2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
linux-next/drivers/acpi/numa.c
Boris Ostrovsky aec03f89e9 ACPI/NUMA: Do not map pxm to node when NUMA is turned off
acpi_map_pxm_to_node() unconditially maps nodes even when NUMA is turned
off. So acpi_get_node() might return a node > 0, which is fatal when NUMA
is disabled as the rest of the kernel assumes that only node 0 exists.

Expose numa_off to the acpi code and return NUMA_NO_NODE when it's set.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: linux-ia64@vger.kernel.org
Cc: catalin.marinas@arm.com
Cc: rjw@rjwysocki.net
Cc: will.deacon@arm.com
Cc: linux-acpi@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: lenb@kernel.org
Link: http://lkml.kernel.org/r/1481602709-18260-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-15 11:32:32 +01:00

503 lines
13 KiB
C

/*
* acpi_numa.c - ACPI NUMA support
*
* Copyright (C) 2002 Takayoshi Kochi <t-kochi@bq.jp.nec.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/numa.h>
#include <linux/nodemask.h>
#include <linux/topology.h>
static nodemask_t nodes_found_map = NODE_MASK_NONE;
/* maps to convert between proximity domain and logical node ID */
static int pxm_to_node_map[MAX_PXM_DOMAINS]
= { [0 ... MAX_PXM_DOMAINS - 1] = NUMA_NO_NODE };
static int node_to_pxm_map[MAX_NUMNODES]
= { [0 ... MAX_NUMNODES - 1] = PXM_INVAL };
unsigned char acpi_srat_revision __initdata;
int acpi_numa __initdata;
int pxm_to_node(int pxm)
{
if (pxm < 0)
return NUMA_NO_NODE;
return pxm_to_node_map[pxm];
}
int node_to_pxm(int node)
{
if (node < 0)
return PXM_INVAL;
return node_to_pxm_map[node];
}
static void __acpi_map_pxm_to_node(int pxm, int node)
{
if (pxm_to_node_map[pxm] == NUMA_NO_NODE || node < pxm_to_node_map[pxm])
pxm_to_node_map[pxm] = node;
if (node_to_pxm_map[node] == PXM_INVAL || pxm < node_to_pxm_map[node])
node_to_pxm_map[node] = pxm;
}
int acpi_map_pxm_to_node(int pxm)
{
int node;
if (pxm < 0 || pxm >= MAX_PXM_DOMAINS || numa_off)
return NUMA_NO_NODE;
node = pxm_to_node_map[pxm];
if (node == NUMA_NO_NODE) {
if (nodes_weight(nodes_found_map) >= MAX_NUMNODES)
return NUMA_NO_NODE;
node = first_unset_node(nodes_found_map);
__acpi_map_pxm_to_node(pxm, node);
node_set(node, nodes_found_map);
}
return node;
}
/**
* acpi_map_pxm_to_online_node - Map proximity ID to online node
* @pxm: ACPI proximity ID
*
* This is similar to acpi_map_pxm_to_node(), but always returns an online
* node. When the mapped node from a given proximity ID is offline, it
* looks up the node distance table and returns the nearest online node.
*
* ACPI device drivers, which are called after the NUMA initialization has
* completed in the kernel, can call this interface to obtain their device
* NUMA topology from ACPI tables. Such drivers do not have to deal with
* offline nodes. A node may be offline when a device proximity ID is
* unique, SRAT memory entry does not exist, or NUMA is disabled, ex.
* "numa=off" on x86.
*/
int acpi_map_pxm_to_online_node(int pxm)
{
int node, n, dist, min_dist;
node = acpi_map_pxm_to_node(pxm);
if (node == NUMA_NO_NODE)
node = 0;
if (!node_online(node)) {
min_dist = INT_MAX;
for_each_online_node(n) {
dist = node_distance(node, n);
if (dist < min_dist) {
min_dist = dist;
node = n;
}
}
}
return node;
}
EXPORT_SYMBOL(acpi_map_pxm_to_online_node);
static void __init
acpi_table_print_srat_entry(struct acpi_subtable_header *header)
{
switch (header->type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
{
struct acpi_srat_cpu_affinity *p =
(struct acpi_srat_cpu_affinity *)header;
pr_debug("SRAT Processor (id[0x%02x] eid[0x%02x]) in proximity domain %d %s\n",
p->apic_id, p->local_sapic_eid,
p->proximity_domain_lo,
(p->flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
}
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
{
struct acpi_srat_mem_affinity *p =
(struct acpi_srat_mem_affinity *)header;
pr_debug("SRAT Memory (0x%lx length 0x%lx) in proximity domain %d %s%s%s\n",
(unsigned long)p->base_address,
(unsigned long)p->length,
p->proximity_domain,
(p->flags & ACPI_SRAT_MEM_ENABLED) ?
