mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
9102330005
Address a long standing issue of booting with an initrd on an i386 numa system. Currently (and always) the numa kva area is mapped into low memory by finding the end of low memory and moving that mark down (thus creating space for the kva). The issue with this is that Grub loads initrds into this similar space so when the kernel check the initrd it finds it outside max_low_pfn and disables it (it thinks the initrd is not mapped into usable memory) thus initrd enabled kernels can't boot i386 numa :( My solution to the problem just converts the numa kva area to use the bootmem allocator to save it's area (instead of moving the end of low memory). Using bootmem allows the kva area to be mapped into more diverse addresses (not just the end of low memory) and enables the kva area to be mapped below the initrd if present. I have tested this patch on numaq(no initrd) and summit(initrd) i386 numa based systems. [akpm@osdl.org: cleanups] Signed-off-by: Keith Mannthey <kmannth@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
133 lines
3.3 KiB
C
133 lines
3.3 KiB
C
/*
|
|
* Written by Pat Gaughen (gone@us.ibm.com) Mar 2002
|
|
*
|
|
*/
|
|
|
|
#ifndef _ASM_MMZONE_H_
|
|
#define _ASM_MMZONE_H_
|
|
|
|
#include <asm/smp.h>
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern struct pglist_data *node_data[];
|
|
#define NODE_DATA(nid) (node_data[nid])
|
|
|
|
#ifdef CONFIG_X86_NUMAQ
|
|
#include <asm/numaq.h>
|
|
#elif defined(CONFIG_ACPI_SRAT)/* summit or generic arch */
|
|
#include <asm/srat.h>
|
|
#endif
|
|
|
|
extern int get_memcfg_numa_flat(void );
|
|
/*
|
|
* This allows any one NUMA architecture to be compiled
|
|
* for, and still fall back to the flat function if it
|
|
* fails.
|
|
*/
|
|
static inline void get_memcfg_numa(void)
|
|
{
|
|
#ifdef CONFIG_X86_NUMAQ
|
|
if (get_memcfg_numaq())
|
|
return;
|
|
#elif defined(CONFIG_ACPI_SRAT)
|
|
if (get_memcfg_from_srat())
|
|
return;
|
|
#endif
|
|
|
|
get_memcfg_numa_flat();
|
|
}
|
|
|
|
extern int early_pfn_to_nid(unsigned long pfn);
|
|
extern void numa_kva_reserve(void);
|
|
|
|
#else /* !CONFIG_NUMA */
|
|
|
|
#define get_memcfg_numa get_memcfg_numa_flat
|
|
#define get_zholes_size(n) (0)
|
|
|
|
static inline void numa_kva_reserve(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#ifdef CONFIG_DISCONTIGMEM
|
|
|
|
/*
|
|
* generic node memory support, the following assumptions apply:
|
|
*
|
|
* 1) memory comes in 256Mb contigious chunks which are either present or not
|
|
* 2) we will not have more than 64Gb in total
|
|
*
|
|
* for now assume that 64Gb is max amount of RAM for whole system
|
|
* 64Gb / 4096bytes/page = 16777216 pages
|
|
*/
|
|
#define MAX_NR_PAGES 16777216
|
|
#define MAX_ELEMENTS 256
|
|
#define PAGES_PER_ELEMENT (MAX_NR_PAGES/MAX_ELEMENTS)
|
|
|
|
extern s8 physnode_map[];
|
|
|
|
static inline int pfn_to_nid(unsigned long pfn)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
return((int) physnode_map[(pfn) / PAGES_PER_ELEMENT]);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Following are macros that each numa implmentation must define.
|
|
*/
|
|
|
|
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
|
|
#define node_end_pfn(nid) \
|
|
({ \
|
|
pg_data_t *__pgdat = NODE_DATA(nid); \
|
|
__pgdat->node_start_pfn + __pgdat->node_spanned_pages; \
|
|
})
|
|
|
|
/* XXX: FIXME -- wli */
|
|
#define kern_addr_valid(kaddr) (0)
|
|
|
|
#ifdef CONFIG_X86_NUMAQ /* we have contiguous memory on NUMA-Q */
|
|
#define pfn_valid(pfn) ((pfn) < num_physpages)
|
|
#else
|
|
static inline int pfn_valid(int pfn)
|
|
{
|
|
int nid = pfn_to_nid(pfn);
|
|
|
|
if (nid >= 0)
|
|
return (pfn < node_end_pfn(nid));
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_X86_NUMAQ */
|
|
|
|
#endif /* CONFIG_DISCONTIGMEM */
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
|
|
/*
|
|
* Following are macros that are specific to this numa platform.
|
|
*/
|
|
#define reserve_bootmem(addr, size) \
|
|
reserve_bootmem_node(NODE_DATA(0), (addr), (size))
|
|
#define alloc_bootmem(x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))
|
|
#define alloc_bootmem_low(x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, 0)
|
|
#define alloc_bootmem_pages(x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))
|
|
#define alloc_bootmem_low_pages(x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0)
|
|
#define alloc_bootmem_node(ignore, x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))
|
|
#define alloc_bootmem_pages_node(ignore, x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))
|
|
#define alloc_bootmem_low_pages_node(ignore, x) \
|
|
__alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0)
|
|
|
|
#endif /* CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
#endif /* _ASM_MMZONE_H_ */
|