i] = (void *)get_zeroed_page(GFP_KERNEL)) == 0) {
while (--i >= 0) {
free_page((unsigned long)lp->data_buf[i]);
lp->data_buf[i] = 0;
}
free_page((unsigned long)lp->fd_buf);
lp->fd_buf = 0;
return -ENOMEM;
}
#ifdef __mips__
dma_cache_wback_inv((unsigned long)lp->data_buf[i], PAGE_SIZE * FD_PAGE_NUM);
#endif
}
#ifdef __mips__
dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM);
#endif
} else {
memset(lp->fd_buf, 0, PAGE_SIZE * FD_PAGE_NUM);
#ifdef __mips__
dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM);
#endif
}
#ifdef __mips__
fd_addr = (unsigned long)vtonocache(lp->fd_buf);
#else
fd_addr = (unsigned long)lp->fd_buf;
#endif
/* Free Descriptors (for Receive) */
lp->rfd_base = (struct RxFD *)fd_addr;
fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
for (i = 0; i < RX_FD_NUM; i++) {
lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
}
lp->rfd_cur = lp->rfd_base;
lp->rfd_limit = (struct RxFD *)(fd_addr -
sizeof(struct FDesc) -
sizeof(struct BDesc) * 30);
/* Transmit Descriptors */
lp->tfd_base = (struct TxFD *)fd_addr;
fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
for (i = 0; i < TX_FD_NUM; i++) {
lp->tfd_base[i].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[i+1]));
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
}
lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[0]));
lp->tfd_start = 0;
lp->tfd_end = 0;
/* Buffer List (for Receive) */
lp->fbl_ptr = (struct FrFD *)fd_addr;
lp->fbl_ptr->fd.FDNext = cpu_to_le32(virt_to_bus(lp->fbl_ptr));
lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_PAGES | FD_CownsFD);
for (i = 0; i < RX_BUF_PAGES; i++) {
lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(virt_to_bus(lp->data_buf[i]));
/* BDID is index of FrFD.bd[] */
lp->fbl_ptr->bd[i].BDCtl =
cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | PAGE_SIZE);
}
lp->fbl_curid = 0;
return 0;
}
static void
tc35815_clear_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
for (i = 0; i < TX_FD_NUM; i++) {
struct sk_buff *skb = (struct sk_buff *)
le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
if (skb)
dev_kfree_skb_any(skb);
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
}
tc35815_init_queues(dev);
}
static void
tc35815_free_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
if (lp->tfd_base) {
for (i = 0; i < TX_FD_NUM; i++) {
struct sk_buff *skb = (struct sk_buff *)
le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
if (skb)
dev_kfree_skb_any(skb);
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
}
}
lp->rfd_base = NULL;
lp->rfd_base = NULL;
lp->rfd_limit = NULL;
lp->rfd_cur = NULL;
lp->fbl_ptr = NULL;
for (i = 0; i < RX_BUF_PAGES; i++) {
if (lp->data_buf[i])
free_page((unsigned long)lp->data_buf[i]);
lp->data_buf[i] = 0;
}
if (lp->fd_buf)
__free_pages(lp->fd_buf, FD_PAGE_ORDER);
lp->fd_buf = NULL;
}
static void
dump_txfd(struct TxFD *fd)
{
printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
printk(" %08x %08x",
le32_to_cpu(fd->bd.BuffData),
le32_to_cpu(fd->bd.BDCtl));
printk("\n");
}
static int
dump_rxfd(struct RxFD *fd)
{
int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
if (bd_count > 8)
bd_count = 8;
printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
return 0;
printk("BD: ");
for (i = 0; i < bd_count; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
return bd_count;
}
static void
dump_frfd(struct FrFD *fd)
{
int i;
printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
for (i = 0; i < RX_BUF_PAGES; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
