2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 10:44:14 +08:00
linux-next/arch/powerpc/mm/mem.c
Linus Torvalds 5a148af669 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc update from Benjamin Herrenschmidt:
 "The main highlights this time around are:

   - A pile of addition POWER8 bits and nits, such as updated
     performance counter support (Michael Ellerman), new branch history
     buffer support (Anshuman Khandual), base support for the new PCI
     host bridge when not using the hypervisor (Gavin Shan) and other
     random related bits and fixes from various contributors.

   - Some rework of our page table format by Aneesh Kumar which fixes a
     thing or two and paves the way for THP support.  THP itself will
     not make it this time around however.

   - More Freescale updates, including Altivec support on the new e6500
     cores, new PCI controller support, and a pile of new boards support
     and updates.

   - The usual batch of trivial cleanups & fixes"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits)
  powerpc: Fix build error for book3e
  powerpc: Context switch the new EBB SPRs
  powerpc: Turn on the EBB H/FSCR bits
  powerpc: Replace CPU_FTR_BCTAR with CPU_FTR_ARCH_207S
  powerpc: Setup BHRB instructions facility in HFSCR for POWER8
  powerpc: Fix interrupt range check on debug exception
  powerpc: Update tlbie/tlbiel as per ISA doc
  powerpc: Print page size info during boot
  powerpc: print both base and actual page size on hash failure
  powerpc: Fix hpte_decode to use the correct decoding for page sizes
  powerpc: Decode the pte-lp-encoding bits correctly.
  powerpc: Use encode avpn where we need only avpn values
  powerpc: Reduce PTE table memory wastage
  powerpc: Move the pte free routines from common header
  powerpc: Reduce the PTE_INDEX_SIZE
  powerpc: Switch 16GB and 16MB explicit hugepages to a different page table format
  powerpc: New hugepage directory format
  powerpc: Don't truncate pgd_index wrongly
  powerpc: Don't hard code the size of pte page
  powerpc: Save DAR and DSISR in pt_regs on MCE
  ...
2013-05-02 10:16:16 -07:00

