2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/scsi/bnx2fc/bnx2fc_io.c
Nithin Nayak Sujir 35dd71ae82 [SCSI] bnx2fc: call scsi_done if session goes to not ready from ready
If the session is not ready yet, we ask the SCSI-ml to retry. However, if the
session is just uploaded, we should not retry, but instead call scsi_done to
fail the IO.

Signed-off-by: Nithin Nayak Sujir <nsujir@broadcom.com>
Signed-off-by: Bhanu Prakash Gollapudi <bprakash@broadcom.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-05-01 11:52:38 -05:00

1863 lines
49 KiB
C

/* bnx2fc_io.c: Broadcom NetXtreme II Linux FCoE offload driver.
* IO manager and SCSI IO processing.
*
* Copyright (c) 2008 - 2010 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
*/
#include "bnx2fc.h"
#define RESERVE_FREE_LIST_INDEX num_possible_cpus()
static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
int bd_index);
static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
static void bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
static int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
struct bnx2fc_cmd *io_req);
static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
struct fcoe_fcp_rsp_payload *fcp_rsp,
u8 num_rq);
void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
unsigned int timer_msec)
{
struct bnx2fc_hba *hba = io_req->port->priv;
if (queue_delayed_work(hba->timer_work_queue, &io_req->timeout_work,
msecs_to_jiffies(timer_msec)))
kref_get(&io_req->refcount);
}
static void bnx2fc_cmd_timeout(struct work_struct *work)
{
struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
timeout_work.work);
struct fc_lport *lport;
struct fc_rport_priv *rdata;
u8 cmd_type = io_req->cmd_type;
struct bnx2fc_rport *tgt = io_req->tgt;
int logo_issued;
int rc;
BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
"req_flags = %lx\n", cmd_type, io_req->req_flags);
spin_lock_bh(&tgt->tgt_lock);
if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
/*
* ideally we should hold the io_req until RRQ complets,
* and release io_req from timeout hold.
*/
spin_unlock_bh(&tgt->tgt_lock);
bnx2fc_send_rrq(io_req);
return;
}
if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
goto done;
}
switch (cmd_type) {
case BNX2FC_SCSI_CMD:
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags)) {
/* Handle eh_abort timeout */
BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
complete(&io_req->tm_done);
} else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
&io_req->req_flags)) {
/* Handle internally generated ABTS timeout */
BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
io_req->refcount.refcount.counter);
if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags))) {
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
/* Explicitly logo the target */
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicit "
"logo - tgt flags = 0x%lx\n",
tgt->flags);
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
}
} else {
/* Hanlde IO timeout */
BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "IO completed before "
" timer expiry\n");
goto done;
}
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&io_req->req_flags)) {
rc = bnx2fc_initiate_abts(io_req);
if (rc == SUCCESS)
goto done;
/*
* Explicitly logo the target if
* abts initiation fails
*/
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicit "
"logo - tgt flags = 0x%lx\n",
tgt->flags);
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
} else {
BNX2FC_IO_DBG(io_req, "IO already in "
"ABTS processing\n");
}
}
break;
case BNX2FC_ELS:
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags)) {
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
/* Explicitly logo the target */
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicitly logo"
"(els)\n");
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
}
} else {
/*
* Handle ELS timeout.
* tgt_lock is used to sync compl path and timeout
* path. If els compl path is processing this IO, we
* have nothing to do here, just release the timer hold
*/
BNX2FC_IO_DBG(io_req, "ELS timed out\n");
if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
&io_req->req_flags))
goto done;
/* Indicate the cb_func that this ELS is timed out */
set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
if ((io_req->cb_func) && (io_req->cb_arg)) {
io_req->cb_func(io_req->cb_arg);
io_req->cb_arg = NULL;
}
}
break;
default:
printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
cmd_type);
break;
}
done:
/* release the cmd that was held when timer was set */
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
}
static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
{
/* Called with host lock held */
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
/*
* active_cmd_queue may have other command types as well,
* and during flush operation, we want to error back only
* scsi commands.
*/
if (io_req->cmd_type != BNX2FC_SCSI_CMD)
return;
BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
bnx2fc_unmap_sg_list(io_req);
io_req->sc_cmd = NULL;
if (!sc_cmd) {
printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
"IO(0x%x) already cleaned up\n",
io_req->xid);
return;
}
sc_cmd->result = err_code << 16;
BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
sc_cmd->allowed);
scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
}
struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba,
u16 min_xid, u16 max_xid)
{
struct bnx2fc_cmd_mgr *cmgr;
struct io_bdt *bdt_info;
struct bnx2fc_cmd *io_req;
size_t len;
u32 mem_size;
u16 xid;
int i;
int num_ios, num_pri_ios;
size_t bd_tbl_sz;
int arr_sz = num_possible_cpus() + 1;
if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
and max_xid 0x%x\n", min_xid, max_xid);
return NULL;
}
BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
num_ios = max_xid - min_xid + 1;
len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
len += sizeof(struct bnx2fc_cmd_mgr);
cmgr = kzalloc(len, GFP_KERNEL);
if (!cmgr) {
printk(KERN_ERR PFX "failed to alloc cmgr\n");
return NULL;
}
cmgr->free_list = kzalloc(sizeof(*cmgr->free_list) *
arr_sz, GFP_KERNEL);
if (!cmgr->free_list) {
printk(KERN_ERR PFX "failed to alloc free_list\n");
goto mem_err;
}
cmgr->free_list_lock = kzalloc(sizeof(*cmgr->free_list_lock) *
arr_sz, GFP_KERNEL);
if (!cmgr->free_list_lock) {
printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
goto mem_err;
}
cmgr->hba = hba;
cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
for (i = 0; i < arr_sz; i++) {
INIT_LIST_HEAD(&cmgr->free_list[i]);
spin_lock_init(&cmgr->free_list_lock[i]);
}
/*
* Pre-allocated pool of bnx2fc_cmds.