}
static void
panic_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
printk("TxFD base %p, start %d, end %d\n",
lp->tfd_base, lp->tfd_start, lp->tfd_end);
printk("RxFD base %p limit %p cur %p\n",
lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
printk("FrFD %p\n", lp->fbl_ptr);
for (i = 0; i < TX_FD_NUM; i++)
dump_txfd(&lp->tfd_base[i]);
for (i = 0; i < RX_FD_NUM; i++) {
int bd_count = dump_rxfd(&lp->rfd_base[i]);
i += (bd_count + 1) / 2; /* skip BDs */
}
dump_frfd(lp->fbl_ptr);
panic("%s: Illegal queue state.", dev->name);
}
#if 0
static void print_buf(char *add, int length)
{
int i;
int len = length;
printk("print_buf(%08x)(%x)\n", (unsigned int) add,length);
if (len > 100)
len = 100;
for (i = 0; i < len; i++) {
printk(" %2.2X", (unsigned char) add[i]);
if (!(i % 16))
printk("\n");
}
printk("\n");
}
#endif
static void print_eth(char *add)
{
int i;
printk("print_eth(%08x)\n", (unsigned int) add);
for (i = 0; i < 6; i++)
printk(" %2.2X", (unsigned char) add[i + 6]);
printk(" =>");
for (i = 0; i < 6; i++)
printk(" %2.2X", (unsigned char) add[i]);
printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]);
}
/*
* Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
tc35815_open(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
/*
* This is used if the interrupt line can turned off (shared).
* See 3c503.c for an example of selecting the IRQ at config-time.
*/
if (dev->irq == 0 ||
request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, cardname, dev)) {
return -EAGAIN;
}
tc35815_chip_reset(dev);
if (tc35815_init_queues(dev) != 0) {
free_irq(dev->irq, dev);
return -EAGAIN;
}
/* Reset the hardware here. Don't forget to set the station address. */
tc35815_chip_init(dev);
lp->tbusy = 0;
netif_start_queue(dev);
return 0;
}
static void tc35815_tx_timeout(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
lp->tbusy=0;
spin_unlock_irqrestore(&lp->lock, flags);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr;
if (netif_queue_stopped(dev)) {
/*
* If we get here, some higher level has decided we are broken.
* There should really be a "kick me" function call instead.
*/
int tickssofar = jiffies - dev->trans_start;
if (tickssofar < 5)
return 1;
printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
lp->tbusy=0;
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* Block a timer-based transmit from overlapping. This could better be
* done with atomic_swap(1, lp->tbusy), but set_bit() works as well.
*/
if (test_and_set_bit(0, (void*)&lp->tbusy) != 0) {
printk(KERN_WARNING "%s: Transmitter access conflict.\n", dev->name);
dev_kfree_skb_any(skb);
} else {
short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
unsigned char *buf = skb->data;
struct TxFD *txfd = &lp->tfd_base[lp->tfd_start];
unsigned long flags;
lp->stats.tx_bytes += skb->len;
#ifdef __mips__
dma_cache_wback_inv((unsigned long)buf, length);
#endif
spin_lock_irqsave(&lp->lock, flags);
/* failsafe... */
if (lp->tfd_start != lp->tfd_end)
tc35815_txdone(dev);
txfd->bd.BuffData = cpu_to_le32(virt_to_bus(buf));
txfd->bd.BDCtl = cpu_to_le32(length);
txfd->fd.FDSystem = cpu_to_le32((__u32)skb);
txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
if (lp->tfd_start == lp->tfd_end) {
/* Start DMA Transmitter. */
txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
#ifdef GATHER_TXINT
txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif
if (tc35815_debug > 2) {
printk("%s: starting TxFD.\n", dev->name);
dump_txfd(txfd);
if (tc35815_debug > 3)
