mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
90afe0a98e
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Signed-off-by: Helge Deller <deller@gmx.de>
1444 lines
38 KiB
C
1444 lines
38 KiB
C
/*
|
|
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
|
|
*
|
|
* Floating-point emulation code
|
|
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
/*
|
|
* BEGIN_DESC
|
|
*
|
|
* File:
|
|
* @(#) pa/fp/fpudispatch.c $Revision: 1.1 $
|
|
*
|
|
* Purpose:
|
|
* <<please update with a synopsis of the functionality provided by this file>>
|
|
*
|
|
* External Interfaces:
|
|
* <<the following list was autogenerated, please review>>
|
|
* emfpudispatch(ir, dummy1, dummy2, fpregs)
|
|
* fpudispatch(ir, excp_code, holder, fpregs)
|
|
*
|
|
* Internal Interfaces:
|
|
* <<the following list was autogenerated, please review>>
|
|
* static u_int decode_06(u_int, u_int *)
|
|
* static u_int decode_0c(u_int, u_int, u_int, u_int *)
|
|
* static u_int decode_0e(u_int, u_int, u_int, u_int *)
|
|
* static u_int decode_26(u_int, u_int *)
|
|
* static u_int decode_2e(u_int, u_int *)
|
|
* static void update_status_cbit(u_int *, u_int, u_int, u_int)
|
|
*
|
|
* Theory:
|
|
* <<please update with a overview of the operation of this file>>
|
|
*
|
|
* END_DESC
|
|
*/
|
|
|
|
#define FPUDEBUG 0
|
|
|
|
#include "float.h"
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <asm/processor.h>
|
|
/* #include <sys/debug.h> */
|
|
/* #include <machine/sys/mdep_private.h> */
|
|
|
|
#define COPR_INST 0x30000000
|
|
|
|
/*
|
|
* definition of extru macro. If pos and len are constants, the compiler
|
|
* will generate an extru instruction when optimized
|
|
*/
|
|
#define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1))
|
|
/* definitions of bit field locations in the instruction */
|
|
#define fpmajorpos 5
|
|
#define fpr1pos 10
|
|
#define fpr2pos 15
|
|
#define fptpos 31
|
|
#define fpsubpos 18
|
|
#define fpclass1subpos 16
|
|
#define fpclasspos 22
|
|
#define fpfmtpos 20
|
|
#define fpdfpos 18
|
|
#define fpnulpos 26
|
|
/*
|
|
* the following are the extra bits for the 0E major op
|
|
*/
|
|
#define fpxr1pos 24
|
|
#define fpxr2pos 19
|
|
#define fpxtpos 25
|
|
#define fpxpos 23
|
|
#define fp0efmtpos 20
|
|
/*
|
|
* the following are for the multi-ops
|
|
*/
|
|
#define fprm1pos 10
|
|
#define fprm2pos 15
|
|
#define fptmpos 31
|
|
#define fprapos 25
|
|
#define fptapos 20
|
|
#define fpmultifmt 26
|
|
/*
|
|
* the following are for the fused FP instructions
|
|
*/
|
|
/* fprm1pos 10 */
|
|
/* fprm2pos 15 */
|
|
#define fpraupos 18
|
|
#define fpxrm2pos 19
|
|
/* fpfmtpos 20 */
|
|
#define fpralpos 23
|
|
#define fpxrm1pos 24
|
|
/* fpxtpos 25 */
|
|
#define fpfusedsubop 26
|
|
/* fptpos 31 */
|
|
|
|
/*
|
|
* offset to constant zero in the FP emulation registers
|
|
*/
|
|
#define fpzeroreg (32*sizeof(double)/sizeof(u_int))
|
|
|
|
/*
|
|
* extract the major opcode from the instruction
|
|
*/
|
|
#define get_major(op) extru(op,fpmajorpos,6)
|
|
/*
|
|
* extract the two bit class field from the FP instruction. The class is at bit
|
|
* positions 21-22
|
|
*/
|
|
#define get_class(op) extru(op,fpclasspos,2)
|
|
/*
|
|
* extract the 3 bit subop field. For all but class 1 instructions, it is
|
|
* located at bit positions 16-18
|
|
*/
|
|
#define get_subop(op) extru(op,fpsubpos,3)
|
|
/*
|
|
* extract the 2 or 3 bit subop field from class 1 instructions. It is located
|