* Last entry in the free list array is the free list
* of slow path requests.
*/
xid = BNX2FC_MIN_XID;
num_pri_ios = num_ios - BNX2FC_ELSTM_XIDS;
for (i = 0; i < num_ios; i++) {
io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
if (!io_req) {
printk(KERN_ERR PFX "failed to alloc io_req\n");
goto mem_err;
}
INIT_LIST_HEAD(&io_req->link);
INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
io_req->xid = xid++;
if (i < num_pri_ios)
list_add_tail(&io_req->link,
&cmgr->free_list[io_req->xid %
num_possible_cpus()]);
else
list_add_tail(&io_req->link,
&cmgr->free_list[num_possible_cpus()]);
io_req++;
}
/* Allocate pool of io_bdts - one for each bnx2fc_cmd */
mem_size = num_ios * sizeof(struct io_bdt *);
cmgr->io_bdt_pool = kmalloc(mem_size, GFP_KERNEL);
if (!cmgr->io_bdt_pool) {
printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
goto mem_err;
}
mem_size = sizeof(struct io_bdt);
for (i = 0; i < num_ios; i++) {
cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
if (!cmgr->io_bdt_pool[i]) {
printk(KERN_ERR PFX "failed to alloc "
"io_bdt_pool[%d]\n", i);
goto mem_err;
}
}
/* Allocate an map fcoe_bdt_ctx structures */
bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
bd_tbl_sz,
&bdt_info->bd_tbl_dma,
GFP_KERNEL);
if (!bdt_info->bd_tbl) {
printk(KERN_ERR PFX "failed to alloc "
"bdt_tbl[%d]\n", i);
goto mem_err;
}
}
return cmgr;
mem_err:
bnx2fc_cmd_mgr_free(cmgr);
return NULL;
}
void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
{
struct io_bdt *bdt_info;
struct bnx2fc_hba *hba = cmgr->hba;
size_t bd_tbl_sz;
u16 min_xid = BNX2FC_MIN_XID;
u16 max_xid = BNX2FC_MAX_XID;
int num_ios;
int i;
num_ios = max_xid - min_xid + 1;
/* Free fcoe_bdt_ctx structures */
if (!cmgr->io_bdt_pool)
goto free_cmd_pool;
bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
if (bdt_info->bd_tbl) {
dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
bdt_info->bd_tbl,
bdt_info->bd_tbl_dma);
bdt_info->bd_tbl = NULL;
}
}
/* Destroy io_bdt pool */
for (i = 0; i < num_ios; i++) {
kfree(cmgr->io_bdt_pool[i]);
cmgr->io_bdt_pool[i] = NULL;
}
kfree(cmgr->io_bdt_pool);
cmgr->io_bdt_pool = NULL;
free_cmd_pool:
kfree(cmgr->free_list_lock);
/* Destroy cmd pool */
if (!cmgr->free_list)
goto free_cmgr;
for (i = 0; i < num_possible_cpus() + 1; i++) {
struct list_head *list;
struct list_head *tmp;
list_for_each_safe(list, tmp, &cmgr->free_list[i]) {
struct bnx2fc_cmd *io_req = (struct bnx2fc_cmd *)list;
list_del(&io_req->link);
kfree(io_req);
}
}
kfree(cmgr->free_list);
free_cmgr:
/* Free command manager itself */
kfree(cmgr);
}
struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
{
struct fcoe_port *port = tgt->port;
struct bnx2fc_hba *hba = port->priv;
struct bnx2fc_cmd_mgr *cmd_mgr = hba->cmd_mgr;
struct bnx2fc_cmd *io_req;
struct list_head *listp;
struct io_bdt *bd_tbl;
int index = RESERVE_FREE_LIST_INDEX;
u32 max_sqes;
u16 xid;
max_sqes = tgt->max_sqes;
switch (type) {
case BNX2FC_TASK_MGMT_CMD:
max_sqes = BNX2FC_TM_MAX_SQES;
break;
case BNX2FC_ELS:
max_sqes = BNX2FC_ELS_MAX_SQES;
break;
default:
break;
}
/*
* NOTE: Free list insertions and deletions are protected with
* cmgr lock
*/
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
if ((list_empty(&(cmd_mgr->free_list[index]))) ||
(tgt->num_active_ios.counter >= max_sqes)) {
BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
"ios(%d):sqes(%d)\n",
tgt->num_active_ios.counter, tgt->max_sqes);
if (list_empty(&(cmd_mgr->free_list[index])))
printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
return NULL;
}
listp = (struct list_head *)
cmd_mgr->free_list[index].next;
list_del_init(listp);
io_req = (struct bnx2fc_cmd *) listp;
xid = io_req->xid;
cmd_mgr->cmds[xid] = io_req;
atomic_inc(&tgt->num_active_ios);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
INIT_LIST_HEAD(&io_req->link);
io_req->port = port;
io_req->cmd_mgr = cmd_mgr;
io_req->req_flags = 0;
io_req->cmd_type = type;
/* Bind io_bdt for this io_req */
/* Have a static link between io_req and io_bdt_pool */
bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
bd_tbl->io_req = io_req;
/* Hold the io_req against deletion */
kref_init(&io_req->refcount);