"enabled" : "disabled",
(p->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
" hot-pluggable" : "",
(p->flags & ACPI_SRAT_MEM_NON_VOLATILE) ?
" non-volatile" : "");
}
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
{
struct acpi_srat_x2apic_cpu_affinity *p =
(struct acpi_srat_x2apic_cpu_affinity *)header;
pr_debug("SRAT Processor (x2apicid[0x%08x]) in proximity domain %d %s\n",
p->apic_id,
p->proximity_domain,
(p->flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
}
break;
case ACPI_SRAT_TYPE_GICC_AFFINITY:
{
struct acpi_srat_gicc_affinity *p =
(struct acpi_srat_gicc_affinity *)header;
pr_debug("SRAT Processor (acpi id[0x%04x]) in proximity domain %d %s\n",
p->acpi_processor_uid,
p->proximity_domain,
(p->flags & ACPI_SRAT_GICC_ENABLED) ?
"enabled" : "disabled");
}
break;
default:
pr_warn("Found unsupported SRAT entry (type = 0x%x)\n",
header->type);
break;
}
}
/*
* A lot of BIOS fill in 10 (= no distance) everywhere. This messes
* up the NUMA heuristics which wants the local node to have a smaller
* distance than the others.
* Do some quick checks here and only use the SLIT if it passes.
*/
static int __init slit_valid(struct acpi_table_slit *slit)
{
int i, j;
int d = slit->locality_count;
for (i = 0; i < d; i++) {
for (j = 0; j < d; j++) {
u8 val = slit->entry[d*i + j];
if (i == j) {
if (val != LOCAL_DISTANCE)
return 0;
} else if (val <= LOCAL_DISTANCE)
return 0;
}
}
return 1;
}
void __init bad_srat(void)
{
pr_err("SRAT: SRAT not used.\n");
acpi_numa = -1;
}
int __init srat_disabled(void)
{
return acpi_numa < 0;
}
#if defined(CONFIG_X86) || defined(CONFIG_ARM64)
/*
* Callback for SLIT parsing. pxm_to_node() returns NUMA_NO_NODE for
* I/O localities since SRAT does not list them. I/O localities are
* not supported at this point.
*/
void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
{
int i, j;
for (i = 0; i < slit->locality_count; i++) {
const int from_node = pxm_to_node(i);
if (from_node == NUMA_NO_NODE)
continue;
for (j = 0; j < slit->locality_count; j++) {
const int to_node = pxm_to_node(j);
if (to_node == NUMA_NO_NODE)
continue;
numa_set_distance(from_node, to_node,
slit->entry[slit->locality_count * i + j]);
}
}
}
/*
* Default callback for parsing of the Proximity Domain <-> Memory
* Area mappings
*/
int __init
acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
{
u64 start, end;
u32 hotpluggable;
int node, pxm;
if (srat_disabled())
goto out_err;
if (ma->header.length < sizeof(struct acpi_srat_mem_affinity)) {
pr_err("SRAT: Unexpected header length: %d\n",
ma->header.length);
goto out_err_bad_srat;
}
if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0)
goto out_err;
hotpluggable = ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE;
if (hotpluggable && !IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
goto out_err;
start = ma->base_address;
end = start + ma->length;
pxm = ma->proximity_domain;
if (acpi_srat_revision <= 1)
pxm &= 0xff;
node = acpi_map_pxm_to_node(pxm);
if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
pr_err("SRAT: Too many proximity domains.\n");
goto out_err_bad_srat;
}
if (numa_add_memblk(node, start, end) < 0) {
pr_err("SRAT: Failed to add memblk to node %u [mem %#010Lx-%#010Lx]\n",
node, (unsigned long long) start,
(unsigned long long) end - 1);
goto out_err_bad_srat;
}
node_set(node, numa_nodes_parsed);
pr_info("SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx]%s%s\n",
node, pxm,
(unsigned long long) start, (unsigned long long) end - 1,
hotpluggable ? " hotplug" : "",
ma->flags & ACPI_SRAT_MEM_NON_VOLATILE ? " non-volatile" : "");
/* Mark hotplug range in memblock. */
if (hotpluggable && memblock_mark_hotplug(start, ma->length))
pr_warn("SRAT: Failed to mark hotplug range [mem %#010Lx-%#010Lx] in memblock\n",
(unsigned long long)start, (unsigned long long)end - 1);
max_possible_pfn = max(max_possible_pfn, PFN_UP(end - 1));
return 0;
out_err_bad_srat:
bad_srat();
out_err:
return -EINVAL;
}
#endif /* defined(CONFIG_X86) || defined (CONFIG_ARM64) */
static int __init acpi_parse_slit(struct acpi_table_header *table)
{
struct acpi_table_slit *slit = (struct acpi_table_slit *)table;