|
* at bit positions 15-16 (PA1.1) or 14-16 (PA2.0)
|
|
*/
|
|
#define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */
|
|
#define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */
|
|
|
|
/* definitions of unimplemented exceptions */
|
|
#define MAJOR_0C_EXCP 0x09
|
|
#define MAJOR_0E_EXCP 0x0b
|
|
#define MAJOR_06_EXCP 0x03
|
|
#define MAJOR_26_EXCP 0x23
|
|
#define MAJOR_2E_EXCP 0x2b
|
|
#define PA83_UNIMP_EXCP 0x01
|
|
|
|
/*
|
|
* Special Defines for TIMEX specific code
|
|
*/
|
|
|
|
#define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2)
|
|
#define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG)
|
|
|
|
/*
|
|
* Static function definitions
|
|
*/
|
|
#define _PROTOTYPES
|
|
#if defined(_PROTOTYPES) || defined(_lint)
|
|
static u_int decode_0c(u_int, u_int, u_int, u_int *);
|
|
static u_int decode_0e(u_int, u_int, u_int, u_int *);
|
|
static u_int decode_06(u_int, u_int *);
|
|
static u_int decode_26(u_int, u_int *);
|
|
static u_int decode_2e(u_int, u_int *);
|
|
static void update_status_cbit(u_int *, u_int, u_int, u_int);
|
|
#else /* !_PROTOTYPES&&!_lint */
|
|
static u_int decode_0c();
|
|
static u_int decode_0e();
|
|
static u_int decode_06();
|
|
static u_int decode_26();
|
|
static u_int decode_2e();
|
|
static void update_status_cbit();
|
|
#endif /* _PROTOTYPES&&!_lint */
|
|
|
|
#define VASSERT(x)
|
|
|
|
static void parisc_linux_get_fpu_type(u_int fpregs[])
|
|
{
|
|
/* on pa-linux the fpu type is not filled in by the
|
|
* caller; it is constructed here
|
|
*/
|
|
if (boot_cpu_data.cpu_type == pcxs)
|
|
fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG;
|
|
else if (boot_cpu_data.cpu_type == pcxt ||
|
|
boot_cpu_data.cpu_type == pcxt_)
|
|
fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG;
|
|
else if (boot_cpu_data.cpu_type >= pcxu)
|
|
fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG;
|
|
}
|
|
|
|
/*
|
|
* this routine will decode the excepting floating point instruction and
|
|
* call the appropriate emulation routine.
|
|
* It is called by decode_fpu with the following parameters:
|
|
* fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register)
|
|
* where current_ir is the instruction to be emulated,
|
|
* unimplemented_code is the exception_code that the hardware generated
|
|
* and &Fpu_register is the address of emulated FP reg 0.
|
|
*/
|
|
u_int
|
|
fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[])
|
|
{
|
|
u_int class, subop;
|
|
u_int fpu_type_flags;
|
|
|
|
/* All FP emulation code assumes that ints are 4-bytes in length */
|
|
VASSERT(sizeof(int) == 4);
|
|
|
|
parisc_linux_get_fpu_type(fpregs);
|
|
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
|
|
class = get_class(ir);
|
|
if (class == 1) {
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG)
|
|
subop = get_subop1_PA2_0(ir);
|
|
else
|
|
subop = get_subop1_PA1_1(ir);
|
|
}
|
|
else
|
|
subop = get_subop(ir);
|
|
|
|
if (FPUDEBUG) printk("class %d subop %d\n", class, subop);
|
|
|
|
switch (excp_code) {
|
|
case MAJOR_0C_EXCP:
|
|
case PA83_UNIMP_EXCP:
|
|
return(decode_0c(ir,class,subop,fpregs));
|
|
case MAJOR_0E_EXCP:
|
|
return(decode_0e(ir,class,subop,fpregs));
|
|
case MAJOR_06_EXCP:
|
|
return(decode_06(ir,fpregs));
|
|
case MAJOR_26_EXCP:
|
|
return(decode_26(ir,fpregs));
|
|
case MAJOR_2E_EXCP:
|
|
return(decode_2e(ir,fpregs));
|
|
default:
|
|
/* "crashme Night Gallery painting nr 2. (asm_crash.s).