return io_req;
}
static struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
{
struct fcoe_port *port = tgt->port;
struct bnx2fc_hba *hba = port->priv;
struct bnx2fc_cmd_mgr *cmd_mgr = hba->cmd_mgr;
struct bnx2fc_cmd *io_req;
struct list_head *listp;
struct io_bdt *bd_tbl;
u32 max_sqes;
u16 xid;
int index = get_cpu();
max_sqes = BNX2FC_SCSI_MAX_SQES;
/*
* NOTE: Free list insertions and deletions are protected with
* cmgr lock
*/
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
if ((list_empty(&cmd_mgr->free_list[index])) ||
(tgt->num_active_ios.counter >= max_sqes)) {
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
put_cpu();
return NULL;
}
listp = (struct list_head *)
cmd_mgr->free_list[index].next;
list_del_init(listp);
io_req = (struct bnx2fc_cmd *) listp;
xid = io_req->xid;
cmd_mgr->cmds[xid] = io_req;
atomic_inc(&tgt->num_active_ios);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
put_cpu();
INIT_LIST_HEAD(&io_req->link);
io_req->port = port;
io_req->cmd_mgr = cmd_mgr;
io_req->req_flags = 0;
/* Bind io_bdt for this io_req */
/* Have a static link between io_req and io_bdt_pool */
bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
bd_tbl->io_req = io_req;
/* Hold the io_req against deletion */
kref_init(&io_req->refcount);
return io_req;
}
void bnx2fc_cmd_release(struct kref *ref)
{
struct bnx2fc_cmd *io_req = container_of(ref,
struct bnx2fc_cmd, refcount);
struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
int index;
if (io_req->cmd_type == BNX2FC_SCSI_CMD)
index = io_req->xid % num_possible_cpus();
else
index = RESERVE_FREE_LIST_INDEX;
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
if (io_req->cmd_type != BNX2FC_SCSI_CMD)
bnx2fc_free_mp_resc(io_req);
cmd_mgr->cmds[io_req->xid] = NULL;
/* Delete IO from retire queue */
list_del_init(&io_req->link);
/* Add it to the free list */
list_add(&io_req->link,
&cmd_mgr->free_list[index]);
atomic_dec(&io_req->tgt->num_active_ios);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
}
static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
struct bnx2fc_hba *hba = io_req->port->priv;
size_t sz = sizeof(struct fcoe_bd_ctx);
/* clear tm flags */
mp_req->tm_flags = 0;
if (mp_req->mp_req_bd) {
dma_free_coherent(&hba->pcidev->dev, sz,
mp_req->mp_req_bd,
mp_req->mp_req_bd_dma);
mp_req->mp_req_bd = NULL;
}
if (mp_req->mp_resp_bd) {
dma_free_coherent(&hba->pcidev->dev, sz,
mp_req->mp_resp_bd,
mp_req->mp_resp_bd_dma);
mp_req->mp_resp_bd = NULL;
}
if (mp_req->req_buf) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
mp_req->req_buf,
mp_req->req_buf_dma);
mp_req->req_buf = NULL;
}
if (mp_req->resp_buf) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
mp_req->resp_buf,
mp_req->resp_buf_dma);
mp_req->resp_buf = NULL;
}
}
int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_mp_req *mp_req;
struct fcoe_bd_ctx *mp_req_bd;
struct fcoe_bd_ctx *mp_resp_bd;
struct bnx2fc_hba *hba = io_req->port->priv;
dma_addr_t addr;
size_t sz;
mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
mp_req->req_len = sizeof(struct fcp_cmnd);
io_req->data_xfer_len = mp_req->req_len;
mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&mp_req->req_buf_dma,
GFP_ATOMIC);
if (!mp_req->req_buf) {
printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&mp_req->resp_buf_dma,
GFP_ATOMIC);
if (!mp_req->resp_buf) {
printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
memset(mp_req->req_buf, 0, PAGE_SIZE);
memset(mp_req->resp_buf, 0, PAGE_SIZE);
/* Allocate and map mp_req_bd and mp_resp_bd */
sz = sizeof(struct fcoe_bd_ctx);
mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
&mp_req->mp_req_bd_dma,
GFP_ATOMIC);
if (!mp_req->mp_req_bd) {
printk(KERN_ERR PFX "unable to alloc MP req bd\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
&mp_req->mp_resp_bd_dma,
GFP_ATOMIC);
if (!mp_req->mp_req_bd) {
printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
/* Fill bd table */
addr = mp_req->req_buf_dma;
mp_req_bd = mp_req->mp_req_bd;
mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
mp_req_bd->buf_len = PAGE_SIZE;
mp_req_bd->flags = 0;
/*
* MP buffer is either a task mgmt command or an ELS.