if (!slit_valid(slit)) {
pr_info("SLIT table looks invalid. Not used.\n");
return -EINVAL;
}
acpi_numa_slit_init(slit);
return 0;
}
void __init __weak
acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa)
{
pr_warn("Found unsupported x2apic [0x%08x] SRAT entry\n", pa->apic_id);
}
static int __init
acpi_parse_x2apic_affinity(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_srat_x2apic_cpu_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_x2apic_cpu_affinity *)header;
if (!processor_affinity)
return -EINVAL;
acpi_table_print_srat_entry(header);
/* let architecture-dependent part to do it */
acpi_numa_x2apic_affinity_init(processor_affinity);
return 0;
}
static int __init
acpi_parse_processor_affinity(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_srat_cpu_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_cpu_affinity *)header;
if (!processor_affinity)
return -EINVAL;
acpi_table_print_srat_entry(header);
/* let architecture-dependent part to do it */
acpi_numa_processor_affinity_init(processor_affinity);
return 0;
}
static int __init
acpi_parse_gicc_affinity(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_srat_gicc_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_gicc_affinity *)header;
if (!processor_affinity)
return -EINVAL;
acpi_table_print_srat_entry(header);
/* let architecture-dependent part to do it */
acpi_numa_gicc_affinity_init(processor_affinity);
return 0;
}
static int __initdata parsed_numa_memblks;
static int __init
acpi_parse_memory_affinity(struct acpi_subtable_header * header,
const unsigned long end)
{
struct acpi_srat_mem_affinity *memory_affinity;
memory_affinity = (struct acpi_srat_mem_affinity *)header;
if (!memory_affinity)
return -EINVAL;
acpi_table_print_srat_entry(header);
/* let architecture-dependent part to do it */
if (!acpi_numa_memory_affinity_init(memory_affinity))
parsed_numa_memblks++;
return 0;
}
static int __init acpi_parse_srat(struct acpi_table_header *table)
{
struct acpi_table_srat *srat = (struct acpi_table_srat *)table;
acpi_srat_revision = srat->header.revision;
/* Real work done in acpi_table_parse_srat below. */
return 0;
}
static int __init
acpi_table_parse_srat(enum acpi_srat_type id,
acpi_tbl_entry_handler handler, unsigned int max_entries)
{
return acpi_table_parse_entries(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat), id,
handler, max_entries);
}
int __init acpi_numa_init(void)
{
int cnt = 0;
if (acpi_disabled)
return -EINVAL;
/*
* Should not limit number with cpu num that is from NR_CPUS or nr_cpus=
* SRAT cpu entries could have different order with that in MADT.
* So go over all cpu entries in SRAT to get apicid to node mapping.
*/
/* SRAT: Static Resource Affinity Table */
if (!acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) {
struct acpi_subtable_proc srat_proc[3];
memset(srat_proc, 0, sizeof(srat_proc));
srat_proc[0].id = ACPI_SRAT_TYPE_CPU_AFFINITY;
srat_proc[0].handler = acpi_parse_processor_affinity;
srat_proc[1].id = ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY;
srat_proc[1].handler = acpi_parse_x2apic_affinity;
srat_proc[2].id = ACPI_SRAT_TYPE_GICC_AFFINITY;
srat_proc[2].handler = acpi_parse_gicc_affinity;
acpi_table_parse_entries_array(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat),
srat_proc, ARRAY_SIZE(srat_proc), 0);
cnt = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY,
acpi_parse_memory_affinity,
NR_NODE_MEMBLKS);
}
/* SLIT: System Locality Information Table */
acpi_table_parse(ACPI_SIG_SLIT, acpi_parse_slit);
if (cnt < 0)
return cnt;
else if (!parsed_numa_memblks)
return -ENOENT;
return 0;
}
static int acpi_get_pxm(acpi_handle h)
{
unsigned long long pxm;
acpi_status status;
acpi_handle handle;
acpi_handle phandle = h;
do {
handle = phandle;
status = acpi_evaluate_integer(handle, "_PXM", NULL, &pxm);
if (ACPI_SUCCESS(status))
return pxm;
status = acpi_get_parent(handle, &phandle);
} while (ACPI_SUCCESS(status));
return -1;
}
int acpi_get_node(acpi_handle handle)
{
int pxm;
pxm = acpi_get_pxm(handle);
return acpi_map_pxm_to_node(pxm);
}
EXPORT_SYMBOL(acpi_get_node);