|
|
* This was fixed for multi-user kernels, but
|
|
* workstation kernels had a panic here. This allowed
|
|
* any arbitrary user to panic the kernel by executing
|
|
* setting the FP exception registers to strange values
|
|
* and generating an emulation trap. The emulation and
|
|
* exception code must never be able to panic the
|
|
* kernel.
|
|
*/
|
|
return(UNIMPLEMENTEDEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this routine is called by $emulation_trap to emulate a coprocessor
|
|
* instruction if one doesn't exist
|
|
*/
|
|
u_int
|
|
emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[])
|
|
{
|
|
u_int class, subop, major;
|
|
u_int fpu_type_flags;
|
|
|
|
/* All FP emulation code assumes that ints are 4-bytes in length */
|
|
VASSERT(sizeof(int) == 4);
|
|
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
|
|
major = get_major(ir);
|
|
class = get_class(ir);
|
|
if (class == 1) {
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG)
|
|
subop = get_subop1_PA2_0(ir);
|
|
else
|
|
subop = get_subop1_PA1_1(ir);
|
|
}
|
|
else
|
|
subop = get_subop(ir);
|
|
switch (major) {
|
|
case 0x0C:
|
|
return(decode_0c(ir,class,subop,fpregs));
|
|
case 0x0E:
|
|
return(decode_0e(ir,class,subop,fpregs));
|
|
case 0x06:
|
|
return(decode_06(ir,fpregs));
|
|
case 0x26:
|
|
return(decode_26(ir,fpregs));
|
|
case 0x2E:
|
|
return(decode_2e(ir,fpregs));
|
|
default:
|
|
return(PA83_UNIMP_EXCP);
|
|
}
|
|
}
|
|
|
|
|
|
static u_int
|
|
decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[])
|
|
{
|
|
u_int r1,r2,t; /* operand register offsets */
|
|
u_int fmt; /* also sf for class 1 conversions */
|
|
u_int df; /* for class 1 conversions */
|
|
u_int *status;
|
|
u_int retval, local_status;
|
|
u_int fpu_type_flags;
|
|
|
|
if (ir == COPR_INST) {
|
|
fpregs[0] = EMULATION_VERSION << 11;
|
|
return(NOEXCEPTION);
|
|
}
|
|
status = &fpregs[0]; /* fp status register */
|
|
local_status = fpregs[0]; /* and local copy */
|
|
r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (r1 == 0) /* map fr0 source to constant zero */
|
|
r1 = fpzeroreg;
|
|
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
|
|
if (t == 0 && class != 2) /* don't allow fr0 as a dest */
|
|
return(MAJOR_0C_EXCP);
|
|
fmt = extru(ir,fpfmtpos,2); /* get fmt completer */
|
|
|
|
switch (class) {
|
|
case 0:
|
|
switch (subop) {
|
|
case 0: /* COPR 0,0 emulated above*/
|
|
case 1:
|
|
return(MAJOR_0C_EXCP);
|
|
case 2: /* FCPY */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1];
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 3: /* FABS */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and clear sign bit */
|
|
fpregs[t] = fpregs[r1] & 0x7fffffff;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 6: /* FNEG */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and invert sign bit */
|
|
fpregs[t] = fpregs[r1] ^ 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 7: /* FNEGABS */
|
|
switch (fmt) {
|
|
case 2: /* illegal */
|
|
return(MAJOR_0C_EXCP);
|
|
case 3: /* quad */
|
|
t &= ~3; /* force to even reg #s */
|
|
r1 &= ~3;
|
|
fpregs[t+3] = fpregs[r1+3];
|
|
fpregs[t+2] = fpregs[r1+2];
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
/* copy and set sign bit */
|
|
fpregs[t] = fpregs[r1] | 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 4: /* FSQRT */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2:
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 5: /* FRND */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frnd(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frnd(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2:
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of switch (subop) */
|
|
|
|
case 1: /* class 1 */
|
|
df = extru(ir,fpdfpos,2); /* get dest format */
|
|
if ((df & 2) || (fmt & 2)) {
|
|
/*
|
|
* fmt's 2 and 3 are illegal of not implemented
|
|
* quad conversions
|
|
*/
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
/*
|
|
* encode source and dest formats into 2 bits.
|
|
* high bit is source, low bit is dest.