print_eth(buf);
}
tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr);
} else {
txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
if (tc35815_debug > 2) {
printk("%s: queueing TxFD.\n", dev->name);
dump_txfd(txfd);
if (tc35815_debug > 3)
print_eth(buf);
}
}
lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
dev->trans_start = jiffies;
if ((lp->tfd_start + 1) % TX_FD_NUM != lp->tfd_end) {
/* we can send another packet */
lp->tbusy = 0;
netif_start_queue(dev);
} else {
netif_stop_queue(dev);
if (tc35815_debug > 1)
printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
return 0;
}
#define FATAL_ERROR_INT \
(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
static void tc35815_fatal_error_interrupt(struct net_device *dev, int status)
{
static int count;
printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
dev->name, status);
if (status & Int_IntPCI)
printk(" IntPCI");
if (status & Int_DmParErr)
printk(" DmParErr");
if (status & Int_IntNRAbt)
printk(" IntNRAbt");
printk("\n");
if (count++ > 100)
panic("%s: Too many fatal errors.", dev->name);
printk(KERN_WARNING "%s: Resetting %s...\n", dev->name, cardname);
/* Try to restart the adaptor. */
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct tc35815_regs *tr;
struct tc35815_local *lp;
int status, boguscount = 0;
int handled = 0;
if (dev == NULL) {
printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq);
return IRQ_NONE;
}
tr = (struct tc35815_regs*)dev->base_addr;
lp = dev->priv;
do {
status = tc_readl(&tr->Int_Src);
if (status == 0)
break;
handled = 1;
tc_writel(status, &tr->Int_Src); /* write to clear */
/* Fatal errors... */
if (status & FATAL_ERROR_INT) {
tc35815_fatal_error_interrupt(dev, status);
break;
}
/* recoverable errors */
if (status & Int_IntFDAEx) {
/* disable FDAEx int. (until we make rooms...) */
tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En);
printk(KERN_WARNING
"%s: Free Descriptor Area Exhausted (%#x).\n",
dev->name, status);
lp->stats.rx_dropped++;
}
if (status & Int_IntBLEx) {
/* disable BLEx int. (until we make rooms...) */
tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En);
printk(KERN_WARNING
"%s: Buffer List Exhausted (%#x).\n",
dev->name, status);
lp->stats.rx_dropped++;
}
if (status & Int_IntExBD) {
printk(KERN_WARNING
"%s: Excessive Buffer Descriptiors (%#x).\n",
dev->name, status);
lp->stats.rx_length_errors++;
}
/* normal notification */
if (status & Int_IntMacRx) {
/* Got a packet(s). */
lp->lstats.rx_ints++;
tc35815_rx(dev);
}
if (status & Int_IntMacTx) {
lp->lstats.tx_ints++;
tc35815_txdone(dev);
}
} while (++boguscount < 20) ;
return IRQ_RETVAL(handled);
}
/* We have a good packet(s), get it/them out of the buffers. */
static void
tc35815_rx(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
unsigned int fdctl;
int i;
int buf_free_count = 0;
int fd_free_count = 0;
while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
int pkt_len = fdctl & FD_FDLength_MASK;
struct RxFD *next_rfd;
int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
if (tc35815_debug > 2)
dump_rxfd(lp->rfd_cur);
if (status & Rx_Good) {
/* Malloc up new buffer. */
struct sk_buff *skb;
unsigned char *data;
int cur_bd, offset;
lp->stats.rx_bytes += pkt_len;
skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */
if (skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
dev->name);
lp->stats.rx_dropped++;
break;
}
skb_reserve(skb, 2); /* 16 bit alignment */
skb->dev = dev;
data = skb_put(skb, pkt_len);
/* copy from receive buffer */
