mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 23:54:19 +08:00
eaf649e9fe
This patch allows preemptible RCU to tolerate CPU-hotplug operations. It accomplishes this by maintaining a local copy of a map of online CPUs, which it accesses under its own lock. Signed-off-by: Gautham R Shenoy <ego@in.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
954 lines
25 KiB
C
954 lines
25 KiB
C
/*
|
|
* Read-Copy Update mechanism for mutual exclusion, realtime implementation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright IBM Corporation, 2006
|
|
*
|
|
* Authors: Paul E. McKenney <paulmck@us.ibm.com>
|
|
* With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
|
|
* for pushing me away from locks and towards counters, and
|
|
* to Suparna Bhattacharya for pushing me completely away
|
|
* from atomic instructions on the read side.
|
|
*
|
|
* Papers: http://www.rdrop.com/users/paulmck/RCU
|
|
*
|
|
* Design Document: http://lwn.net/Articles/253651/
|
|
*
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
* Documentation/RCU/ *.txt
|
|
*
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <asm/atomic.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/module.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/random.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/byteorder/swabb.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/rcupreempt_trace.h>
|
|
|
|
/*
|
|
* Macro that prevents the compiler from reordering accesses, but does
|
|
* absolutely -nothing- to prevent CPUs from reordering. This is used
|
|
* only to mediate communication between mainline code and hardware
|
|
* interrupt and NMI handlers.
|
|
*/
|
|
#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
|
|
|
|
/*
|
|
* PREEMPT_RCU data structures.
|
|
*/
|
|
|
|
/*
|
|
* GP_STAGES specifies the number of times the state machine has
|
|
* to go through the all the rcu_try_flip_states (see below)
|
|
* in a single Grace Period.
|
|
*
|
|
* GP in GP_STAGES stands for Grace Period ;)
|
|
*/
|
|
#define GP_STAGES 2
|
|
struct rcu_data {
|
|
spinlock_t lock; /* Protect rcu_data fields. */
|
|
long completed; /* Number of last completed batch. */
|
|
int waitlistcount;
|
|
struct tasklet_struct rcu_tasklet;
|
|
struct rcu_head *nextlist;
|
|
struct rcu_head **nexttail;
|
|
struct rcu_head *waitlist[GP_STAGES];
|
|
struct rcu_head **waittail[GP_STAGES];
|
|
struct rcu_head *donelist;
|
|
struct rcu_head **donetail;
|
|
long rcu_flipctr[2];
|
|
#ifdef CONFIG_RCU_TRACE
|
|
struct rcupreempt_trace trace;
|
|
#endif /* #ifdef CONFIG_RCU_TRACE */
|
|
};
|
|
|
|
/*
|
|
* States for rcu_try_flip() and friends.
|
|
*/
|
|
|
|
enum rcu_try_flip_states {
|
|
|
|
/*
|
|
* Stay here if nothing is happening. Flip the counter if somthing
|
|
* starts happening. Denoted by "I"
|
|
*/
|
|
rcu_try_flip_idle_state,
|
|
|
|
/*
|
|
* Wait here for all CPUs to notice that the counter has flipped. This
|
|
* prevents the old set of counters from ever being incremented once
|
|
* we leave this state, which in turn is necessary because we cannot
|
|
* test any individual counter for zero -- we can only check the sum.
|
|
* Denoted by "A".
|
|
*/
|
|
rcu_try_flip_waitack_state,
|
|
|
|
/*
|
|
* Wait here for the sum of the old per-CPU counters to reach zero.
|
|
* Denoted by "Z".
|
|
*/
|
|
rcu_try_flip_waitzero_state,
|
|
|
|
/*
|
|
* Wait here for each of the other CPUs to execute a memory barrier.
|
|
* This is necessary to ensure that these other CPUs really have
|
|
* completed executing their RCU read-side critical sections, despite
|
|
* their CPUs wildly reordering memory. Denoted by "M".