* So the assumption is that it consumes a single bd
* entry in the bd table
*/
mp_resp_bd = mp_req->mp_resp_bd;
addr = mp_req->resp_buf_dma;
mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
mp_resp_bd->buf_len = PAGE_SIZE;
mp_resp_bd->flags = 0;
return SUCCESS;
}
static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
{
struct fc_lport *lport;
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct fcoe_port *port;
struct bnx2fc_hba *hba;
struct bnx2fc_rport *tgt;
struct bnx2fc_cmd *io_req;
struct bnx2fc_mp_req *tm_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct Scsi_Host *host = sc_cmd->device->host;
struct fc_frame_header *fc_hdr;
struct fcp_cmnd *fcp_cmnd;
int task_idx, index;
int rc = SUCCESS;
u16 xid;
u32 sid, did;
unsigned long start = jiffies;
lport = shost_priv(host);
port = lport_priv(lport);
hba = port->priv;
if (rport == NULL) {
printk(KERN_ALERT PFX "device_reset: rport is NULL\n");
rc = FAILED;
goto tmf_err;
}
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
return rc;
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
printk(KERN_ERR PFX "device_reset: link is not ready\n");
rc = FAILED;
goto tmf_err;
}
/* rport and tgt are allocated together, so tgt should be non-NULL */
tgt = (struct bnx2fc_rport *)&rp[1];
if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
rc = FAILED;
goto tmf_err;
}
retry_tmf:
io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
if (!io_req) {
if (time_after(jiffies, start + HZ)) {
printk(KERN_ERR PFX "tmf: Failed TMF");
rc = FAILED;
goto tmf_err;
}
msleep(20);
goto retry_tmf;
}
/* Initialize rest of io_req fields */
io_req->sc_cmd = sc_cmd;
io_req->port = port;
io_req->tgt = tgt;
tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
rc = bnx2fc_init_mp_req(io_req);
if (rc == FAILED) {
printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
goto tmf_err;
}
/* Set TM flags */
io_req->io_req_flags = 0;
tm_req->tm_flags = tm_flags;
/* Fill FCP_CMND */
bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len);
fcp_cmnd->fc_dl = 0;
/* Fill FC header */
fc_hdr = &(tm_req->req_fc_hdr);
sid = tgt->sid;
did = rport->port_id;
__fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
FC_FC_SEQ_INIT, 0);
/* Obtain exchange id */
xid = io_req->xid;
BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_mp_task(io_req, task);
sc_cmd->SCp.ptr = (char *)io_req;
/* Obtain free SQ entry */
spin_lock_bh(&tgt->tgt_lock);
bnx2fc_add_2_sq(tgt, xid);
/* Enqueue the io_req to active_tm_queue */
io_req->on_tmf_queue = 1;
list_add_tail(&io_req->link, &tgt->active_tm_queue);
init_completion(&io_req->tm_done);
io_req->wait_for_comp = 1;
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
spin_unlock_bh(&tgt->tgt_lock);
rc = wait_for_completion_timeout(&io_req->tm_done,
BNX2FC_TM_TIMEOUT * HZ);
spin_lock_bh(&tgt->tgt_lock);
io_req->wait_for_comp = 0;
if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags)))
set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
spin_unlock_bh(&tgt->tgt_lock);
if (!rc) {
printk(KERN_ERR PFX "task mgmt command failed...\n");
rc = FAILED;
} else {
printk(KERN_ERR PFX "task mgmt command success...\n");
rc = SUCCESS;
}
tmf_err:
return rc;
}
int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
{
struct fc_lport *lport;
struct bnx2fc_rport *tgt = io_req->tgt;
struct fc_rport *rport = tgt->rport;
struct fc_rport_priv *rdata = tgt->rdata;
struct bnx2fc_hba *hba;
struct fcoe_port *port;
struct bnx2fc_cmd *abts_io_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct fc_frame_header *fc_hdr;
struct bnx2fc_mp_req *abts_req;
int task_idx, index;
u32 sid, did;
u16 xid;
int rc = SUCCESS;
u32 r_a_tov = rdata->r_a_tov;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
port = io_req->port;
hba = port->priv;
lport = port->lport;
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
rc = FAILED;
goto abts_err;
}
if (rport == NULL) {
printk(KERN_ALERT PFX "initiate_abts: rport is NULL\n");
rc = FAILED;
goto abts_err;
}
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
rc = FAILED;
goto abts_err;
}
abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
if (!abts_io_req) {
printk(KERN_ERR PFX "abts: couldnt allocate cmd\n");
rc = FAILED;
goto abts_err;
}
/* Initialize rest of io_req fields */
abts_io_req->sc_cmd = NULL;
abts_io_req->port = port;
abts_io_req->tgt = tgt;
abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
/* Fill FC header */
fc_hdr = &(abts_req->req_fc_hdr);
/* Obtain oxid and rxid for the original exchange to be aborted */
fc_hdr->fh_ox_id = htons(io_req->xid);
fc_hdr->fh_rx_id = htons(io_req->task->rx_wr_tx_rd.rx_id);
sid = tgt->sid;
did = rport->port_id;
__fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
FC_FC_SEQ_INIT, 0);
xid = abts_io_req->xid;
BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_mp_task(abts_io_req, task);
/*
* ABTS task is a temporary task that will be cleaned up
* irrespective of ABTS response. We need to start the timer
* for the original exchange, as the CQE is posted for the original
* IO request.