cur_bd = 0;
offset = 0;
while (offset < pkt_len && cur_bd < bd_count) {
int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) &
BD_BuffLength_MASK;
void *rxbuf =
bus_to_virt(le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData));
#ifdef __mips__
dma_cache_inv((unsigned long)rxbuf, len);
#endif
memcpy(data + offset, rxbuf, len);
offset += len;
cur_bd++;
}
#if 0
print_buf(data,pkt_len);
#endif
if (tc35815_debug > 3)
print_eth(data);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
lp->stats.rx_packets++;
} else {
lp->stats.rx_errors++;
/* WORKAROUND: LongErr and CRCErr means Overflow. */
if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
status &= ~(Rx_LongErr|Rx_CRCErr);
status |= Rx_Over;
}
if (status & Rx_LongErr) lp->stats.rx_length_errors++;
if (status & Rx_Over) lp->stats.rx_fifo_errors++;
if (status & Rx_CRCErr) lp->stats.rx_crc_errors++;
if (status & Rx_Align) lp->stats.rx_frame_errors++;
}
if (bd_count > 0) {
/* put Free Buffer back to controller */
int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
unsigned char id =
(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
if (id >= RX_BUF_PAGES) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
/* free old buffers */
while (lp->fbl_curid != id) {
bdctl = le32_to_cpu(lp->fbl_ptr->bd[lp->fbl_curid].BDCtl);
if (bdctl & BD_CownsBD) {
printk("%s: Freeing invalid BD.\n",
dev->name);
panic_queues(dev);
}
/* pass BD to controler */
/* Note: BDLength was modified by chip. */
lp->fbl_ptr->bd[lp->fbl_curid].BDCtl =
cpu_to_le32(BD_CownsBD |
(lp->fbl_curid << BD_RxBDID_SHIFT) |
PAGE_SIZE);
lp->fbl_curid =
(lp->fbl_curid + 1) % RX_BUF_PAGES;
if (tc35815_debug > 2) {
printk("%s: Entering new FBD %d\n",
dev->name, lp->fbl_curid);
dump_frfd(lp->fbl_ptr);
}
buf_free_count++;
}
}
/* put RxFD back to controller */
next_rfd = bus_to_virt(le32_to_cpu(lp->rfd_cur->fd.FDNext));
#ifdef __mips__
next_rfd = (struct RxFD *)vtonocache(next_rfd);
#endif
if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
printk("%s: RxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
/* pass FD to controler */
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); /* for debug */
lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur++;
fd_free_count++;
}
lp->rfd_cur = next_rfd;
}
/* re-enable BL/FDA Exhaust interrupts. */
if (fd_free_count) {
tc_writel(tc_readl(&tr->Int_En) | Int_FDAExEn, &tr->Int_En);
if (buf_free_count)
tc_writel(tc_readl(&tr->Int_En) | Int_BLExEn, &tr->Int_En);
}
}
#ifdef NO_CHECK_CARRIER
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr)
#else
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
#endif
static void
tc35815_check_tx_stat(struct net_device *dev, int status)
{
struct tc35815_local *lp = dev->priv;
const char *msg = NULL;
/* count collisions */
if (status & Tx_ExColl)
lp->stats.collisions += 16;
if (status & Tx_TxColl_MASK)
lp->stats.collisions += status & Tx_TxColl_MASK;
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (lp->fullduplex)
status &= ~Tx_NCarr;
if (!(status & TX_STA_ERR)) {
/* no error. */
lp->stats.tx_packets++;
return;
}
lp->stats.tx_errors++;
if (status & Tx_ExColl) {
lp->stats.tx_aborted_errors++;
msg = "Excessive Collision.";
}
if (status & Tx_Under) {
lp->stats.tx_fifo_errors++;
msg = "Tx FIFO Underrun.";
}
if (status & Tx_Defer) {
lp->stats.tx_fifo_errors++;
msg = "Excessive Deferral.";
}
#ifndef NO_CHECK_CARRIER
if (status & Tx_NCarr) {
lp->stats.tx_carrier_errors++;
msg = "Lost Carrier Sense.";
}
#endif
if (status & Tx_LateColl) {