|
|
*/
|
|
rcu_try_flip_waitmb_state,
|
|
};
|
|
|
|
struct rcu_ctrlblk {
|
|
spinlock_t fliplock; /* Protect state-machine transitions. */
|
|
long completed; /* Number of last completed batch. */
|
|
enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
|
|
the rcu state machine */
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct rcu_data, rcu_data);
|
|
static struct rcu_ctrlblk rcu_ctrlblk = {
|
|
.fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
|
|
.completed = 0,
|
|
.rcu_try_flip_state = rcu_try_flip_idle_state,
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_RCU_TRACE
|
|
static char *rcu_try_flip_state_names[] =
|
|
{ "idle", "waitack", "waitzero", "waitmb" };
|
|
#endif /* #ifdef CONFIG_RCU_TRACE */
|
|
|
|
static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
|
|
|
|
/*
|
|
* Enum and per-CPU flag to determine when each CPU has seen
|
|
* the most recent counter flip.
|
|
*/
|
|
|
|
enum rcu_flip_flag_values {
|
|
rcu_flip_seen, /* Steady/initial state, last flip seen. */
|
|
/* Only GP detector can update. */
|
|
rcu_flipped /* Flip just completed, need confirmation. */
|
|
/* Only corresponding CPU can update. */
|
|
};
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
|
|
= rcu_flip_seen;
|
|
|
|
/*
|
|
* Enum and per-CPU flag to determine when each CPU has executed the
|
|
* needed memory barrier to fence in memory references from its last RCU
|
|
* read-side critical section in the just-completed grace period.
|
|
*/
|
|
|
|
enum rcu_mb_flag_values {
|
|
rcu_mb_done, /* Steady/initial state, no mb()s required. */
|
|
/* Only GP detector can update. */
|
|
rcu_mb_needed /* Flip just completed, need an mb(). */
|
|
/* Only corresponding CPU can update. */
|
|
};
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
|
|
= rcu_mb_done;
|
|
|
|
/*
|
|
* RCU_DATA_ME: find the current CPU's rcu_data structure.
|
|
* RCU_DATA_CPU: find the specified CPU's rcu_data structure.
|
|
*/
|
|
#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
|
|
#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
|
|
|
|
/*
|
|
* Helper macro for tracing when the appropriate rcu_data is not
|
|
* cached in a local variable, but where the CPU number is so cached.
|
|
*/
|
|
#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
|
|
|
|
/*
|
|
* Helper macro for tracing when the appropriate rcu_data is not
|
|
* cached in a local variable.
|
|
*/
|
|
#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
|
|
|
|
/*
|
|
* Helper macro for tracing when the appropriate rcu_data is pointed
|
|
* to by a local variable.
|
|
*/
|
|
#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
|
|
|
|
/*
|
|
* Return the number of RCU batches processed thus far. Useful
|
|
* for debug and statistics.
|
|
*/
|
|
long rcu_batches_completed(void)
|
|
{
|
|
return rcu_ctrlblk.completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed);
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
|
|
|
|
void __rcu_read_lock(void)
|
|
{
|
|
int idx;
|
|
struct task_struct *t = current;
|
|
int nesting;
|
|
|
|
nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
|
|
if (nesting != 0) {
|
|
|
|
/* An earlier rcu_read_lock() covers us, just count it. */
|
|
|
|
t->rcu_read_lock_nesting = nesting + 1;
|
|
|
|
} else {
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* We disable interrupts for the following reasons:
|
|
* - If we get scheduling clock interrupt here, and we
|
|
* end up acking the counter flip, it's like a promise
|
|
* that we will never increment the old counter again.
|
|
* Thus we will break that promise if that
|
|
* scheduling clock interrupt happens between the time
|
|
* we pick the .completed field and the time that we
|
|
* increment our counter.
|
|
*
|
|
* - We don't want to be preempted out here.
|
|
*
|
|
* NMIs can still occur, of course, and might themselves
|
|
* contain rcu_read_lock().