|
|
* bit = 1 --> double precision
|
|
*/
|
|
fmt = (fmt << 1) | df;
|
|
switch (subop) {
|
|
case 0: /* FCNVFF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(MAJOR_0C_EXCP);
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FCNVXF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FCNVFX */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 3: /* FCNVFXT */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 5: /* FCNVUF (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 6: /* FCNVFU (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 7: /* FCNVFUT (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* undefined */
|
|
return(MAJOR_0C_EXCP);
|
|
} /* end of switch subop */
|
|
|
|
case 2: /* class 2 */
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
|
|
r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG) {
|
|
/* FTEST if nullify bit set, otherwise FCMP */
|
|
if (extru(ir, fpnulpos, 1)) { /* FTEST */
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* arg0 is not used
|
|
* second param is the t field used for
|
|
* ftest,acc and ftest,rej
|
|
* third param is the subop (y-field)
|
|
*/
|
|
BUG();
|
|
/* Unsupported
|
|
* return(ftest(0L,extru(ir,fptpos,5),
|
|
* &fpregs[0],subop));
|
|
*/
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} else { /* FCMP */
|
|
switch (fmt) {
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
}
|
|
} /* end of if for PA2.0 */
|
|
else { /* PA1.0 & PA1.1 */
|
|
switch (subop) {
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0C_EXCP);
|
|
case 0: /* FCMP */
|
|
switch (fmt) {
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FTEST */
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* arg0 is not used
|
|
* second param is the t field used for
|
|
* ftest,acc and ftest,rej
|
|
* third param is the subop (y-field)
|
|
*/
|
|
BUG();
|
|
/* unsupported
|
|
* return(ftest(0L,extru(ir,fptpos,5),
|
|
* &fpregs[0],subop));
|
|
*/
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of switch subop */
|
|
} /* end of else for PA1.0 & PA1.1 */
|
|
case 3: /* class 3 */
|
|
r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
switch (subop) {
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0C_EXCP);
|
|
|
|
case 0: /* FADD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 1: /* FSUB */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 2: /* FMPY */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fmpy(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fmpy(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 3: /* FDIV */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
case 4: /* FREM */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 2: /* illegal */
|
|
case 3: /* quad not implemented */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
} /* end of class 3 switch */
|
|
} /* end of switch(class) */
|
|
|
|
/* If we get here, something is really wrong! */
|
|
return(MAJOR_0C_EXCP);
|
|
}
|
|
|
|
static u_int
|
|
decode_0e(ir,class,subop,fpregs)
|
|
u_int ir,class,subop;
|
|
u_int fpregs[];
|
|
{
|
|
u_int r1,r2,t; /* operand register offsets */
|
|
u_int fmt; /* also sf for class 1 conversions */
|
|
u_int df; /* dest format for class 1 conversions */
|
|
u_int *status;
|
|
u_int retval, local_status;
|
|
u_int fpu_type_flags;
|
|
|
|
status = &fpregs[0];
|
|
local_status = fpregs[0];
|
|
r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1)));
|
|
if (r1 == 0)
|
|
r1 = fpzeroreg;
|
|
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
|
|
if (t == 0 && class != 2)
|
|
return(MAJOR_0E_EXCP);
|
|
if (class < 2) /* class 0 or 1 has 2 bit fmt */
|
|
fmt = extru(ir,fpfmtpos,2);
|
|
else /* class 2 and 3 have 1 bit fmt */
|
|
fmt = extru(ir,fp0efmtpos,1);
|
|
/*
|
|
* An undefined combination, double precision accessing the
|
|
* right half of a FPR, can get us into trouble.
|
|
* Let's just force proper alignment on it.
|
|
*/
|
|
if (fmt == DBL) {
|
|
r1 &= ~1;
|
|
if (class != 1)
|
|
t &= ~1;
|
|
}
|
|
|
|
switch (class) {
|
|
case 0:
|
|
switch (subop) {
|
|
case 0: /* unimplemented */
|
|
case 1:
|
|
return(MAJOR_0E_EXCP);
|
|
case 2: /* FCPY */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1];
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 3: /* FABS */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] & 0x7fffffff;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 6: /* FNEG */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] ^ 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 7: /* FNEGABS */
|
|
switch (fmt) {
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* double */
|
|
fpregs[t+1] = fpregs[r1+1];
|
|
case 0: /* single */
|
|
fpregs[t] = fpregs[r1] | 0x80000000;
|
|
return(NOEXCEPTION);
|
|
}
|
|
case 4: /* FSQRT */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 1:
|
|
return(dbl_fsqrt(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
case 5: /* FRMD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frnd(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 1:
|
|
return(dbl_frnd(&fpregs[r1],0,
|
|
&fpregs[t], status));
|
|
case 2:
|
|
case 3:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
} /* end of switch (subop */
|
|
|
|
case 1: /* class 1 */
|
|
df = extru(ir,fpdfpos,2); /* get dest format */
|
|
/*
|
|
* Fix Crashme problem (writing to 31R in double precision)
|
|
* here too.