lp->stats.tx_aborted_errors++;
msg = "Late Collision.";
}
if (status & Tx_TxPar) {
lp->stats.tx_fifo_errors++;
msg = "Transmit Parity Error.";
}
if (status & Tx_SQErr) {
lp->stats.tx_heartbeat_errors++;
msg = "Signal Quality Error.";
}
if (msg)
printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
}
static void
tc35815_txdone(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
struct TxFD *txfd;
unsigned int fdctl;
int num_done = 0;
txfd = &lp->tfd_base[lp->tfd_end];
while (lp->tfd_start != lp->tfd_end &&
!((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(txfd->fd.FDStat);
struct sk_buff *skb;
unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
if (tc35815_debug > 2) {
printk("%s: complete TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc35815_check_tx_stat(dev, status);
skb = (struct sk_buff *)le32_to_cpu(txfd->fd.FDSystem);
if (skb) {
dev_kfree_skb_any(skb);
}
txfd->fd.FDSystem = cpu_to_le32(0);
num_done++;
lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
txfd = &lp->tfd_base[lp->tfd_end];
if ((fdnext & ~FD_Next_EOL) != virt_to_bus(txfd)) {
printk("%s: TxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
if (fdnext & FD_Next_EOL) {
/* DMA Transmitter has been stopping... */
if (lp->tfd_end != lp->tfd_start) {
int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
struct TxFD* txhead = &lp->tfd_base[head];
int qlen = (lp->tfd_start + TX_FD_NUM
- lp->tfd_end) % TX_FD_NUM;
if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
printk("%s: TxFD FDCtl invalid.\n", dev->name);
panic_queues(dev);
}
/* log max queue length */
if (lp->lstats.max_tx_qlen < qlen)
lp->lstats.max_tx_qlen = qlen;
/* start DMA Transmitter again */
txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
#ifdef GATHER_TXINT
txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif
if (tc35815_debug > 2) {
printk("%s: start TxFD on queue.\n",
dev->name);
dump_txfd(txfd);
}
tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr);
}
break;
}
}
if (num_done > 0 && lp->tbusy) {
lp->tbusy = 0;
netif_start_queue(dev);
}
}
/* The inverse routine to tc35815_open(). */
static int
tc35815_close(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
lp->tbusy = 1;
netif_stop_queue(dev);
/* Flush the Tx and disable Rx here. */
tc35815_chip_reset(dev);
free_irq(dev->irq, dev);
tc35815_free_queues(dev);
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
unsigned long flags;
if (netif_running(dev)) {
spin_lock_irqsave(&lp->lock, flags);
/* Update the statistics from the device registers. */
lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt);
spin_unlock_irqrestore(&lp->lock, flags);
}
return &lp->stats;
}
static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned char *addr)
{
int cam_index = index * 6;
unsigned long cam_data;
unsigned long saved_addr;
saved_addr = tc_readl(&tr->CAM_Adr);
if (tc35815_debug > 1) {
int i;
printk(KERN_DEBUG "%s: CAM %d:", cardname, index);
for (i = 0; i < 6; i++)
printk(" %02x", addr[i]);
printk("\n");
}
if (index & 1) {
/* read modify write */
tc_writel(cam_index - 2, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
cam_data |= addr[0] << 8 | addr[1];
tc_writel(cam_data, &tr->CAM_Data);
/* write whole word */
tc_writel(cam_index + 2, &tr->CAM_Adr);
cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
tc_writel(cam_data, &tr->CAM_Data);
} else {
/* write whole word */
tc_writel(cam_index, &tr->CAM_Adr);
cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
tc_writel(cam_data, &tr->CAM_Data);