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
* Outermost nesting of rcu_read_lock(), so increment
|
|
* the current counter for the current CPU. Use volatile
|
|
* casts to prevent the compiler from reordering.
|
|
*/
|
|
|
|
idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
|
|
ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
|
|
|
|
/*
|
|
* Now that the per-CPU counter has been incremented, we
|
|
* are protected from races with rcu_read_lock() invoked
|
|
* from NMI handlers on this CPU. We can therefore safely
|
|
* increment the nesting counter, relieving further NMIs
|
|
* of the need to increment the per-CPU counter.
|
|
*/
|
|
|
|
ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
|
|
|
|
/*
|
|
* Now that we have preventing any NMIs from storing
|
|
* to the ->rcu_flipctr_idx, we can safely use it to
|
|
* remember which counter to decrement in the matching
|
|
* rcu_read_unlock().
|
|
*/
|
|
|
|
ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_lock);
|
|
|
|
void __rcu_read_unlock(void)
|
|
{
|
|
int idx;
|
|
struct task_struct *t = current;
|
|
int nesting;
|
|
|
|
nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
|
|
if (nesting > 1) {
|
|
|
|
/*
|
|
* We are still protected by the enclosing rcu_read_lock(),
|
|
* so simply decrement the counter.
|
|
*/
|
|
|
|
t->rcu_read_lock_nesting = nesting - 1;
|
|
|
|
} else {
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Disable local interrupts to prevent the grace-period
|
|
* detection state machine from seeing us half-done.
|
|
* NMIs can still occur, of course, and might themselves
|
|
* contain rcu_read_lock() and rcu_read_unlock().
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
* Outermost nesting of rcu_read_unlock(), so we must
|
|
* decrement the current counter for the current CPU.
|
|
* This must be done carefully, because NMIs can
|
|
* occur at any point in this code, and any rcu_read_lock()
|
|
* and rcu_read_unlock() pairs in the NMI handlers
|
|
* must interact non-destructively with this code.
|
|
* Lots of volatile casts, and -very- careful ordering.
|
|
*
|
|
* Changes to this code, including this one, must be
|
|
* inspected, validated, and tested extremely carefully!!!
|
|
*/
|
|
|
|
/*
|
|
* First, pick up the index.
|
|
*/
|
|
|
|
idx = ACCESS_ONCE(t->rcu_flipctr_idx);
|
|
|
|
/*
|
|
* Now that we have fetched the counter index, it is
|
|
* safe to decrement the per-task RCU nesting counter.
|
|
* After this, any interrupts or NMIs will increment and
|
|
* decrement the per-CPU counters.
|
|
*/
|
|
ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
|
|
|
|
/*
|
|
* It is now safe to decrement this task's nesting count.
|
|
* NMIs that occur after this statement will route their
|
|
* rcu_read_lock() calls through this "else" clause, and
|
|
* will thus start incrementing the per-CPU counter on
|
|
* their own. They will also clobber ->rcu_flipctr_idx,
|
|
* but that is OK, since we have already fetched it.
|
|
*/
|
|
|
|
ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
|
|
|
/*
|
|
* If a global counter flip has occurred since the last time that we
|
|
* advanced callbacks, advance them. Hardware interrupts must be
|
|
* disabled when calling this function.