|
|
*/
|
|
if (df == DBL) {
|
|
t &= ~1;
|
|
}
|
|
if ((df & 2) || (fmt & 2))
|
|
return(MAJOR_0E_EXCP);
|
|
|
|
fmt = (fmt << 1) | df;
|
|
switch (subop) {
|
|
case 0: /* FCNVFF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(MAJOR_0E_EXCP);
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
case 1: /* FCNVXF */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FCNVFX */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 3: /* FCNVFXT */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 5: /* FCNVUF (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 6: /* FCNVFU (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 7: /* FCNVFUT (PA2.0 only) */
|
|
switch(fmt) {
|
|
case 0: /* sgl/sgl */
|
|
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 1: /* sgl/dbl */
|
|
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 2: /* dbl/sgl */
|
|
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
case 3: /* dbl/dbl */
|
|
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* undefined */
|
|
return(MAJOR_0C_EXCP);
|
|
} /* end of switch subop */
|
|
case 2: /* class 2 */
|
|
/*
|
|
* Be careful out there.
|
|
* Crashme can generate cases where FR31R is specified
|
|
* as the source or target of a double precision operation.
|
|
* Since we just pass the address of the floating-point
|
|
* register to the emulation routines, this can cause
|
|
* corruption of fpzeroreg.
|
|
*/
|
|
if (fmt == DBL)
|
|
r2 = (extru(ir,fpr2pos,5)<<1);
|
|
else
|
|
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
if (fpu_type_flags & PA2_0_FPU_FLAG) {
|
|
/* FTEST if nullify bit set, otherwise FCMP */
|
|
if (extru(ir, fpnulpos, 1)) { /* FTEST */
|
|
/* not legal */
|
|
return(MAJOR_0E_EXCP);
|
|
} else { /* FCMP */
|
|
switch (fmt) {
|
|
/*
|
|
* fmt is only 1 bit long
|
|
*/
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
}
|
|
}
|
|
} /* end of if for PA2.0 */
|
|
else { /* PA1.0 & PA1.1 */
|
|
switch (subop) {
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0E_EXCP);
|
|
case 0: /* FCMP */
|
|
switch (fmt) {
|
|
/*
|
|
* fmt is only 1 bit long
|
|
*/
|
|
case 0:
|
|
retval = sgl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
case 1:
|
|
retval = dbl_fcmp(&fpregs[r1],
|
|
&fpregs[r2],extru(ir,fptpos,5),
|
|
&local_status);
|
|
update_status_cbit(status,local_status,
|
|
fpu_type_flags, subop);
|
|
return(retval);
|
|
}
|
|
} /* end of switch subop */
|
|
} /* end of else for PA1.0 & PA1.1 */
|
|
case 3: /* class 3 */
|
|
/*
|
|
* Be careful out there.
|
|
* Crashme can generate cases where FR31R is specified
|
|
* as the source or target of a double precision operation.
|
|
* Since we just pass the address of the floating-point
|
|
* register to the emulation routines, this can cause
|
|
* corruption of fpzeroreg.