/* read modify write */
tc_writel(cam_index + 4, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
cam_data |= addr[4] << 24 | (addr[5] << 16);
tc_writel(cam_data, &tr->CAM_Data);
}
if (tc35815_debug > 2) {
int i;
for (i = cam_index / 4; i < cam_index / 4 + 2; i++) {
tc_writel(i * 4, &tr->CAM_Adr);
printk("CAM 0x%x: %08lx",
i * 4, tc_readl(&tr->CAM_Data));
}
}
tc_writel(saved_addr, &tr->CAM_Adr);
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
tc35815_set_multicast_list(struct net_device *dev)
{
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
if (dev->flags&IFF_PROMISC)
{
/* Enable promiscuous mode */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
}
else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > CAM_ENTRY_MAX - 3)
{
/* CAM 0, 1, 20 are reserved. */
/* Disable promiscuous mode, use normal mode. */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
}
else if(dev->mc_count)
{
struct dev_mc_list* cur_addr = dev->mc_list;
int i;
int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
tc_writel(0, &tr->CAM_Ctl);
/* Walk the address list, and load the filter */
for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
if (!cur_addr)
break;
/* entry 0,1 is reserved. */
tc35815_set_cam_entry(tr, i + 2, cur_addr->dmi_addr);
ena_bits |= CAM_Ena_Bit(i + 2);
}
tc_writel(ena_bits, &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
else {
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
}
static unsigned long tc_phy_read(struct net_device *dev, struct tc35815_regs *tr, int phy, int phy_reg)
{
struct tc35815_local *lp = dev->priv;
unsigned long data;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
tc_writel(MD_CA_Busy | (phy << 5) | phy_reg, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
;
data = tc_readl(&tr->MD_Data);
spin_unlock_irqrestore(&lp->lock, flags);
return data;
}
static void tc_phy_write(struct net_device *dev, unsigned long d, struct tc35815_regs *tr, int phy, int phy_reg)
{
struct tc35815_local *lp = dev->priv;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
tc_writel(d, &tr->MD_Data);
tc_writel(MD_CA_Busy | MD_CA_Wr | (phy << 5) | phy_reg, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
;
spin_unlock_irqrestore(&lp->lock, flags);
}
static void tc35815_phy_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
static int first = 1;
unsigned short ctl;
if (first) {
unsigned short id0, id1;
int count;
first = 0;
/* first data written to the PHY will be an ID number */
tc_phy_write(dev, 0, tr, 0, MII_CONTROL); /* ID:0 */
#if 0
tc_phy_write(dev, MIICNTL_RESET, tr, 0, MII_CONTROL);
printk(KERN_INFO "%s: Resetting PHY...", dev->name);
while (tc_phy_read(dev, tr, 0, MII_CONTROL) & MIICNTL_RESET)
;
printk("\n");
tc_phy_write(dev, MIICNTL_AUTO|MIICNTL_SPEED|MIICNTL_FDX, tr, 0,
MII_CONTROL);
#endif
id0 = tc_phy_read(dev, tr, 0, MII_PHY_ID0);
id1 = tc_phy_read(dev, tr, 0, MII_PHY_ID1);
printk(KERN_DEBUG "%s: PHY ID %04x %04x\n", dev->name,
id0, id1);
if (lp->option & TC35815_OPT_10M) {
lp->linkspeed = 10;
lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0;
} else if (lp->option & TC35815_OPT_100M) {
lp->linkspeed = 100;
lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0;
} else {
/* auto negotiation */
unsigned long neg_result;
tc_phy_write(dev, MIICNTL_AUTO | MIICNTL_RST_AUTO, tr, 0, MII_CONTROL);
printk(KERN_INFO "%s: Auto Negotiation...", dev->name);
count = 0;
while (!(tc_phy_read(dev, tr, 0, MII_STATUS) & MIISTAT_AUTO_DONE)) {
if (count++ > 5000) {
printk(" failed. Assume 10Mbps\n");