|
|
*/
|
|
static void __rcu_advance_callbacks(struct rcu_data *rdp)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
int wlc = 0;
|
|
|
|
if (rdp->completed != rcu_ctrlblk.completed) {
|
|
if (rdp->waitlist[GP_STAGES - 1] != NULL) {
|
|
*rdp->donetail = rdp->waitlist[GP_STAGES - 1];
|
|
rdp->donetail = rdp->waittail[GP_STAGES - 1];
|
|
RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
|
|
}
|
|
for (i = GP_STAGES - 2; i >= 0; i--) {
|
|
if (rdp->waitlist[i] != NULL) {
|
|
rdp->waitlist[i + 1] = rdp->waitlist[i];
|
|
rdp->waittail[i + 1] = rdp->waittail[i];
|
|
wlc++;
|
|
} else {
|
|
rdp->waitlist[i + 1] = NULL;
|
|
rdp->waittail[i + 1] =
|
|
&rdp->waitlist[i + 1];
|
|
}
|
|
}
|
|
if (rdp->nextlist != NULL) {
|
|
rdp->waitlist[0] = rdp->nextlist;
|
|
rdp->waittail[0] = rdp->nexttail;
|
|
wlc++;
|
|
rdp->nextlist = NULL;
|
|
rdp->nexttail = &rdp->nextlist;
|
|
RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
|
|
} else {
|
|
rdp->waitlist[0] = NULL;
|
|
rdp->waittail[0] = &rdp->waitlist[0];
|
|
}
|
|
rdp->waitlistcount = wlc;
|
|
rdp->completed = rcu_ctrlblk.completed;
|
|
}
|
|
|
|
/*
|
|
* Check to see if this CPU needs to report that it has seen
|
|
* the most recent counter flip, thereby declaring that all
|
|
* subsequent rcu_read_lock() invocations will respect this flip.
|
|
*/
|
|
|
|
cpu = raw_smp_processor_id();
|
|
if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
|
|
smp_mb(); /* Subsequent counter accesses must see new value */
|
|
per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
|
|
smp_mb(); /* Subsequent RCU read-side critical sections */
|
|
/* seen -after- acknowledgement. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get here when RCU is idle. Decide whether we need to
|
|
* move out of idle state, and return non-zero if so.
|
|
* "Straightforward" approach for the moment, might later
|
|
* use callback-list lengths, grace-period duration, or
|
|
* some such to determine when to exit idle state.
|
|
* Might also need a pre-idle test that does not acquire
|
|
* the lock, but let's get the simple case working first...
|
|
*/
|
|
|
|
static int
|
|
rcu_try_flip_idle(void)
|
|
{
|
|
int cpu;
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
|
|
if (!rcu_pending(smp_processor_id())) {
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do the flip.
|
|
*/
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
|
|
rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
|
|
|
|
/*
|
|
* Need a memory barrier so that other CPUs see the new
|
|
* counter value before they see the subsequent change of all
|
|
* the rcu_flip_flag instances to rcu_flipped.
|
|
*/
|
|
|
|
smp_mb(); /* see above block comment. */
|
|
|
|
/* Now ask each CPU for acknowledgement of the flip. */
|
|
|
|
for_each_cpu_mask(cpu, rcu_cpu_online_map)
|
|
per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Wait for CPUs to acknowledge the flip.
|
|
*/
|
|
|
|
static int
|
|
rcu_try_flip_waitack(void)
|
|
{
|
|
int cpu;
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
|
|
for_each_cpu_mask(cpu, rcu_cpu_online_map)
|
|
if (per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Make sure our checks above don't bleed into subsequent
|
|
* waiting for the sum of the counters to reach zero.
|
|
*/
|
|
|
|
smp_mb(); /* see above block comment. */
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Wait for collective ``last'' counter to reach zero,
|
|
* then tell all CPUs to do an end-of-grace-period memory barrier.
|
|
*/
|
|
|
|
static int
|
|
rcu_try_flip_waitzero(void)
|
|
{
|
|
int cpu;
|
|
int lastidx = !(rcu_ctrlblk.completed & 0x1);
|
|
int sum = 0;
|
|
|
|
/* Check to see if the sum of the "last" counters is zero. */
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
|
|
for_each_cpu_mask(cpu, rcu_cpu_online_map)
|
|
sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
|
|
if (sum != 0) {
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This ensures that the other CPUs see the call for
|
|
* memory barriers -after- the sum to zero has been
|
|
* detected here
|
|
*/
|
|
smp_mb(); /* ^^^^^^^^^^^^ */
|
|
|
|
/* Call for a memory barrier from each CPU. */
|
|
for_each_cpu_mask(cpu, rcu_cpu_online_map)
|
|
per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Wait for all CPUs to do their end-of-grace-period memory barrier.
|
|
* Return 0 once all CPUs have done so.