|
|
*/
|
|
if (fmt == DBL)
|
|
r2 = (extru(ir,fpr2pos,5)<<1);
|
|
else
|
|
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
|
|
if (r2 == 0)
|
|
r2 = fpzeroreg;
|
|
switch (subop) {
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
return(MAJOR_0E_EXCP);
|
|
|
|
/*
|
|
* Note that fmt is only 1 bit for class 3 */
|
|
case 0: /* FADD */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 1: /* FSUB */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 2: /* FMPY or XMPYU */
|
|
/*
|
|
* check for integer multiply (x bit set)
|
|
*/
|
|
if (extru(ir,fpxpos,1)) {
|
|
/*
|
|
* emulate XMPYU
|
|
*/
|
|
switch (fmt) {
|
|
case 0:
|
|
/*
|
|
* bad instruction if t specifies
|
|
* the right half of a register
|
|
*/
|
|
if (t & 1)
|
|
return(MAJOR_0E_EXCP);
|
|
BUG();
|
|
/* unsupported
|
|
* impyu(&fpregs[r1],&fpregs[r2],
|
|
* &fpregs[t]);
|
|
*/
|
|
return(NOEXCEPTION);
|
|
case 1:
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
}
|
|
else { /* FMPY */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fmpy(&fpregs[r1],
|
|
&fpregs[r2],&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fmpy(&fpregs[r1],
|
|
&fpregs[r2],&fpregs[t],status));
|
|
}
|
|
}
|
|
case 3: /* FDIV */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
case 4: /* FREM */
|
|
switch (fmt) {
|
|
case 0:
|
|
return(sgl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
case 1:
|
|
return(dbl_frem(&fpregs[r1],&fpregs[r2],
|
|
&fpregs[t],status));
|
|
}
|
|
} /* end of class 3 switch */
|
|
} /* end of switch(class) */
|
|
|
|
/* If we get here, something is really wrong! */
|
|
return(MAJOR_0E_EXCP);
|
|
}
|
|
|
|
|
|
/*
|
|
* routine to decode the 06 (FMPYADD and FMPYCFXT) instruction
|
|
*/
|
|
static u_int
|
|
decode_06(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, tm, ra, ta; /* operands */
|
|
u_int fmt;
|
|
u_int error = 0;
|
|
u_int status;
|
|
u_int fpu_type_flags;
|
|
union {
|
|
double dbl;
|
|
float flt;
|
|
struct { u_int i1; u_int i2; } ints;
|
|
} mtmp, atmp;
|
|
|
|
|
|
status = fpregs[0]; /* use a local copy of status reg */
|
|
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
|
|
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
|
|
if (fmt == 0) { /* DBL */
|
|
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (tm == 0)
|
|
return(MAJOR_06_EXCP);
|
|
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
|
|
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ta == 0)
|
|
return(MAJOR_06_EXCP);
|
|
|
|
if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) {
|
|
|
|
if (ra == 0) {
|
|
/* special case FMPYCFXT, see sgl case below */
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],
|
|
&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (dbl_to_sgl_fcnvfxt(&fpregs[ta],
|
|
&atmp.ints.i1,&atmp.ints.i1,&status))
|
|
error = 1;
|
|
}
|
|
else {
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
}
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
|
|
}
|
|
|
|
if (error)
|
|
return(MAJOR_06_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[tm+1] = mtmp.ints.i2;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[ta+1] = atmp.ints.i2;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else { /* SGL */
|
|
/*
|
|
* calculate offsets for single precision numbers
|
|
* See table 6-14 in PA-89 architecture for mapping
|
|
*/
|
|
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
|
|
|
|
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
|
|
|
|
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
|
|
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
|
|
|
|
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
|
|
ra |= extru(ir,fprapos-4,1); /* add right word offset */
|
|
|
|
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
|
|
ta |= extru(ir,fptapos-4,1); /* add right word offset */
|
|
|
|
if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) {
|
|
/* special case FMPYCFXT (really 0)
|
|
* This instruction is only present on the Timex and
|
|
* Rolex fpu's in so if it is the special case and
|
|
* one of these fpu's we run the FMPYCFXT instruction
|
|
*/
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1,
|
|
&atmp.ints.i1,&status))
|
|
error = 1;
|
|
}
|
|
else {
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
|
|
&status))
|
|
error = 1;
|
|
}
|
|
if (error)
|
|
return(MAJOR_06_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* routine to decode the 26 (FMPYSUB) instruction
|
|
*/
|
|
static u_int
|
|
decode_26(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, tm, ra, ta; /* operands */
|
|
u_int fmt;
|
|
u_int error = 0;
|
|
u_int status;
|
|
union {
|
|
double dbl;
|
|
float flt;
|
|