*
* Timer for ABTS is started only when it is originated by a
* TM request. For the ABTS issued as part of ULP timeout,
* scsi-ml maintains the timers.
*/
/* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
abts_err:
return rc;
}
int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
{
struct fc_lport *lport;
struct bnx2fc_rport *tgt = io_req->tgt;
struct bnx2fc_hba *hba;
struct fcoe_port *port;
struct bnx2fc_cmd *cleanup_io_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
int task_idx, index;
u16 xid, orig_xid;
int rc = 0;
/* ASSUMPTION: called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
port = io_req->port;
hba = port->priv;
lport = port->lport;
cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
if (!cleanup_io_req) {
printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
rc = -1;
goto cleanup_err;
}
/* Initialize rest of io_req fields */
cleanup_io_req->sc_cmd = NULL;
cleanup_io_req->port = port;
cleanup_io_req->tgt = tgt;
cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
xid = cleanup_io_req->xid;
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
task = &(task_page[index]);
orig_xid = io_req->xid;
BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
cleanup_err:
return rc;
}
/**
* bnx2fc_eh_target_reset: Reset a target
*
* @sc_cmd: SCSI command
*
* Set from SCSI host template to send task mgmt command to the target
* and wait for the response
*/
int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
{
return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
}
/**
* bnx2fc_eh_device_reset - Reset a single LUN
*
* @sc_cmd: SCSI command
*
* Set from SCSI host template to send task mgmt command to the target
* and wait for the response
*/
int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
{
return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
}
/**
* bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
* SCSI command
*
* @sc_cmd: SCSI_ML command pointer
*
* SCSI abort request handler
*/
int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
{
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct bnx2fc_cmd *io_req;
struct fc_lport *lport;
struct bnx2fc_rport *tgt;
int rc = FAILED;
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
return rc;
lport = shost_priv(sc_cmd->device->host);
if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
printk(KERN_ALERT PFX "eh_abort: link not ready\n");
return rc;
}
tgt = (struct bnx2fc_rport *)&rp[1];
BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
spin_lock_bh(&tgt->tgt_lock);
io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr;
if (!io_req) {
/* Command might have just completed */
printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
io_req->refcount.refcount.counter);
/* Hold IO request across abort processing */
kref_get(&io_req->refcount);
BUG_ON(tgt != io_req->tgt);
/* Remove the io_req from the active_q. */
/*
* Task Mgmt functions (LUN RESET & TGT RESET) will not
* issue an ABTS on this particular IO req, as the
* io_req is no longer in the active_q.
*/
if (tgt->flush_in_prog) {
printk(KERN_ALERT PFX "eh_abort: io_req (xid = 0x%x) "
"flush in progress\n", io_req->xid);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
if (io_req->on_active_queue == 0) {
printk(KERN_ALERT PFX "eh_abort: io_req (xid = 0x%x) "
"not on active_q\n", io_req->xid);
/*
* This condition can happen only due to the FW bug,
* where we do not receive cleanup response from
* the FW. Handle this case gracefully by erroring
* back the IO request to SCSI-ml
*/
bnx2fc_scsi_done(io_req, DID_ABORT);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
/*
* Only eh_abort processing will remove the IO from
* active_cmd_q before processing the request. this is
* done to avoid race conditions between IOs aborted
* as part of task management completion and eh_abort
* processing
*/
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
init_completion(&io_req->tm_done);
io_req->wait_for_comp = 1;
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
/* Cancel the current timer running on this io_req */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
rc = bnx2fc_initiate_abts(io_req);
} else {
printk(KERN_ALERT PFX "eh_abort: io_req (xid = 0x%x) "
"already in abts processing\n", io_req->xid);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
if (rc == FAILED) {
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return rc;
}
spin_unlock_bh(&tgt->tgt_lock);
wait_for_completion(&io_req->tm_done);
spin_lock_bh(&tgt->tgt_lock);
io_req->wait_for_comp = 0;
if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags))) {
/* Let the scsi-ml try to recover this command */
printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
io_req->xid);
rc = FAILED;
} else {
/*
* We come here even when there was a race condition
* between timeout and abts completion, and abts
* completion happens just in time.
*/
BNX2FC_IO_DBG(io_req, "abort succeeded\n");
rc = SUCCESS;
bnx2fc_scsi_done(io_req, DID_ABORT);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
/* release the reference taken in eh_abort */
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return rc;
}
void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
"refcnt = %d, cmd_type = %d\n",
io_req->refcount.refcount.counter, io_req->cmd_type);
bnx2fc_scsi_done(io_req, DID_ERROR);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
u32 r_ctl;
u32 r_a_tov = FC_DEF_R_A_TOV;
u8 issue_rrq = 0;
struct bnx2fc_rport *tgt = io_req->tgt;
BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
"refcnt = %d, cmd_type = %d\n",
io_req->xid,
io_req->refcount.refcount.counter, io_req->cmd_type);
if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "Timer context finished processing"
" this io\n");
return;
}
/* Do not issue RRQ as this IO is already cleanedup */
if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
&io_req->req_flags))
goto io_compl;
/*
* For ABTS issued due to SCSI eh_abort_handler, timeout
* values are maintained by scsi-ml itself. Cancel timeout
* in case ABTS issued as part of task management function
* or due to FW error.