|
|
*/
|
|
|
|
static int
|
|
rcu_try_flip_waitmb(void)
|
|
{
|
|
int cpu;
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
|
|
for_each_cpu_mask(cpu, rcu_cpu_online_map)
|
|
if (per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
|
|
return 0;
|
|
}
|
|
|
|
smp_mb(); /* Ensure that the above checks precede any following flip. */
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attempt a single flip of the counters. Remember, a single flip does
|
|
* -not- constitute a grace period. Instead, the interval between
|
|
* at least GP_STAGES consecutive flips is a grace period.
|
|
*
|
|
* If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
|
|
* on a large SMP, they might want to use a hierarchical organization of
|
|
* the per-CPU-counter pairs.
|
|
*/
|
|
static void rcu_try_flip(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
|
|
if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
|
|
RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Take the next transition(s) through the RCU grace-period
|
|
* flip-counter state machine.
|
|
*/
|
|
|
|
switch (rcu_ctrlblk.rcu_try_flip_state) {
|
|
case rcu_try_flip_idle_state:
|
|
if (rcu_try_flip_idle())
|
|
rcu_ctrlblk.rcu_try_flip_state =
|
|
rcu_try_flip_waitack_state;
|
|
break;
|
|
case rcu_try_flip_waitack_state:
|
|
if (rcu_try_flip_waitack())
|
|
rcu_ctrlblk.rcu_try_flip_state =
|
|
rcu_try_flip_waitzero_state;
|
|
break;
|
|
case rcu_try_flip_waitzero_state:
|
|
if (rcu_try_flip_waitzero())
|
|
rcu_ctrlblk.rcu_try_flip_state =
|
|
rcu_try_flip_waitmb_state;
|
|
break;
|
|
case rcu_try_flip_waitmb_state:
|
|
if (rcu_try_flip_waitmb())
|
|
rcu_ctrlblk.rcu_try_flip_state =
|
|
rcu_try_flip_idle_state;
|
|
}
|
|
spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
}
|
|
|
|
/*
|
|
* Check to see if this CPU needs to do a memory barrier in order to
|
|
* ensure that any prior RCU read-side critical sections have committed
|
|
* their counter manipulations and critical-section memory references
|
|
* before declaring the grace period to be completed.
|
|
*/
|
|
static void rcu_check_mb(int cpu)
|
|
{
|
|
if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
|
|
smp_mb(); /* Ensure RCU read-side accesses are visible. */
|
|
per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
|
|
}
|
|
}
|
|
|
|
void rcu_check_callbacks(int cpu, int user)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
rcu_check_mb(cpu);
|
|
if (rcu_ctrlblk.completed == rdp->completed)
|
|
rcu_try_flip();
|
|
spin_lock_irqsave(&rdp->lock, flags);
|
|
RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
|
|
__rcu_advance_callbacks(rdp);
|
|
if (rdp->donelist == NULL) {
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
} else {
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
raise_softirq(RCU_SOFTIRQ);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Needed by dynticks, to make sure all RCU processing has finished
|
|
* when we go idle:
|
|
*/
|
|
void rcu_advance_callbacks(int cpu, int user)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
if (rcu_ctrlblk.completed == rdp->completed) {
|
|
rcu_try_flip();
|
|
if (rcu_ctrlblk.completed == rdp->completed)
|
|
return;
|
|
}
|
|
spin_lock_irqsave(&rdp->lock, flags);
|
|
RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
|
|
__rcu_advance_callbacks(rdp);
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
|
|
*dsttail = srclist; \
|
|
if (srclist != NULL) { \
|
|
dsttail = srctail; \
|
|
srclist = NULL; \
|
|
srctail = &srclist;\
|
|
} \
|
|
} while (0)
|
|
|
|
void rcu_offline_cpu(int cpu)
|
|
{
|
|
int i;
|
|
struct rcu_head *list = NULL;
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
struct rcu_head **tail = &list;
|
|
|
|
/*
|
|
* Remove all callbacks from the newly dead CPU, retaining order.