lp->linkspeed = 10;
lp->fullduplex = 0;
goto done;
}
if (count % 512 == 0)
printk(".");
mdelay(1);
}
printk(" done.\n");
neg_result = tc_phy_read(dev, tr, 0, MII_ANLPAR);
if (neg_result & (MII_AN_TX_FDX | MII_AN_TX_HDX))
lp->linkspeed = 100;
else
lp->linkspeed = 10;
if (neg_result & (MII_AN_TX_FDX | MII_AN_10_FDX))
lp->fullduplex = 1;
else
lp->fullduplex = 0;
done:
;
}
}
ctl = 0;
if (lp->linkspeed == 100)
ctl |= MIICNTL_SPEED;
if (lp->fullduplex)
ctl |= MIICNTL_FDX;
tc_phy_write(dev, ctl, tr, 0, MII_CONTROL);
if (lp->fullduplex) {
tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl);
}
}
static void tc35815_chip_reset(struct net_device *dev)
{
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
/* reset the controller */
tc_writel(MAC_Reset, &tr->MAC_Ctl);
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset)
;
tc_writel(0, &tr->MAC_Ctl);
/* initialize registers to default value */
tc_writel(0, &tr->DMA_Ctl);
tc_writel(0, &tr->TxThrsh);
tc_writel(0, &tr->TxPollCtr);
tc_writel(0, &tr->RxFragSize);
tc_writel(0, &tr->Int_En);
tc_writel(0, &tr->FDA_Bas);
tc_writel(0, &tr->FDA_Lim);
tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
tc_writel(0, &tr->CAM_Ctl);
tc_writel(0, &tr->Tx_Ctl);
tc_writel(0, &tr->Rx_Ctl);
tc_writel(0, &tr->CAM_Ena);
(void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
}
static void tc35815_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
unsigned long flags;
unsigned long txctl = TX_CTL_CMD;
tc35815_phy_chip_init(dev);
/* load station address to CAM */
tc35815_set_cam_entry(tr, CAM_ENTRY_SOURCE, dev->dev_addr);
/* Enable CAM (broadcast and unicast) */
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
spin_lock_irqsave(&lp->lock, flags);
tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */
tc_writel(0, &tr->TxPollCtr); /* Batch mode */
tc_writel(TX_THRESHOLD, &tr->TxThrsh);
tc_writel(INT_EN_CMD, &tr->Int_En);
/* set queues */
tc_writel(virt_to_bus(lp->rfd_base), &tr->FDA_Bas);
tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
&tr->FDA_Lim);
/*
* Activation method:
* First, enable eht MAC Transmitter and the DMA Receive circuits.
* Then enable the DMA Transmitter and the MAC Receive circuits.
*/
tc_writel(virt_to_bus(lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
/* start MAC transmitter */
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (lp->fullduplex)
txctl = TX_CTL_CMD & ~Tx_EnLCarr;
#ifdef GATHER_TXINT
txctl &= ~Tx_EnComp; /* disable global tx completion int. */
#endif
tc_writel(txctl, &tr->Tx_Ctl);
#if 0 /* No need to polling */
tc_writel(virt_to_bus(lp->tfd_base), &tr->TxFrmPtr); /* start DMA transmitter */
#endif
spin_unlock_irqrestore(&lp->lock, flags);
}
static struct pci_driver tc35815_driver = {
.name = TC35815_MODULE_NAME,
.probe = tc35815_probe,
.remove = NULL,
.id_table = tc35815_pci_tbl,
};
static int __init tc35815_init_module(void)
{
return pci_register_driver(&tc35815_driver);
}
static void __exit tc35815_cleanup_module(void)
{
struct net_device *next_dev;
/*
* TODO: implement a tc35815_driver.remove hook, and
* move this code into that function. Then, delete
* all root_tc35815_dev list handling code.
*/
while (root_tc35815_dev) {
struct net_device *dev = root_tc35815_dev;
next_dev = ((struct tc35815_local *)dev->priv)->next_module;
iounmap((void *)(dev->base_addr));
unregister_netdev(dev);
free_netdev(dev);
root_tc35815_dev = next_dev;
}
pci_unregister_driver(&tc35815_driver);
}
module_init(tc35815_init_module);
module_exit(tc35815_cleanup_module);