588 lines
16 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/suspend.h>
#include <linux/memblock.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
#include <asm/sections.h>
#include <asm/sparsemem.h>
#include <asm/vdso.h>
#include <asm/fixmap.h>
#include <asm/swiotlb.h>
#include <asm/rtas.h>
#include "mmu_decl.h"
#ifndef CPU_FTR_COHERENT_ICACHE
#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
#define CPU_FTR_NOEXECUTE 0
#endif
int init_bootmem_done;
int mem_init_done;
unsigned long long memory_limit;
#ifdef CONFIG_HIGHMEM
pte_t *kmap_pte;
EXPORT_SYMBOL(kmap_pte);
pgprot_t kmap_prot;
EXPORT_SYMBOL(kmap_prot);
static inline pte_t *virt_to_kpte(unsigned long vaddr)
{
return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
vaddr), vaddr), vaddr);
}
#endif
int page_is_ram(unsigned long pfn)
{
#ifndef CONFIG_PPC64 /* XXX for now */
return pfn < max_pfn;
#else
unsigned long paddr = (pfn << PAGE_SHIFT);
struct memblock_region *reg;
for_each_memblock(memory, reg)
if (paddr >= reg->base && paddr < (reg->base + reg->size))
return 1;
return 0;
#endif
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
if (!page_is_ram(pfn))
vma_prot = pgprot_noncached(vma_prot);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_NUMA
int memory_add_physaddr_to_nid(u64 start)
{
return hot_add_scn_to_nid(start);
}
#endif
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdata;
struct zone *zone;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
pgdata = NODE_DATA(nid);
start = (unsigned long)__va(start);
if (create_section_mapping(start, start + size))
return -EINVAL;
/* this should work for most non-highmem platforms */
zone = pgdata->node_zones;
return __add_pages(nid, zone, start_pfn, nr_pages);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
int arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct zone *zone;
zone = page_zone(pfn_to_page(start_pfn));
return __remove_pages(zone, start_pfn, nr_pages);
}
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
/*
* walk_memory_resource() needs to make sure there is no holes in a given
* memory range. PPC64 does not maintain the memory layout in /proc/iomem.
* Instead it maintains it in memblock.memory structures. Walk through the
* memory regions, find holes and callback for contiguous regions.
*/
int
walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
void *arg, int (*func)(unsigned long, unsigned long, void *))
{
struct memblock_region *reg;
unsigned long end_pfn = start_pfn + nr_pages;
unsigned long tstart, tend;
int ret = -1;
for_each_memblock(memory, reg) {
tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
if (tstart >= tend)
continue;
ret = (*func)(tstart, tend - tstart, arg);
if (ret)
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(walk_system_ram_range);
/*
* Initialize the bootmem system and give it all the memory we
* have available. If we are using highmem, we only put the
* lowmem into the bootmem system.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
unsigned long start, bootmap_pages;
unsigned long total_pages;
struct memblock_region *reg;
int boot_mapsize;
max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
total_pages = (memblock_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
total_pages = total_lowmem >> PAGE_SHIFT;
max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
#endif
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
start = memblock_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
min_low_pfn = MEMORY_START >> PAGE_SHIFT;
boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn);
/* Place all memblock_regions in the same node and merge contiguous
* memblock_regions
*/
memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
/* Add all physical memory to the bootmem map, mark each area
* present.
*/
#ifdef CONFIG_HIGHMEM
free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT);
/* reserve the sections we're already using */
for_each_memblock(reserved, reg) {
unsigned long top = reg->base + reg->size - 1;
if (top < lowmem_end_addr)
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
else if (reg->base < lowmem_end_addr) {
unsigned long trunc_size = lowmem_end_addr - reg->base;
reserve_bootmem(reg->base, trunc_size, BOOTMEM_DEFAULT);
}
}
#else
free_bootmem_with_active_regions(0, max_pfn);
/* reserve the sections we're already using */
for_each_memblock(reserved, reg)
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
#endif
/* XXX need to clip this if using highmem? */
sparse_memory_present_with_active_regions(0);
init_bootmem_done = 1;
}
/* mark pages that don't exist as nosave */
static int __init mark_nonram_nosave(void)
{
struct memblock_region *reg, *prev = NULL;
for_each_memblock(memory, reg) {
if (prev &&
memblock_region_memory_end_pfn(prev) < memblock_region_memory_base_pfn(reg))
register_nosave_region(memblock_region_memory_end_pfn(prev),
memblock_region_memory_base_pfn(reg));
prev = reg;
}
return 0;
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long long total_ram = memblock_phys_mem_size();
phys_addr_t top_of_ram = memblock_end_of_DRAM();
unsigned long max_zone_pfns[MAX_NR_ZONES];
#ifdef CONFIG_PPC32
unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1);
unsigned long end = __fix_to_virt(FIX_HOLE);
for (; v < end; v += PAGE_SIZE)
map_page(v, 0, 0); /* XXX gross */
#endif
#ifdef CONFIG_HIGHMEM
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
pkmap_page_table = virt_to_kpte(PKMAP_BASE);
kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */
printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n",
(unsigned long long)top_of_ram, total_ram);
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
(long int)((top_of_ram - total_ram) >> 20));
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT;