|
|
* Otherwise rcu_barrier() will fail
|
|
*/
|
|
|
|
spin_lock_irqsave(&rdp->lock, flags);
|
|
rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
|
|
for (i = GP_STAGES - 1; i >= 0; i--)
|
|
rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
|
|
list, tail);
|
|
rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
rdp->waitlistcount = 0;
|
|
|
|
/* Disengage the newly dead CPU from the grace-period computation. */
|
|
|
|
spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
|
|
rcu_check_mb(cpu);
|
|
if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
|
|
smp_mb(); /* Subsequent counter accesses must see new value */
|
|
per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
|
|
smp_mb(); /* Subsequent RCU read-side critical sections */
|
|
/* seen -after- acknowledgement. */
|
|
}
|
|
|
|
RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
|
|
RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
|
|
|
|
RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
|
|
RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
|
|
|
|
cpu_clear(cpu, rcu_cpu_online_map);
|
|
|
|
spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
/*
|
|
* Place the removed callbacks on the current CPU's queue.
|
|
* Make them all start a new grace period: simple approach,
|
|
* in theory could starve a given set of callbacks, but
|
|
* you would need to be doing some serious CPU hotplugging
|
|
* to make this happen. If this becomes a problem, adding
|
|
* a synchronize_rcu() to the hotplug path would be a simple
|
|
* fix.
|
|
*/
|
|
|
|
rdp = RCU_DATA_ME();
|
|
spin_lock_irqsave(&rdp->lock, flags);
|
|
*rdp->nexttail = list;
|
|
if (list)
|
|
rdp->nexttail = tail;
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
}
|
|
|
|
void __devinit rcu_online_cpu(int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
|
|
cpu_set(cpu, rcu_cpu_online_map);
|
|
spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
void rcu_offline_cpu(int cpu)
|
|
{
|
|
}
|
|
|
|
void __devinit rcu_online_cpu(int cpu)
|
|
{
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
static void rcu_process_callbacks(struct softirq_action *unused)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_head *next, *list;
|
|
struct rcu_data *rdp = RCU_DATA_ME();
|
|
|
|
spin_lock_irqsave(&rdp->lock, flags);
|
|
list = rdp->donelist;
|
|
if (list == NULL) {
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
return;
|
|
}
|
|
rdp->donelist = NULL;
|
|
rdp->donetail = &rdp->donelist;
|
|
RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
|
|
spin_unlock_irqrestore(&rdp->lock, flags);
|
|
while (list) {
|
|
next = list->next;
|
|
list->func(list);
|
|
list = next;
|
|
RCU_TRACE_ME(rcupreempt_trace_invoke);
|
|
}
|
|
}
|
|
|
|
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp;
|
|
|
|
head->func = func;
|
|
head->next = NULL;
|
|
local_irq_save(flags);
|
|
rdp = RCU_DATA_ME();
|
|
spin_lock(&rdp->lock);
|
|
__rcu_advance_callbacks(rdp);
|
|
*rdp->nexttail = head;
|
|
rdp->nexttail = &head->next;
|
|
RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
|
|
spin_unlock(&rdp->lock);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu);
|
|
|
|
/*
|
|
* Wait until all currently running preempt_disable() code segments
|
|
* (including hardware-irq-disable segments) complete. Note that
|
|
* in -rt this does -not- necessarily result in all currently executing
|
|
* interrupt -handlers- having completed.
|
|
*/
|
|
void __synchronize_sched(void)
|
|
{
|
|
cpumask_t oldmask;
|
|
int cpu;
|
|
|
|
if (sched_getaffinity(0, &oldmask) < 0)
|
|
oldmask = cpu_possible_map;
|
|
for_each_online_cpu(cpu) {
|
|
sched_setaffinity(0, cpumask_of_cpu(cpu));
|
|
schedule();
|
|
}
|
|
sched_setaffinity(0, oldmask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__synchronize_sched);
|
|
|
|
/*
|
|
* Check to see if any future RCU-related work will need to be done
|
|
* by the current CPU, even if none need be done immediately, returning
|
|
* 1 if so. Assumes that notifiers would take care of handling any
|
|
* outstanding requests from the RCU core.