*/
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
r_ctl = task->cmn.general.rsp_info.abts_rsp.r_ctl;
switch (r_ctl) {
case FC_RCTL_BA_ACC:
/*
* Dont release this cmd yet. It will be relesed
* after we get RRQ response
*/
BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
issue_rrq = 1;
break;
case FC_RCTL_BA_RJT:
BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
break;
default:
printk(KERN_ERR PFX "Unknown ABTS response\n");
break;
}
if (issue_rrq) {
BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
}
set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
bnx2fc_cmd_timer_set(io_req, r_a_tov);
io_compl:
if (io_req->wait_for_comp) {
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags))
complete(&io_req->tm_done);
} else {
/*
* We end up here when ABTS is issued as
* in asynchronous context, i.e., as part
* of task management completion, or
* when FW error is received or when the
* ABTS is issued when the IO is timed
* out.
*/
if (io_req->on_active_queue) {
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
}
bnx2fc_scsi_done(io_req, DID_ERROR);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
}
static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct bnx2fc_rport *tgt = io_req->tgt;
struct list_head *list;
struct list_head *tmp;
struct bnx2fc_cmd *cmd;
int tm_lun = sc_cmd->device->lun;
int rc = 0;
int lun;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
/*
* Walk thru the active_ios queue and ABORT the IO
* that matches with the LUN that was reset
*/
list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
cmd = (struct bnx2fc_cmd *)list;
lun = cmd->sc_cmd->device->lun;
if (lun == tm_lun) {
/* Initiate ABTS on this cmd */
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&cmd->req_flags)) {
/* cancel the IO timeout */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release);
/* timer hold */
rc = bnx2fc_initiate_abts(cmd);
/* abts shouldn't fail in this context */
WARN_ON(rc != SUCCESS);
} else
printk(KERN_ERR PFX "lun_rst: abts already in"
" progress for this IO 0x%x\n",
cmd->xid);
}
}
}
static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_rport *tgt = io_req->tgt;
struct list_head *list;
struct list_head *tmp;
struct bnx2fc_cmd *cmd;
int rc = 0;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
/*
* Walk thru the active_ios queue and ABORT the IO
* that matches with the LUN that was reset
*/
list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
cmd = (struct bnx2fc_cmd *)list;
/* Initiate ABTS */
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&cmd->req_flags)) {
/* cancel the IO timeout */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* timer hold */
rc = bnx2fc_initiate_abts(cmd);
/* abts shouldn't fail in this context */
WARN_ON(rc != SUCCESS);
} else
printk(KERN_ERR PFX "tgt_rst: abts already in progress"
" for this IO 0x%x\n", cmd->xid);
}
}
void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task, u8 num_rq)
{
struct bnx2fc_mp_req *tm_req;
struct fc_frame_header *fc_hdr;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
u64 *hdr;
u64 *temp_hdr;
void *rsp_buf;
/* Called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
else {
/* TM has already timed out and we got
* delayed completion. Ignore completion
* processing.
*/
return;
}
tm_req = &(io_req->mp_req);
fc_hdr = &(tm_req->resp_fc_hdr);
hdr = (u64 *)fc_hdr;
temp_hdr = (u64 *)
&task->cmn.general.cmd_info.mp_fc_frame.fc_hdr;
hdr[0] = cpu_to_be64(temp_hdr[0]);
hdr[1] = cpu_to_be64(temp_hdr[1]);
hdr[2] = cpu_to_be64(temp_hdr[2]);
tm_req->resp_len = task->rx_wr_only.sgl_ctx.mul_sges.cur_sge_off;
rsp_buf = tm_req->resp_buf;
if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
bnx2fc_parse_fcp_rsp(io_req,
(struct fcoe_fcp_rsp_payload *)
rsp_buf, num_rq);
if (io_req->fcp_rsp_code == 0) {
/* TM successful */
if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
bnx2fc_lun_reset_cmpl(io_req);
else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
bnx2fc_tgt_reset_cmpl(io_req);
}
} else {
printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
fc_hdr->fh_r_ctl);
}
if (!sc_cmd->SCp.ptr) {
printk(KERN_ALERT PFX "tm_compl: SCp.ptr is NULL\n");
return;
}
switch (io_req->fcp_status) {
case FC_GOOD:
if (io_req->cdb_status == 0) {
/* Good IO completion */
sc_cmd->result = DID_OK << 16;
} else {
/* Transport status is good, SCSI status not good */
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
}
if (io_req->fcp_resid)
scsi_set_resid(sc_cmd, io_req->fcp_resid);
break;
default:
BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
io_req->fcp_status);
break;
}
sc_cmd = io_req->sc_cmd;
io_req->sc_cmd = NULL;
/* check if the io_req exists in tgt's tmf_q */
if (io_req->on_tmf_queue) {
list_del_init(&io_req->link);
io_req->on_tmf_queue = 0;
} else {
printk(KERN_ALERT PFX "Command not on active_cmd_queue!\n");
return;
}
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
if (io_req->wait_for_comp) {
BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
complete(&io_req->tm_done);
}
}
static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
int bd_index)
{
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
int frag_size, sg_frags;
sg_frags = 0;
while (sg_len) {
if (sg_len >= BNX2FC_BD_SPLIT_SZ)
frag_size = BNX2FC_BD_SPLIT_SZ;
else
frag_size = sg_len;
bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