struct { u_int i1; u_int i2; } ints;
|
|
} mtmp, atmp;
|
|
|
|
|
|
status = fpregs[0];
|
|
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
|
|
if (fmt == 0) { /* DBL */
|
|
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (tm == 0)
|
|
return(MAJOR_26_EXCP);
|
|
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ra == 0)
|
|
return(MAJOR_26_EXCP);
|
|
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
|
|
if (ta == 0)
|
|
return(MAJOR_26_EXCP);
|
|
|
|
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
|
|
error = 1;
|
|
if (error)
|
|
return(MAJOR_26_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[tm+1] = mtmp.ints.i2;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[ta+1] = atmp.ints.i2;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else { /* SGL */
|
|
/*
|
|
* calculate offsets for single precision numbers
|
|
* See table 6-14 in PA-89 architecture for mapping
|
|
*/
|
|
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
|
|
|
|
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
|
|
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
|
|
|
|
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
|
|
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
|
|
|
|
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
|
|
ra |= extru(ir,fprapos-4,1); /* add right word offset */
|
|
|
|
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
|
|
ta |= extru(ir,fptapos-4,1); /* add right word offset */
|
|
|
|
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
|
|
error = 1;
|
|
if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
|
|
error = 1;
|
|
if (error)
|
|
return(MAJOR_26_EXCP);
|
|
else {
|
|
/* copy results */
|
|
fpregs[tm] = mtmp.ints.i1;
|
|
fpregs[ta] = atmp.ints.i1;
|
|
fpregs[0] = status;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions
|
|
*/
|
|
static u_int
|
|
decode_2e(ir,fpregs)
|
|
u_int ir;
|
|
u_int fpregs[];
|
|
{
|
|
u_int rm1, rm2, ra, t; /* operands */
|
|
u_int fmt;
|
|
|
|
fmt = extru(ir,fpfmtpos,1); /* get fmt completer */
|
|
if (fmt == DBL) { /* DBL */
|
|
rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int);
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) *
|
|
sizeof(double)/sizeof(u_int);
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
|
|
if (t == 0)
|
|
return(MAJOR_2E_EXCP);
|
|
|
|
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
|
|
return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
} else {
|
|
return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
}
|
|
} /* end DBL */
|
|
else { /* SGL */
|
|
rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1));
|
|
if (rm1 == 0)
|
|
rm1 = fpzeroreg;
|
|
rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1));
|
|
if (rm2 == 0)
|
|
rm2 = fpzeroreg;
|
|
ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3);
|
|
if (ra == 0)
|
|
ra = fpzeroreg;
|
|
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
|
|
if (t == 0)
|
|
return(MAJOR_2E_EXCP);
|
|
|
|
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
|
|
return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
} else {
|
|
return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
|
|
&fpregs[ra], &fpregs[0], &fpregs[t]));
|
|
}
|
|
} /* end SGL */
|
|
}
|
|
|
|
/*
|
|
* update_status_cbit
|
|
*
|
|
* This routine returns the correct FP status register value in
|
|
* *status, based on the C-bit & V-bit returned by the FCMP
|
|
* emulation routine in new_status. The architecture type
|
|
* (PA83, PA89 or PA2.0) is available in fpu_type. The y_field
|
|
* and the architecture type are used to determine what flavor
|
|
* of FCMP is being emulated.
|
|
*/
|
|
static void
|
|
update_status_cbit(status, new_status, fpu_type, y_field)
|
|
u_int *status, new_status;
|
|
u_int fpu_type;
|
|
u_int y_field;
|
|
{
|
|
/*
|
|
* For PA89 FPU's which implement the Compare Queue and
|
|
* for PA2.0 FPU's, update the Compare Queue if the y-field = 0,
|
|
* otherwise update the specified bit in the Compare Array.
|
|
* Note that the y-field will always be 0 for non-PA2.0 FPU's.
|
|
*/
|
|
if ((fpu_type & TIMEX_EXTEN_FLAG) ||
|
|
(fpu_type & ROLEX_EXTEN_FLAG) ||
|
|
(fpu_type & PA2_0_FPU_FLAG)) {
|
|
if (y_field == 0) {
|
|
*status = ((*status & 0x04000000) >> 5) | /* old Cbit */
|
|
((*status & 0x003ff000) >> 1) | /* old CQ */
|
|
(new_status & 0xffc007ff); /* all other bits*/
|
|
} else {
|
|
*status = (*status & 0x04000000) | /* old Cbit */
|
|
((new_status & 0x04000000) >> (y_field+4)) |
|
|
(new_status & ~0x04000000 & /* other bits */
|
|
~(0x04000000 >> (y_field+4)));
|
|
}
|
|
}
|
|
/* if PA83, just update the C-bit */
|
|
else {
|
|
*status = new_status;
|
|
}
|
|
}
|