|
|
*
|
|
* This function is part of the RCU implementation; it is -not-
|
|
* an exported member of the RCU API.
|
|
*/
|
|
int rcu_needs_cpu(int cpu)
|
|
{
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
return (rdp->donelist != NULL ||
|
|
!!rdp->waitlistcount ||
|
|
rdp->nextlist != NULL);
|
|
}
|
|
|
|
int rcu_pending(int cpu)
|
|
{
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
/* The CPU has at least one callback queued somewhere. */
|
|
|
|
if (rdp->donelist != NULL ||
|
|
!!rdp->waitlistcount ||
|
|
rdp->nextlist != NULL)
|
|
return 1;
|
|
|
|
/* The RCU core needs an acknowledgement from this CPU. */
|
|
|
|
if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
|
|
(per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
|
|
return 1;
|
|
|
|
/* This CPU has fallen behind the global grace-period number. */
|
|
|
|
if (rdp->completed != rcu_ctrlblk.completed)
|
|
return 1;
|
|
|
|
/* Nothing needed from this CPU. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
rcu_online_cpu(cpu);
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
rcu_offline_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata rcu_nb = {
|
|
.notifier_call = rcu_cpu_notify,
|
|
};
|
|
|
|
void __init __rcu_init(void)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
struct rcu_data *rdp;
|
|
|
|
printk(KERN_NOTICE "Preemptible RCU implementation.\n");
|
|
for_each_possible_cpu(cpu) {
|
|
rdp = RCU_DATA_CPU(cpu);
|
|
spin_lock_init(&rdp->lock);
|
|
rdp->completed = 0;
|
|
rdp->waitlistcount = 0;
|
|
rdp->nextlist = NULL;
|
|
rdp->nexttail = &rdp->nextlist;
|
|
for (i = 0; i < GP_STAGES; i++) {
|
|
rdp->waitlist[i] = NULL;
|
|
rdp->waittail[i] = &rdp->waitlist[i];
|
|
}
|
|
rdp->donelist = NULL;
|
|
rdp->donetail = &rdp->donelist;
|
|
rdp->rcu_flipctr[0] = 0;
|
|
rdp->rcu_flipctr[1] = 0;
|
|
}
|
|
register_cpu_notifier(&rcu_nb);
|
|
|
|
/*
|
|
* We don't need protection against CPU-Hotplug here
|
|
* since
|
|
* a) If a CPU comes online while we are iterating over the
|
|
* cpu_online_map below, we would only end up making a
|
|
* duplicate call to rcu_online_cpu() which sets the corresponding
|
|
* CPU's mask in the rcu_cpu_online_map.
|
|
*
|
|
* b) A CPU cannot go offline at this point in time since the user
|
|
* does not have access to the sysfs interface, nor do we
|
|
* suspend the system.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
|
|
|
|
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
|
|
}
|
|
|
|
/*
|
|
* Deprecated, use synchronize_rcu() or synchronize_sched() instead.
|
|
*/
|
|
void synchronize_kernel(void)
|
|
{
|
|
synchronize_rcu();
|
|
}
|
|
|
|
#ifdef CONFIG_RCU_TRACE
|
|
long *rcupreempt_flipctr(int cpu)
|
|
{
|
|
return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
|
|
|
|
int rcupreempt_flip_flag(int cpu)
|
|
{
|
|
return per_cpu(rcu_flip_flag, cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
|
|
|
|
int rcupreempt_mb_flag(int cpu)
|
|
{
|
|
return per_cpu(rcu_mb_flag, cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
|
|
|
|
char *rcupreempt_try_flip_state_name(void)
|
|
{
|
|
return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
|
|
|
|
struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
|
|
{
|
|
struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
return &rdp->trace;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
|
|
|
|
#endif /* #ifdef RCU_TRACE */
|