bd[bd_index + sg_frags].buf_addr_hi = addr >> 32;
bd[bd_index + sg_frags].buf_len = (u16)frag_size;
bd[bd_index + sg_frags].flags = 0;
addr += (u64) frag_size;
sg_frags++;
sg_len -= frag_size;
}
return sg_frags;
}
static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
struct scatterlist *sg;
int byte_count = 0;
int sg_count = 0;
int bd_count = 0;
int sg_frags;
unsigned int sg_len;
u64 addr;
int i;
sg_count = scsi_dma_map(sc);
scsi_for_each_sg(sc, sg, sg_count, i) {
sg_len = sg_dma_len(sg);
addr = sg_dma_address(sg);
if (sg_len > BNX2FC_MAX_BD_LEN) {
sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
bd_count);
} else {
sg_frags = 1;
bd[bd_count].buf_addr_lo = addr & 0xffffffff;
bd[bd_count].buf_addr_hi = addr >> 32;
bd[bd_count].buf_len = (u16)sg_len;
bd[bd_count].flags = 0;
}
bd_count += sg_frags;
byte_count += sg_len;
}
if (byte_count != scsi_bufflen(sc))
printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
"task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
io_req->xid);
return bd_count;
}
static void bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
int bd_count;
if (scsi_sg_count(sc))
bd_count = bnx2fc_map_sg(io_req);
else {
bd_count = 0;
bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
bd[0].buf_len = bd[0].flags = 0;
}
io_req->bd_tbl->bd_valid = bd_count;
}
static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
if (io_req->bd_tbl->bd_valid && sc) {
scsi_dma_unmap(sc);
io_req->bd_tbl->bd_valid = 0;
}
}
void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
struct fcp_cmnd *fcp_cmnd)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
char tag[2];
memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
int_to_scsilun(sc_cmd->device->lun,
(struct scsi_lun *) fcp_cmnd->fc_lun);
fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
fcp_cmnd->fc_cmdref = 0;
fcp_cmnd->fc_pri_ta = 0;
fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
fcp_cmnd->fc_flags = io_req->io_req_flags;
if (scsi_populate_tag_msg(sc_cmd, tag)) {
switch (tag[0]) {
case HEAD_OF_QUEUE_TAG:
fcp_cmnd->fc_pri_ta = FCP_PTA_HEADQ;
break;
case ORDERED_QUEUE_TAG:
fcp_cmnd->fc_pri_ta = FCP_PTA_ORDERED;
break;
default:
fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
break;
}
} else {
fcp_cmnd->fc_pri_ta = 0;
}
}
static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
struct fcoe_fcp_rsp_payload *fcp_rsp,
u8 num_rq)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct bnx2fc_rport *tgt = io_req->tgt;
u8 rsp_flags = fcp_rsp->fcp_flags.flags;
u32 rq_buff_len = 0;
int i;
unsigned char *rq_data;
unsigned char *dummy;
int fcp_sns_len = 0;
int fcp_rsp_len = 0;
io_req->fcp_status = FC_GOOD;
io_req->fcp_resid = fcp_rsp->fcp_resid;
io_req->scsi_comp_flags = rsp_flags;
CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
fcp_rsp->scsi_status_code;
/* Fetch fcp_rsp_info and fcp_sns_info if available */
if (num_rq) {
/*
* We do not anticipate num_rq >1, as the linux defined
* SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
* 256 bytes of single rq buffer is good enough to hold this.
*/
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
fcp_rsp_len = rq_buff_len
= fcp_rsp->fcp_rsp_len;
}
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
fcp_sns_len = fcp_rsp->fcp_sns_len;
rq_buff_len += fcp_rsp->fcp_sns_len;
}
io_req->fcp_rsp_len = fcp_rsp_len;
io_req->fcp_sns_len = fcp_sns_len;
if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
/* Invalid sense sense length. */
printk(KERN_ALERT PFX "invalid sns length %d\n",
rq_buff_len);
/* reset rq_buff_len */
rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ;
}
rq_data = bnx2fc_get_next_rqe(tgt, 1);
if (num_rq > 1) {
/* We do not need extra sense data */
for (i = 1; i < num_rq; i++)
dummy = bnx2fc_get_next_rqe(tgt, 1);
}
/* fetch fcp_rsp_code */
if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
/* Only for task management function */
io_req->fcp_rsp_code = rq_data[3];
printk(KERN_ERR PFX "fcp_rsp_code = %d\n",
io_req->fcp_rsp_code);
}
/* fetch sense data */
rq_data += fcp_rsp_len;
if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
printk(KERN_ERR PFX "Truncating sense buffer\n");
fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
}
memset(sc_cmd->sense_buffer, 0, sizeof(sc_cmd->sense_buffer));
if (fcp_sns_len)
memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
/* return RQ entries */
for (i = 0; i < num_rq; i++)
bnx2fc_return_rqe(tgt, 1);
}
}
/**
* bnx2fc_queuecommand - Queuecommand function of the scsi template
*
* @host: The Scsi_Host the command was issued to
* @sc_cmd: struct scsi_cmnd to be executed
*
* This is the IO strategy routine, called by SCSI-ML
**/
int bnx2fc_queuecommand(struct Scsi_Host *host,
struct scsi_cmnd *sc_cmd)
{
struct fc_lport *lport = shost_priv(host);
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct bnx2fc_rport *tgt;
struct bnx2fc_cmd *io_req;
int rc = 0;
int rval;
rval = fc_remote_port_chkready(rport);
if (rval) {
sc_cmd->result = rval;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
/* rport and tgt are allocated together, so tgt should be non-NULL */
tgt = (struct bnx2fc_rport *)&rp[1];
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
if (test_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags)) {
sc_cmd->result = DID_NO_CONNECT << 16;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
/*
* Session is not offloaded yet. Let SCSI-ml retry
* the command.