max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
#else
max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
#endif
free_area_init_nodes(max_zone_pfns);
mark_nonram_nosave();
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
#ifdef CONFIG_SWIOTLB
swiotlb_init(0);
#endif
num_physpages = memblock_phys_mem_size() >> PAGE_SHIFT;
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %d\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = max_pfn;
totalram_pages += free_all_bootmem();
#endif
for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pgdat_page_nr(pgdat, i);
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
#ifdef CONFIG_HIGHMEM
{
unsigned long pfn, highmem_mapnr;
highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
phys_addr_t paddr = (phys_addr_t)pfn << PAGE_SHIFT;
struct page *page = pfn_to_page(pfn);
if (memblock_is_reserved(paddr))
continue;
free_highmem_page(page);
reservedpages--;
}
printk(KERN_DEBUG "High memory: %luk\n",
totalhigh_pages << (PAGE_SHIFT-10));
}
#endif /* CONFIG_HIGHMEM */
#if defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_SMP)
/*
* If smp is enabled, next_tlbcam_idx is initialized in the cpu up
* functions.... do it here for the non-smp case.
*/
per_cpu(next_tlbcam_idx, smp_processor_id()) =
(mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
#endif
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
#ifdef CONFIG_PPC32
pr_info("Kernel virtual memory layout:\n");
pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP);
#ifdef CONFIG_HIGHMEM
pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n",
PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP));
#endif /* CONFIG_HIGHMEM */
#ifdef CONFIG_NOT_COHERENT_CACHE
pr_info(" * 0x%08lx..0x%08lx : consistent mem\n",
IOREMAP_TOP, IOREMAP_TOP + CONFIG_CONSISTENT_SIZE);
#endif /* CONFIG_NOT_COHERENT_CACHE */
pr_info(" * 0x%08lx..0x%08lx : early ioremap\n",
ioremap_bot, IOREMAP_TOP);
pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n",
VMALLOC_START, VMALLOC_END);
#endif /* CONFIG_PPC32 */
mem_init_done = 1;
}
void free_initmem(void)
{
ppc_md.progress = ppc_printk_progress;
free_initmem_default(POISON_FREE_INITMEM);
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
free_reserved_area(start, end, 0, "initrd");
}
#endif
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &page->flags))
clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);
void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_HUGETLB_PAGE
if (PageCompound(page)) {
flush_dcache_icache_hugepage(page);
return;
}
#endif
#ifdef CONFIG_BOOKE
{
void *start = kmap_atomic(page);
__flush_dcache_icache(start);
kunmap_atomic(start);
}
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
/* On 8xx there is no need to kmap since highmem is not supported */
__flush_dcache_icache(page_address(page));
#else
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif
}
EXPORT_SYMBOL(flush_dcache_icache_page);
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
/*
* We shouldn't have to do this, but some versions of glibc
* require it (ld.so assumes zero filled pages are icache clean)
* - Anton
*/
flush_dcache_page(pg);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
/*
* We should be able to use the following optimisation, however
* there are two problems.
* Firstly a bug in some versions of binutils meant PLT sections
* were not marked executable.
* Secondly the first word in the GOT section is blrl, used
* to establish the GOT address. Until recently the GOT was
* not marked executable.
* - Anton
*/
#if 0
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
return;
#endif
flush_dcache_page(pg);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
kunmap(page);
}
EXPORT_SYMBOL(flush_icache_user_range);
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the pte lock held.
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep)
{
#ifdef CONFIG_PPC_STD_MMU
unsigned long access = 0, trap;
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(*ptep) || address >= TASK_SIZE)
return;
/* We try to figure out if we are coming from an instruction
* access fault and pass that down to __hash_page so we avoid
* double-faulting on execution of fresh text. We have to test
* for regs NULL since init will get here first thing at boot
*
* We also avoid filling the hash if not coming from a fault
*/
if (current->thread.regs == NULL)
return;
trap = TRAP(current->thread.regs);
if (trap == 0x400)
access |= _PAGE_EXEC;
else if (trap != 0x300)
return;
hash_preload(vma->vm_mm, address, access, trap);
#endif /* CONFIG_PPC_STD_MMU */
#if (defined(CONFIG_PPC_BOOK3E_64) || defined(CONFIG_PPC_FSL_BOOK3E)) \
&& defined(CONFIG_HUGETLB_PAGE)
if (is_vm_hugetlb_page(vma))
book3e_hugetlb_preload(vma, address, *ptep);
#endif
}
/*
* System memory should not be in /proc/iomem but various tools expect it
* (eg kdump).
*/
static int add_system_ram_resources(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
struct resource *res;
unsigned long base = reg->base;
unsigned long size = reg->size;
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
WARN_ON(!res);
if (res) {
res->name = "System RAM";
res->start = base;
res->end = base + size - 1;
res->flags = IORESOURCE_MEM;
WARN_ON(request_resource(&iomem_resource, res) < 0);
}
}
return 0;
}
subsys_initcall(add_system_ram_resources);
#ifdef CONFIG_STRICT_DEVMEM
/*
* devmem_is_allowed(): check to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
* Access has to be given to non-kernel-ram areas as well, these contain the
* PCI mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pfn)
{
if (iomem_is_exclusive(pfn << PAGE_SHIFT))
return 0;
if (!page_is_ram(pfn))
return 1;
if (page_is_rtas_user_buf(pfn))
return 1;
return 0;
}
#endif /* CONFIG_STRICT_DEVMEM */