*/
rc = SCSI_MLQUEUE_TARGET_BUSY;
goto exit_qcmd;
}
io_req = bnx2fc_cmd_alloc(tgt);
if (!io_req) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
io_req->sc_cmd = sc_cmd;
if (bnx2fc_post_io_req(tgt, io_req)) {
printk(KERN_ERR PFX "Unable to post io_req\n");
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
exit_qcmd:
return rc;
}
void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
struct fcoe_fcp_rsp_payload *fcp_rsp;
struct bnx2fc_rport *tgt = io_req->tgt;
struct scsi_cmnd *sc_cmd;
struct Scsi_Host *host;
/* scsi_cmd_cmpl is called with tgt lock held */
if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
/* we will not receive ABTS response for this IO */
BNX2FC_IO_DBG(io_req, "Timer context finished processing "
"this scsi cmd\n");
}
/* Cancel the timeout_work, as we received IO completion */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
sc_cmd = io_req->sc_cmd;
if (sc_cmd == NULL) {
printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
return;
}
/* Fetch fcp_rsp from task context and perform cmd completion */
fcp_rsp = (struct fcoe_fcp_rsp_payload *)
&(task->cmn.general.rsp_info.fcp_rsp.payload);
/* parse fcp_rsp and obtain sense data from RQ if available */
bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq);
host = sc_cmd->device->host;
if (!sc_cmd->SCp.ptr) {
printk(KERN_ERR PFX "SCp.ptr is NULL\n");
return;
}
io_req->sc_cmd = NULL;
if (io_req->on_active_queue) {
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
} else {
/* This should not happen, but could have been pulled
* by bnx2fc_flush_active_ios(), or during a race
* between command abort and (late) completion.
*/
BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
if (io_req->wait_for_comp)
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags))
complete(&io_req->tm_done);
}
bnx2fc_unmap_sg_list(io_req);
switch (io_req->fcp_status) {
case FC_GOOD:
if (io_req->cdb_status == 0) {
/* Good IO completion */
sc_cmd->result = DID_OK << 16;
} else {
/* Transport status is good, SCSI status not good */
BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
" fcp_resid = 0x%x\n",
io_req->cdb_status, io_req->fcp_resid);
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
}
if (io_req->fcp_resid)
scsi_set_resid(sc_cmd, io_req->fcp_resid);
break;
default:
printk(KERN_ALERT PFX "scsi_cmd_compl: fcp_status = %d\n",
io_req->fcp_status);
break;
}
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
static int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
struct bnx2fc_cmd *io_req)
{
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct fcoe_port *port = tgt->port;
struct bnx2fc_hba *hba = port->priv;
struct fc_lport *lport = port->lport;
struct fcoe_dev_stats *stats;
int task_idx, index;
u16 xid;
/* Initialize rest of io_req fields */
io_req->cmd_type = BNX2FC_SCSI_CMD;
io_req->port = port;
io_req->tgt = tgt;
io_req->data_xfer_len = scsi_bufflen(sc_cmd);
sc_cmd->SCp.ptr = (char *)io_req;
stats = per_cpu_ptr(lport->dev_stats, get_cpu());
if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
io_req->io_req_flags = BNX2FC_READ;
stats->InputRequests++;
stats->InputBytes += io_req->data_xfer_len;
} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
io_req->io_req_flags = BNX2FC_WRITE;
stats->OutputRequests++;
stats->OutputBytes += io_req->data_xfer_len;
} else {
io_req->io_req_flags = 0;
stats->ControlRequests++;
}
put_cpu();
xid = io_req->xid;
/* Build buffer descriptor list for firmware from sg list */
bnx2fc_build_bd_list_from_sg(io_req);
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_task(io_req, task);
spin_lock_bh(&tgt->tgt_lock);
if (tgt->flush_in_prog) {
printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return -EAGAIN;
}
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
printk(KERN_ERR PFX "Session not ready...post_io\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return -EAGAIN;
}
/* Time IO req */
bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Enqueue the io_req to active_cmd_queue */
io_req->on_active_queue = 1;
/* move io_req from pending_queue to active_queue */
list_add_tail(&io_req->link, &tgt->active_cmd_queue);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
spin_unlock_bh(&tgt->tgt_lock);
return 0;
}